1
|
Tian X, Wei Z, Khan M, Zhou Z, Zhang J, Huang X, Yang Y, Wang S, Wang H, Cai X, Meng F, An T. Refining Lineage Classification and Updated RFLP Patterns of PRRSV-2 Revealed Viral Spatiotemporal Distribution Characteristics in China in 1991-2023. Transbound Emerg Dis 2025; 2025:9977088. [PMID: 40302738 PMCID: PMC12017074 DOI: 10.1155/tbed/9977088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/28/2025] [Indexed: 05/02/2025]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a significant infectious disease impacting the global swine industry. Due to high frequency of viral mutation and recombination, PRRSV exhibits complex genetic diversity; however, its lineage classification, restriction fragment length polymorphism (RFLP) patterns, and spatiotemporal distribution have not been systematically analyzed in China. In this study, we sequenced PRRSV-2 open reading frame (ORF)5 sequences from clinical samples (n = 364) and retrieved all the available PRRSV-2 ORF5 sequences in China in 1991-2023 from GenBank (n = 5773). Systematically analysis revealed that PRRSV-2 strains in China were classified into five lineages (L1, L3, L5, L8, and L9) and eight sublineages (L1A-L1C, L5A, L5B, L8C, L8E, and L9B), the L8E and L1C PRRSV-2 were widely distributed across almost all provinces in China, the L1C and L1A strains were increasing and gradually replacing L8 as dominant epidemic strains, and L1B PRRSV-2 in China was analyzed for the first time. The L3 PRRSV-2 has a trend of spreading gradually from the southern to the northern provinces, which needs to be paid attention to the monitoring and prevention of PRRSV-2. Meanwhile, PRRSV-2 strains in China were classified into 112 different RFLP patterns. RFLP 1-4-4 PRRSVs were detectable in China, which accounted for 12.71% of all Chinese PRRSV-2 strains. Although they are different from the RFLP 1-4-4 L1C variant in the United States, it is necessary to enhance surveillance of the RFLP 1-4-4 L1C PRRSVs. These results contributed the understanding of genetic diversity and spatiotemporal distribution of PRRSV-2 in China and provide important references for future PRRSV-2 monitoring and control in China.
Collapse
Affiliation(s)
- Xiaoxiao Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Ziyi Wei
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Mirwaise Khan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Zhi Zhou
- WOAH Porcine Reproductive and Respiratory Syndrome Reference Laboratory, China Animal Disease Control Center, Beijing 100125, China
| | - Jianqiang Zhang
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Xinyi Huang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yongbo Yang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Shujie Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Haiwei Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xuehui Cai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Collaborative Laboratory of Porcine Reproductive Dysfunction Disease for China Animal Disease Control Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Fandan Meng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Collaborative Laboratory of Porcine Reproductive Dysfunction Disease for China Animal Disease Control Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Tongqing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Collaborative Laboratory of Porcine Reproductive Dysfunction Disease for China Animal Disease Control Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
2
|
Dastjerdi A, Davies H, Inglese N, Holland S, Samborskiy DV, Gorbalenya AE. Intraspecific variation of the hedgehog arteriviruses, which may constitute a new genus in the subfamily Heroarterivirinae of the family Arteriviridae. Arch Virol 2025; 170:49. [PMID: 39921690 PMCID: PMC11807078 DOI: 10.1007/s00705-025-06231-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/19/2024] [Indexed: 02/10/2025]
Abstract
We recently discovered a novel member of the family Arteriviridae, hedgehog arterivirus 1 (HhAV-1), in the brains of hedgehogs with fatal encephalitis. In this study, we classified this virus and investigated its intrahost genomic diversity using next-generation sequencing. We sequenced HhAV-1 genomes from specimens from seven hedgehogs (two males and five females) with signs of encephalitis that were collected in Buckinghamshire, Gloucestershire, and Cambridgeshire, England, and had died or been euthanised between 2013 and 2024. Analysis of the intrahost populations of these seven HhAV-1 isolates and a previously described isolate revealed the presence of single-nucleotide polymorphisms (SNPs), which were most frequent in open reading frames 5, 6, and 7, encoding glycoprotein 5, the membrane protein, and the nucleocapsid protein. Pairwise comparisons of the eight HhAV-1 variants showed that the nucleotide sequence identity values in their combined complete coding sequences ranged from 76.2% to 100%. The eight HhAV-1 variants also shared at least 82.8% amino acid sequence identity in five domains that are involved in replication and are used for the classification of nidoviruses: 3CLpro, NiRAN, RdRp, ZBD, and HEL1. In a replicase-based phylogenetic tree of members of the family Arteriviridae, the HhAV-1 variants formed a sister cluster to African pouched rat arterivirus. A DEmARC-based pairwise distance analysis indicated that these viruses may comprise a new species, for which we propose the name "Xiarterivirus erinaceid", in a new genus in the subfamily Heroarterivirinae.
