1
|
Li B, Shi K, Shi Y, Feng S, Yin Y, Lu W, Long F, Wei Z, Wei Y. A Quadruplex RT-qPCR for the Detection of Porcine Sapelovirus, Porcine Kobuvirus, Porcine Teschovirus, and Porcine Enterovirus G. Animals (Basel) 2025; 15:1008. [PMID: 40218401 PMCID: PMC11987865 DOI: 10.3390/ani15071008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
Porcine sapelovirus (PSV), porcine kobuvirus (PKV), porcine teschovirus (PTV), and porcine enterovirus G (EV-G) are all important viruses in the swine industry. These viruses play important roles in the establishment of similar clinical signs of diseases in pigs, including diarrhea, encephalitis, and reproductive and respiratory disorders. The early accurate detection of these viruses is crucial for dealing with these diseases. In order for the differential detection of these four viruses, specific primers and TaqMan probes were designed for the conserved regions in the 5' untranslated region (UTR) of these four viruses, and one-step quadruplex reverse-transcription real-time quantitative PCR (RT-qPCR) for the detection of PSV, PKV, PTV, and EV-G was developed. The results showed that this assay had the advantages of high sensitivity, strong specificity, excellent repeatability, and simple operation. Probit regression analysis showed that the assay obtained low limits of detection (LODs) for PSV, PKV, PTV, and EV-G, with 146.02, 143.83, 141.92, and 139.79 copies/reaction, respectively. The assay showed a strong specificity of detecting only PSV, PKV, PTV, and EV-G, and had no cross-reactivity with other control viruses. The assay exhibited excellent repeatability of the intra-assay coefficient of variation (CV) of 0.28-1.58% and the inter-assay CV of 0.20-1.40%. Finally, the developed quadruplex RT-qPCR was used to detect 1823 fecal samples collected in Guangxi Province, China between January 2024 and December 2024. The results indicated that the positivity rates of PSV, PKV, PTV, and EV-G were 15.25% (278/1823), 21.72% (396/1823), 18.82% (343/1823), and 27.10% (494/1823), respectively, and there existed phenomena of mixed infections. Compared with the reference RT-qPCR/RT-PCR established for these four viruses, the coincidence rates for the detection results of PSV, PKV, PTV, and EV-G reached 99.51%, 99.40%, 99.51%, and 99.01%, respectively. In conclusions, the developed quadruplex RT-qPCR could simultaneously detect PSV, PKV, PTV, and EV-G, and provided an efficient and convenient detection method to monitor the epidemic status and variation of these viruses.
Collapse
Affiliation(s)
- Biao Li
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (B.L.); (Y.S.); (Z.W.)
| | - Kaichuang Shi
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (B.L.); (Y.S.); (Z.W.)
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (S.F.); (Y.Y.); (W.L.); (F.L.)
| | - Yuwen Shi
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (B.L.); (Y.S.); (Z.W.)
| | - Shuping Feng
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (S.F.); (Y.Y.); (W.L.); (F.L.)
| | - Yanwen Yin
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (S.F.); (Y.Y.); (W.L.); (F.L.)
| | - Wenjun Lu
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (S.F.); (Y.Y.); (W.L.); (F.L.)
| | - Feng Long
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (S.F.); (Y.Y.); (W.L.); (F.L.)
| | - Zuzhang Wei
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (B.L.); (Y.S.); (Z.W.)
| | - Yingyi Wei
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (B.L.); (Y.S.); (Z.W.)
| |
Collapse
|
2
|
Bhat S, Kattoor JJ, Sircar S, VinodhKumar OR, Thomas P, Ghosh S, Malik YS. Detection and Molecular Characterization of Porcine Teschoviruses in India: Identification of New Genotypes. Indian J Microbiol 2024; 64:963-972. [PMID: 39282184 PMCID: PMC11399526 DOI: 10.1007/s12088-023-01173-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/30/2023] [Indexed: 09/18/2024] Open
Abstract
Porcine Teschoviruses (PTVs) are ubiquitous enteric viral pathogens that infect pigs and wild boars worldwide. PTVs have been responsible for causing the severe clinical disease (Teschen disease) to asymptomatic infections. However, to date, limited information is available on large-scale epidemiological data and molecular characterization of PTVs in several countries. In this study, we report epidemiological data on PTVs based on screening of 534 porcine fecal samples from different states of India and a RT-PCR based detection of PTVs shows a percent positivity of 8.24% (44/534). The PTV prevalence varied among different regions of the country with the highest detection rates observed in the state of Karnataka (38.1%). Phylogenetic analysis based on VP1 gene reveals the presence of PTV genotype 6 and 13 along with some unassigned novel genotypes which did not cluster with any of the established PTV genotypes (PTV 1-PTV 13). Indian PTV 6 strains are genetically closest to the Spanish strains (85.7-94.4%) whereas PTV 13 and novel genotype strains were found to be more similar to the Chinese strains (88.1-99.1%). Using recombination detection software, no Indian PTVs found to be recombinant on VP1 gene and selection pressure analysis revealed the purifying selection in the several sites of the VP1 gene of PTVs. The Bayesian analysis of Indian PTVs shows 1.16 × 10-4 substitution/site/year as the mean evolutionary rate. Further, isolation of the novel PTV strains from India and more detailed investigation much needed to know the evolutionary history of PTV strains circulating in porcine populations in India.
Collapse
Affiliation(s)
- Sudipta Bhat
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, 243 122 India
| | - Jobin Jose Kattoor
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, 243 122 India
- Animal Disease Diagnostic Laboratory, Purdue University, West Lafayette, IN 47907 USA
| | - Shubhankar Sircar
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, 243 122 India
- Department of Animal Sciences, Washington State University, Pullman, WA 99164 USA
| | - O R VinodhKumar
- Division of Epidemiology, ICAR-Indian Veterinary Research Institute, Bareilly, 243 122 India
| | - Prasad Thomas
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Bareilly, 243 122 India
| | - Souvik Ghosh
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, P.O. 334, Basseterre, Saint Kitts and Nevis
| | - Yashpal Singh Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, 243 122 India
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141001 India
| |
Collapse
|
3
|
Li Y, Zhang X, Zhao B, Zhao C, Lei X, Huang H, Li C, Zheng M, Lan T, Sun W, Lu H. The VP1 Protein of Porcine Teschovirus Inhibits the Innate Immune Response to Viral Infection by Blocking MDA5 Activation. Transbound Emerg Dis 2024; 2024:6649669. [PMID: 40303087 PMCID: PMC12017125 DOI: 10.1155/2024/6649669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/29/2023] [Accepted: 11/25/2023] [Indexed: 05/02/2025]
Abstract
Porcine teschovirus (PTV) can cause reproductive dysfunction and respiratory diseases, with high mortality rates for sick pigs. Among Picornaviridae family virus-encoded proteins, the VP1 structural protein is critical for viral immune evasion. However, whether PTV VP1 inhibits the type I interferon (IFN) response remains unknown. Here, it shows that the PTV VP1 protein significantly hinders the activation of NF-κB, impairing Sendai virus-induced expression of beta IFN (IFN-β). Further studies revealed that VP1 targets and interacts with the MDA5 factor in the RIG-I like receptors pathway. More importantly, the VP1 protein interacts with the caspase activation and recruitment domain and Hel domains of MDA5, blocking IFN-β expression. Our findings provide evidence about the VP1 protein of PTV hinders MDA5 activation and may represent a viral mechanism to escape the innate immune response.