Collapse
Affiliation(s)
- Akbar Dastjerdi
- Animal and Plant Health Agency (APHA)-Weybridge, Addlestone, Surrey, KT15 3NB, UK.
| | - Hannah Davies
- Animal and Plant Health Agency (APHA)-Weybridge, Addlestone, Surrey, KT15 3NB, UK
| | - Nadia Inglese
- Animal and Plant Health Agency (APHA)-Weybridge, Addlestone, Surrey, KT15 3NB, UK
| | - Samantha Holland
- Animal and Plant Health Agency (APHA)-Weybridge, Addlestone, Surrey, KT15 3NB, UK
| | - Dmitry V Samborskiy
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119899, Russia
| | - Alexander E Gorbalenya
- Leiden University Center of Infectious Diseases, Leiden University Medical Center, P.O. Box 9600, E4-P, 2300 RC, Leiden, The Netherlands
| |
Collapse
|
3
|
Tang J, Hung YF, Yoo D. Genomic RNA recombination of porcine reproductive and respiratory syndrome virus and other arteriviruses. Virology 2025; 601:110284. [PMID: 39531889 DOI: 10.1016/j.virol.2024.110284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/15/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Arteriviruses in the Nidovirales order are single-stranded positive-sense RNA viruses infecting mammals. Arteriviruses are recognized for causing various clinical diseases, ranging from asymptomatic infections to severe conditions like respiratory syndromes and viral hemorrhagic fever. Notably, arteriviruses exhibit a high frequency of RNA recombination, and their robust recombination rates are a crucial factor in recurrent outbreaks. The recombination events also shape the countermeasures employed by arteriviruses during virus-host co-evolution and confer specific evolutionary benefits to viruses, implicating a role as a selective advantage in viral adaptation. This review delves into the molecular basis of RNA recombination in arteriviruses, the bioinformatics tools and methodologies used to visualize evolutionary relationships, and the identification of recombination breakpoints. Significant recombination events are highlighted for PRRSV and other arteriviruses, illustrating the profound implications of recombination for viral evolution and pathogenesis. Recombination between field viruses and between field viruses and vaccine strains can generate new variants with altered antigenic profiles and virulence, leading to diagnostic failure, severe clinical outcomes, and reduced vaccine efficacy. Despite the advances, further research is needed to understand recombination rates and hotspots, as well as to develop potential antiviral strategies and diagnostic approaches for arteriviruses.
Collapse
Affiliation(s)
- Junyu Tang
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Yu Fan Hung
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Dongwan Yoo
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA.
| |
Collapse
|
4
|
Zhang X, Chen Y, Liu M, Long X, Guo C. Intervention strategies targeting virus and host factors against porcine reproductive and respiratory syndrome virus: A systematic review. Int J Biol Macromol 2024; 279:135403. [PMID: 39245101 DOI: 10.1016/j.ijbiomac.2024.135403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) caused by porcine reproductive and respiratory syndrome virus (PRRSV) causes considerable economic losses to the global swine industry every year and seriously hinders the healthy development of this industry. Although tremendous efforts have been made over the past 30 years toward the development of prevention and control strategies against PRRSV infection, to date, treatments with proven efficacy have yet to be available due to our incomplete understanding of the molecular basis and complexity of the infection machinery. This review systematically discusses recent advances in the research and development of anti-PRRSV therapies targeting different stages of the viral life cycle. Furthermore, this review puts forward novel intervention targets and research approaches based on our in-depth exploration of virus-host interactions and the latest biological technologies, which have the potential to complement or transform current anti-PRRSV strategies and become breakthrough points for the control of PRRS in the future.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Yongjie Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Min Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Xiaoqin Long
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Chunhe Guo
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
5
|
Ruedas-Torres I, Sánchez-Carvajal JM, Salguero FJ, Pallarés FJ, Carrasco L, Mateu E, Gómez-Laguna J, Rodríguez-Gómez IM. The scene of lung pathology during PRRSV-1 infection. Front Vet Sci 2024; 11:1330990. [PMID: 38566751 PMCID: PMC10985324 DOI: 10.3389/fvets.2024.1330990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/22/2024] [Indexed: 04/04/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically important infectious diseases for the pig industry worldwide. The disease was firstly reported in 1987 and became endemic in many countries. Since then, outbreaks caused by strains of high virulence have been reported several times in Asia, America and Europe. Interstitial pneumonia, microscopically characterised by thickened alveolar septa, is the hallmark lesion of PRRS. However, suppurative bronchopneumonia and proliferative and necrotising pneumonia are also observed, particularly when a virulent strain is involved. This raises the question of whether the infection by certain strains results in an overstimulation of the proinflammatory response and whether there is some degree of correlation between the strain involved and a particular pattern of lung injury. Thus, it is of interest to know how the inflammatory response is modulated in these cases due to the interplay between virus and host factors. This review provides an overview of the macroscopic, microscopic, and molecular pathology of PRRSV-1 strains in the lung, emphasising the differences between strains of different virulence.
Collapse
Affiliation(s)
- Inés Ruedas-Torres
- United Kingdom Health Security Agency (UKHSA Porton Down), Salisbury, United Kingdom
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes ENZOEM, International Agrifood Campus of Excellence (CeiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - José María Sánchez-Carvajal
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes ENZOEM, International Agrifood Campus of Excellence (CeiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | | | - Francisco José Pallarés
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes ENZOEM, International Agrifood Campus of Excellence (CeiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - Librado Carrasco
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes ENZOEM, International Agrifood Campus of Excellence (CeiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - Enric Mateu
- Department of Animal Health and Anatomy, Autonomous University of Barcelona, Barcelona, Spain
| | - Jaime Gómez-Laguna
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes ENZOEM, International Agrifood Campus of Excellence (CeiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - Irene Magdalena Rodríguez-Gómez
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes ENZOEM, International Agrifood Campus of Excellence (CeiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| |
Collapse
|
6
|
Liu B, Luo L, Shi Z, Ju H, Yu L, Li G, Cui J. Research Progress of Porcine Reproductive and Respiratory Syndrome Virus NSP2 Protein. Viruses 2023; 15:2310. [PMID: 38140551 PMCID: PMC10747760 DOI: 10.3390/v15122310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is globally prevalent and seriously harms the economic efficiency of pig farming. Because of its immunosuppression and high incidence of mutant recombination, PRRSV poses a great challenge for disease prevention and control. Nonstructural protein 2 (NSP2) is the most variable functional protein in the PRRSV genome and can generate NSP2N and NSP2TF variants due to programmed ribosomal frameshifts. These variants are broad and complex in function and play key roles in numerous aspects of viral protein maturation, viral particle assembly, regulation of immunity, autophagy, apoptosis, cell cycle and cell morphology. In this paper, we review the structural composition, programmed ribosomal frameshift and biological properties of NSP2 to facilitate basic research on PRRSV and to provide theoretical support for disease prevention and control and therapeutic drug development.
Collapse
Affiliation(s)
- Benjin Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China; (B.L.); (L.L.); (Z.S.)
| | - Lingzhi Luo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China; (B.L.); (L.L.); (Z.S.)
| | - Ziqi Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China; (B.L.); (L.L.); (Z.S.)
| | - Houbin Ju
- Shanghai Animal Disease Prevention and Control Center, Shanghai 201103, China;
| | - Lingxue Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China;
| | - Guoxin Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China;
| | - Jin Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China; (B.L.); (L.L.); (Z.S.)
| |
Collapse
|
7
|
Li Y, Xu L, Jiao D, Zheng Z, Chen Z, Jing Y, Li Z, Ma Z, Feng Y, Guo X, Wang Y, He Y, Zheng H, Xiao S. Genomic similarity and antibody-dependent enhancement of immune serum potentially affect the protective efficacy of commercial MLV vaccines against NADC30-like PRRSV. Virol Sin 2023; 38:813-826. [PMID: 37660949 PMCID: PMC10590703 DOI: 10.1016/j.virs.2023.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most significant diseases affecting the pig industry worldwide. The PRRSV mutation rate is the highest among the RNA viruses. To date, NADC30-like PRRSV and highly pathogenic PRRSV (HP-PRRSV) are the dominant epidemic strains in China; however, commercial vaccines do not always provide sufficient cross-protection, and the reasons for insufficient protection are unclear. This study isolated a wild-type NADC30-like PRRSV, SX-YL1806, from Shaanxi Province. Vaccination challenge experiments in piglets showed that commercial modified live virus (MLV) vaccines provided good protection against HP-PRRSV. However, it could not provide sufficient protection against the novel strain SX-YL1806. To explore the reasons for this phenomenon, we compared the genomic homology between the MLV strain and HP-PRRSV or NADC30-like PRRSV and found that the MLV strain had a lower genome similarity with NADC30-like PRRSV. Serum neutralization assay showed that MLV-immune serum slightly promoted the homologous HP-PRRSV replication and significantly promoted the heterologous NADC30-like PRRSV strain replication in vitro, suggesting that antibody-dependent enhancement (ADE) might also play a role in decreasing MLV protective efficacy. These findings expand our understanding of the potential factors affecting the protective effect of PRRSV MLV vaccines against the NADC30-like strains.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Lele Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Dian Jiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Zifang Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Zhihao Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Yang Jing