Collapse
Affiliation(s)
- Yuying Li
- College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Xinyu Zhang
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Baopeng Zhao
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Chenchen Zhao
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Xiaoxiao Lei
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Haixin Huang
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Chengkai Li
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Min Zheng
- Guangxi Center for Disease Prevention and Control, Nanning, Guangxi 530001, China
| | - Tian Lan
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Wenchao Sun
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - HuiJun Lu
- Changchun Veterinary Research Institute, Jilin Academy of Agricultural Sciences, Changchun, Jilin 130000, China
| |
Collapse
|
4
|
Ma H, Zhang M, Wu M, Ghonaim AH, Fan S, He Q. Isolation and genetic characteristics of a neurotropic teschovirus variant belonging to genotype 1 in northeast China. Arch Virol 2021; 166:1355-1370. [PMID: 33709216 DOI: 10.1007/s00705-021-04994-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/26/2020] [Indexed: 11/24/2022]
Abstract
Porcine teschovirus (PTV) is a causative agent of reproductive disorders, encephalomyelitis, respiratory diseases, and diarrhea in swine, with a worldwide distribution. In this work, we identified PTV-associated nonsuppurative encephalitis as a potential cause of posterior paralysis in neonatal pigs in northeast China. Using indirect immunofluorescence assay, western blot, electron microscopy, and genome sequencing, we identified a neurotropic PTV strain, named CHN-NP1-2016, in the supernatants of pooled cerebrum and cerebellum samples from an affected piglet. Nucleotide sequence alignment revealed that the whole genome of CHN-NP1-2016 shared the highest sequence similarity (86.76% identity) with PTV 1 strain Talfan. A combination of phylogenetic and genetic divergence analysis was applied based on the deduced amino acid sequence of the P1 gene with a cutoff value of the genetic distance (0.102 ± 0.008) for defining PTV genotypes, and this showed that CHN-NP1-2016 is a variant of genotype 1. In total, 16 unique mutations and five mutant clusters were detected in the capsid proteins VP1 and VP2 of CHN-NP1-2016 when compared to other PTV1 isolates. Importantly, we detected three mutant clusters located in the exposed surface loops of the capsid protein, potentially indicating significant differences in major neutralization epitopes. Moreover, a potential recombination event in the P1 region of PTV CHN-NP1-2016 was detected. These findings provide valuable insights into the role of recombination in the evolution of teschoviruses. To our knowledge, this is the first case report of PTV-1-associated encephalitis in northeast China. Future investigations will narrow on the serology and pathogenicity of this novel isolate.
Collapse
Affiliation(s)
- Hailong Ma
- Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shi-zi-shan Street, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Mengjia Zhang
- Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shi-zi-shan Street, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Meizhou Wu
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Ahmed H Ghonaim
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.,Desert Research Center, Cairo, Egypt
| | - Shengxian Fan
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Qigai He
- Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shi-zi-shan Street, Wuhan, 430070, China. .,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| |
Collapse
|
5
|
Barman A, Deb B, Chakraborty S. Prediction of Potential Epitopes for Peptide Vaccine Formulation Against Teschovirus A Using Immunoinformatics. Int J Pept Res Ther 2020; 26:1137-1146. [PMID: 32435170 PMCID: PMC7223446 DOI: 10.1007/s10989-019-09916-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2019] [Indexed: 11/02/2022]
Abstract
Teschovirus A belongs to the family Picornaviridae and is a causal agent of the disease Teschovirus encephalomyelitis and other infections that remain asymptomatic. The present study was performed to design epitope-based peptide vaccine against Teschovirus A by identifying the potential T cell and B-cell epitopes from capsid proteins (VP1, VP3 and VP2) of the virus using reverse vaccinology and immunoinformatics approaches. In the current study, hexapeptide T-cell and octapeptide B-cell epitopes were analyzed for immunogenicity, antigenicity and hydrophilicity scores of each epitope. Each potential epitope was further characterized using ExPASy-ProtParam and Antimicrobial Peptide Database (APD3) tools for determining various physical and chemical parameters of the epitope. One linear hexapeptide T-cell epitope, i.e., RPVNDE (epitope position 77-82) and one linear octapeptide B-cell epitope, i.e., AYSRSHPQ (236-243) were identified from the viral capsid protein as they possess the capability to raise effective immunogenic reaction in the host organism against the virus. Pharmaceutical industries could harness the results of this investigation to develop epitope-based peptide vaccines by loading the identified epitopes in combination with targeting signal peptides of T-cells and B-cells and then inserting the combination into virus like particle (vlp) or constructing subunit vaccines for further trial.
Collapse
Affiliation(s)
- Antara Barman
- Department of Biotechnology, Assam University, Silchar, Assam 788011 India
| | - Bornali Deb
- Department of Biotechnology, Assam University, Silchar, Assam 788011 India
| | | |
Collapse
|
6
|
Ray PK, Desingu PA, Anoopraj R, Singh RK, Saikumar G. Identification and genotypic characterization of porcine teschovirus from selected pig populations in India. Trop Anim Health Prod 2019; 52:1161-1166. [PMID: 31820308 DOI: 10.1007/s11250-019-02114-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/03/2019] [Indexed: 01/08/2023]
Abstract
Porcine teschovirus (PTV) previously classified as porcine enteroviruses in the family Picornaviridae are associated with a wide range of illnesses in swine ranging from asymptomatic infection to acute fatal encephalomyelitis, diarrhea, and pneumonia. This study was planned to investigate whether porcine teschovirus is prevalent among pigs in India and to characterize the PTV identified in the study population. The study conducted in certain farms of North India revealed that 13 of 190 (6.84%) fecal samples were PTV positive by RT-PCR. Three viruses were successfully isolated from fecal samples using IB-RS-2 cell lines which were confirmed by RT-PCR and sequencing. Molecular characterization based on the VP1 region of the viral genome identified the isolated viruses as serotype 5 and serotype 8 of PTV. A new variant of teschovirus was also identified which showed significant nucleotide diversity from the known serotypes of the teschoviruses. This is the first report of isolation, identification, and characterization of porcine teschoviruses in India.
Collapse
Affiliation(s)
- Pradeep K Ray
- ICAR Research Complex for Eastern Region, Patna, India.,Division of Pathology, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - P A Desingu
- Division of Pathology, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - R Anoopraj
- Division of Pathology, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - R K Singh
- Division of Pathology, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - G Saikumar
- Division of Pathology, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India.
| |
Collapse
|
7
|
Oba M, Naoi Y, Ito M, Masuda T, Katayama Y, Sakaguchi S, Omatsu T, Furuya T, Yamasato H, Sunaga F, Makino S, Mizutani T, Nagai M. Metagenomic identification and sequence analysis of a Teschovirus A-related virus in porcine feces in Japan, 2014-2016. INFECTION GENETICS AND EVOLUTION 2018; 66:210-216. [PMID: 30316885 DOI: 10.1016/j.meegid.2018.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/01/2018] [Accepted: 10/10/2018] [Indexed: 01/04/2023]
Abstract
Porcine Teschoviruses (PTVs) are associated with polioencephalomyelitis and various diseases, including reproductive and gastrointestinal disorders, of pigs and wild boars, and are also detected in the feces of healthy pigs. The genus Teschovirus contains a single species Teschovirus A that currently includes 13 serotypes. In the present study, we identified novel PTVs that are distantly related to Teschovirus A and were found in fecal samples of pigs with or without diarrhea in Japan. Phylogenetic analysis of amino acid (aa) sequences of the complete coding region revealed that these newly identified viruses did not cluster with any strains of PTVs or other strains within the picornavirus supergroup 1, suggesting that the viruses may not belong to Teschovirus A or any genus of the family Picornaviridae. These novel PTVs share a type IV internal ribosomal entry site and conserved characteristic motifs in the coding region, yet exhibit 62.2-79.0%, 86.6-92.8%, 77.1-81.0%, and 84.3-86.7% aa identities to PTV strains in P1, 2C, 3C, and 3D regions, respectively. In contrast, PTV 1-13 strains of the Teschovirus A share 76.5-92.1%, 88.1-99.7%, 93.2-100%, and 95.8-100% aa identities in the P1, 2C, 3C, and 3D, respectively, within the species. These data imply that the newly identified viruses belong to teschoviruses, and may represent a novel species in the genus Teschovirus.
Collapse
Affiliation(s)
- Mami Oba
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Yuki Naoi
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Mika Ito
- Ishikawa Nanbu Livestock Hygiene Service Center, Kanazawa, Ishikawa 920-3101, Japan
| | - Tsuneyuki Masuda
- Kurayoshi Livestock Hygiene Service Center, Kurayoshi, Tottori 683-0017, Japan
| | - Yukie Katayama
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Shoichi Sakaguchi
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Tsutomu Omatsu
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Tetsuya Furuya
- Laboratory of Veterinary Microbiology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Hiroshi Yamasato
- Kurayoshi Livestock Hygiene Service Center, Kurayoshi, Tottori 683-0017, Japan
| | - Fujiko Sunaga
- Laboratory of Infectious Diseases, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| | - Shinji Makino
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, United States
| | - Tetsuya Mizutani
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | - Makoto Nagai
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Laboratory of Infectious Diseases, Azabu University, Sagamihara, Kanagawa 252-5201, Japan.
| |
Collapse
|
8
|
Yang T, Li R, Yao Q, Zhou X, Liao H, Ge M, Yu X. Prevalence of Porcine teschovirus genotypes in Hunan, China: identification of novel viral species and genotypes. J Gen Virol 2018; 99:1261-1267. [DOI: 10.1099/jgv.0.001129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Taotao Yang
- 1College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
- 2College of Life Sciences and Resource Environment, Yichun University, Yichun, Jiangxi 336000, PR China
| | - Runcheng Li
- 1College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Qing Yao
- 1College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Xiaofei Zhou
- 1College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Huayuan Liao
- 1College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Meng Ge
- 1College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Xinglong Yu
- 1College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| |
Collapse
|
9
|
Gu Y, Zhou Y, Shi X, Xin Y, Shan Y, Chen C, Cao T, Fang W, Li X. Porcine teschovirus 2 induces an incomplete autophagic response in PK-15 cells. Arch Virol 2017; 163:623-632. [PMID: 29177545 DOI: 10.1007/s00705-017-3652-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/11/2017] [Indexed: 01/05/2023]
Abstract
Autophagy is a homeostatic process that has been shown to be vital in the innate immune defense against pathogens. However, little is known about the regulatory role of autophagy in porcine teschovirus 2 (PTV-2) replication. In this study, we found that PTV-2 infection induces a strong increase in GFP-LC3 punctae and endogenous LC3 lipidation. However, PTV-2 infection did not enhance autophagic protein degradation. When cellular autophagy was pharmacologically inhibited by wortmannin or 3-methyladenine, PTV-2 replication increased. The increase in virus yield via autophagy inhibition was further confirmed by silencing atg5, which is required for autophagy. Furthermore, PTV-2 replication was suppressed when autophagy was activated by rapamycin. Together, the results suggest that PTV-2 infection activates incomplete autophagy and that autophagy then inhibits further PTV-2 replication.
Collapse
Affiliation(s)
- Yuanxing Gu
- Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China.,Qingdao Agricultural University, Qingdao, 266109, China
| | - Yingshan Zhou
- Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China.,College of Animal Science and Technology, China-Australia Joint-Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang A&F University, Lin'an, 311300, China
| | - Xinfeng Shi
- Animal Products Quality Testing Center of Zhejiang Province, Hangzhou, 310020, China
| | - Yongping Xin
- Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Ying Shan
- Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Cong Chen
- Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Tong Cao
- Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Weihuan Fang
- Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoliang Li
- Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
10
|
Yang T, Yu X, Yan M, Luo B, Li R, Qu T, Luo Z, Ge M, Zhao D. Molecular characterization of Porcine sapelovirus in Hunan, China. J Gen Virol 2017; 98:2738-2747. [DOI: 10.1099/jgv.0.000951] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Taotao Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Xinglong Yu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Meijun Yan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Binyu Luo
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Runcheng Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Tailong Qu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Zhang Luo
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Meng Ge
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Dun Zhao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| |
Collapse
|
11
|
Yang T, Yu X, Luo B, Yan M, Li R, Qu T, Ren X. Epidemiology and molecular characterization of Porcine teschovirus in Hunan, China. Transbound Emerg Dis 2017; 65:480-490. [PMID: 29034572 DOI: 10.1111/tbed.12728] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Indexed: 12/01/2022]
Abstract
Porcine teschoviruses (PTVs) have been shown to be widely distributed in pig populations. In this study, 261 faecal and 91 intestinal content samples collected from pigs at 29 farms in Hunan, China, were tested for the presence of PTV by reverse transcription-polymerase chain reaction (RT-PCR). An overall PTV-positivity rate of 19.03% was detected by RT-PCR, and a high PTV infection rate was circulating in asymptomatic fattening and nursery pigs. In total, 40 PTV isolates (PTV-HuNs) were obtained. Alignment of their coding sequences with those of other known PTVs revealed that the genomic sequence of the polyprotein contains 6,606-6,621 nucleotides, encoding a 2,202-2,207-amino acid sequence. Phylogenetic analyses based on the VP1 gene and capsid protein gene exhibited 13 main lineages corresponding to PTV serotypes 1-13, and seven PTV serotypes (PTV 2-6, 9, and 11) were identified in the isolates obtained in our study; this is the first report of PTV 5, 9 and 11 in China. Recombination analysis among the PTV-HuNs indicated that nine recombination events have occurred, including both inter- and intraserotype events. In addition, results demonstrated that only limited positive selection is acting on the global population of PTV isolates, and purifying selection is predominant. In conclusion, this study revealed a high infection rate of PTVs circulating in asymptomatic fattening and nursery pigs. The 40 PTV-HuNs showed high genetic diversity, and genetic analysis of all available PTV sequences revealed that strong purifying selection and recombination play important roles in the genetic diversity and evolution of the virus.
Collapse
Affiliation(s)
- T Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - X Yu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - B Luo
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - M Yan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - R Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - T Qu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - X Ren
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| |
Collapse
|
12
|
Cano-Gómez C, Fernández-Pinero J, García-Casado MA, Zell R, Jiménez-Clavero MA. Characterization of PTV-12, a newly described porcine teschovirus serotype: in vivo infection and cross-protection studies. J Gen Virol 2017; 98:1636-1645. [DOI: 10.1099/jgv.0.000822] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Cristina Cano-Gómez
- Centro de Investigación en Sanidad Animal (CISA)-INIA, Ctra Algete-El Casar s/n, 28130 Valdeolmos, Spain
| | - Jovita Fernández-Pinero
- Centro de Investigación en Sanidad Animal (CISA)-INIA, Ctra Algete-El Casar s/n, 28130 Valdeolmos, Spain
| | - María Ana García-Casado
- Centro de Investigación en Sanidad Animal (CISA)-INIA, Ctra Algete-El Casar s/n, 28130 Valdeolmos, Spain
| | - Roland Zell
- Department for Virology and Antiviral Therapy, Jena University Hospital, Friedrich Schiller University, Hans-Knoell-Str 2, 07745 Jena, Germany
| | | |
Collapse
|
13
|
Sun H, Gao H, Chen M, Lan D, Hua X, Wang C, Yuan C, Yang Z, Cui L. New serotypes of porcine teschovirus identified in Shanghai, China. Arch Virol 2015; 160:831-5. [DOI: 10.1007/s00705-014-2326-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/21/2014] [Indexed: 11/28/2022]
|
14
|
The prevalence of porcine teschovirus in the pig population in northeast of China. J Virol Methods 2013; 193:209-14. [DOI: 10.1016/j.jviromet.2013.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 05/22/2013] [Accepted: 06/03/2013] [Indexed: 11/17/2022]
|
15
|
Cano-Gómez C, García-Casado MA, Soriguer R, Palero F, Jiménez-Clavero MA. Teschoviruses and sapeloviruses in faecal samples from wild boar in Spain. Vet Microbiol 2013; 165:115-22. [DOI: 10.1016/j.vetmic.2012.11.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 11/17/2012] [Accepted: 11/19/2012] [Indexed: 10/27/2022]
|
16
|
The survey of porcine teschoviruses in field samples in China with a universal rapid probe real-time RT-PCR assay. Trop Anim Health Prod 2012; 45:1057-61. [DOI: 10.1007/s11250-012-0312-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2012] [Indexed: 11/28/2022]
|
17
|
Prodělalová J. The survey of porcine teschoviruses, sapeloviruses and enteroviruses B infecting domestic pigs and wild boars in the Czech Republic between 2005 and 2011. INFECTION GENETICS AND EVOLUTION 2012; 12:1447-51. [DOI: 10.1016/j.meegid.2012.04.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 04/19/2012] [Accepted: 04/25/2012] [Indexed: 10/28/2022]
|
18
|
Cano-Gómez C, Palero F, Buitrago MD, García-Casado MA, Fernández-Pinero J, Fernández-Pacheco P, Agüero M, Gómez-Tejedor C, Jiménez-Clavero MÁ. Analyzing the genetic diversity of teschoviruses in Spanish pig populations using complete VP1 sequences. INFECTION GENETICS AND EVOLUTION 2011; 11:2144-50. [DOI: 10.1016/j.meegid.2011.09.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 09/15/2011] [Accepted: 09/19/2011] [Indexed: 11/30/2022]
|
19
|
Wang B, Wang Y, Tian ZJ, An TQ, Peng JM, Tong GZ. Development of a reverse transcription loop-mediated isothermal amplification assay for detection of Porcine teschovirus. J Vet Diagn Invest 2011; 23:516-8. [PMID: 21908281 DOI: 10.1177/1040638711403427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Loop-mediated isothermal amplification (LAMP) is a sensitive method for DNA amplification. In the present report, the development of a single-tube, one-step, real-time accelerated reverse transcription (RT)-LAMP for the detection of Porcine teschovirus (PTV) is described. Six designed primers amplified target gene sequences successfully at constant temperature (65 °C) within 1 hr, and the amplification results could be visualized directly by the naked eye. The sensitivity of the LAMP was 10 times higher than that of conventional polymerase chain reaction, and no cross-reactivity was found when the genomes of other common swine pathogens were subjected to the RT-LAMP system. When 43 clinical samples were tested by the RT-LAMP method, results indicated that the test is simple, rapid, accurate, and sensitive for the detection of PTV.
Collapse
Affiliation(s)
- Bin Wang
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | | | | | | | | | | |
Collapse
|
20
|
Evaluation of a fluorogenic real-time reverse transcription-polymerase chain reaction method for the specific detection of all known serotypes of porcine teschoviruses. J Virol Methods 2011; 176:131-4. [PMID: 21663764 DOI: 10.1016/j.jviromet.2011.05.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 05/12/2011] [Accepted: 05/25/2011] [Indexed: 11/20/2022]
Abstract
Performance of a real-time reverse-transcription polymerase chain reaction method for the rapid, simple and reliable detection of porcine teschovirus (PTV) was assessed. The method was based on the use of a set of oligonucleotides consisting of two specific primers and a fluorogenic TaqMan-MGB probe. Reverse transcription and PCR reactions were performed sequentially in one step. As a result the whole procedure was simple and rapid, taking less than 3h for completion. The method reacted in a dose-dependent manner with prototype strains for the eleven known PTV serotypes (PTV1-11), with higher analytical sensitivity than other gel-based RT-PCR methods described, which were performed in parallel to allow for a comparison. The assay did not cross-react with other related viruses or porcine viruses tested. The diagnostic performance of the method was analyzed using a panel of field samples consisting of pig fecal and pig slurry samples. As a conclusion, this technique is adequate and convenient for porcine teschovirus detection, both for diagnosis as well as in environmental investigations.
Collapse
|