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Zhiwei Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Zhiqian Ma
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Yingtong Feng
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Xuyang Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Yumiao Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Yuan He
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Shuqi Xiao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| |
Collapse
|
8
|
Han S, Oh D, Xie J, Nauwynck HJ. Susceptibility of perivenous macrophages to PRRSV-1 subtype 1 LV and PRRSV-1 subtype 3 Lena using a new vein explant model. Front Cell Infect Microbiol 2023; 13:1223530. [PMID: 37554354 PMCID: PMC10406384 DOI: 10.3389/fcimb.2023.1223530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/03/2023] [Indexed: 08/10/2023] Open
Abstract
Vessel pathology such as increased permeability and blue discoloration is frequently observed with highly pathogenic PRRSV strains. However, data concerning the viral replication in the environment of blood vessels are absent. In the present study, ex vivo models with swine ear and hind leg vein explants were established to study the interaction of PRRSV-1 subtype 1 reference strain LV and highly pathogenic subtype 3 strain Lena with perivenous macrophages. The replication characteristics of these two strains were compared in vein explants by immunofluorescence analysis. The explants maintained a good viability during 48 hours of in vitro culture. We found that CD163-positive macrophages were mainly present around the veins and their number gradually decreased with increasing distance from the veins and longer incubation time. More CD163+Sn- cells than CD163+Sn+ cells (6.6 times more) were observed in the vein explants. The Lena strain demonstrated a higher replication level than the LV strain, with approximately 1.4-fold more infected cells in the surrounding areas of the ear vein and 1.1-fold more infected cells in the leg vein explants at 48 hours post inoculation. In both LV and Lena inoculated vein explants, most infected cells were identified as CD163+Sn+ (> 94%). In this study, an ex vivo vein model was successfully established, and our findings will contribute to a better understanding of the vein pathology during viral infections (e.g., PRRS, classical and African swine fever).
Collapse
Affiliation(s)
- Shaojie Han
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | | | | |
Collapse
|
9
|
Zhang Z, Zhang H, Luo Q, Zheng Y, Kong W, Huang L, Zhao M. Variations in NSP1 of Porcine Reproductive and Respiratory Syndrome Virus Isolated in China from 1996 to 2022. Genes (Basel) 2023; 14:1435. [PMID: 37510339 PMCID: PMC10379836 DOI: 10.3390/genes14071435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Since its successful isolation in China in 1995, the porcine reproductive and respiratory syndrome virus (PRRSV) has been mutating into highly pathogenic strains by constantly changing pathogenicity and genetic makeup. In this study, we investigated the prevalence and genetic variation of nonstructural protein 1 (NSP1) in PRRSV-2, the main strain prevalent in China. After formulating hypotheses regarding the biology of the NSP1 protein, the nucleotide and amino acid similarity of NSP1 were analyzed and compared in 193 PRRSV-2 strains. The results showed that NSP1 has a stable hydrophobic protein with a molecular weight of 43,060.76 Da. Although NSP1 lacked signal peptides, it could regulate host cell signaling. Furthermore, NSP1 of different strains had high nucleotide (79.6-100%) and amino acid similarity (78.6-100%). In the amino acid sequence comparison of 15 representative strains of PRRSV-2, multiple amino acid substitution sites were found in NSP1. Phylogenetic tree analysis showed that lineages 1 and 8 had different evolutionary branches with long genetic distances. This study lays the foundation for an in-depth understanding of the nature and genetic variation of NSP1 and the development of a safe and effective vaccine in the future.
Collapse
Affiliation(s)
- Zhiqing Zhang
- School of Life Science and Engineering, Foshan University, Foshan 528000, China; (Z.Z.); (Q.L.); (Y.Z.)
| | - Hang Zhang
- School of Life Science and Engineering, Foshan University, Foshan 528000, China; (Z.Z.); (Q.L.); (Y.Z.)
| | - Qin Luo
- School of Life Science and Engineering, Foshan University, Foshan 528000, China; (Z.Z.); (Q.L.); (Y.Z.)
| | - Yajie Zheng
- School of Life Science and Engineering, Foshan University, Foshan 528000, China; (Z.Z.); (Q.L.); (Y.Z.)
| | - Weili Kong
- Gladstone Institutes of Virology and Immunology, University of California, San Francisco, CA 94158, USA;
| | - Liangzong Huang
- School of Life Science and Engineering, Foshan University, Foshan 528000, China; (Z.Z.); (Q.L.); (Y.Z.)
| | - Mengmeng Zhao
- School of Life Science and Engineering, Foshan University, Foshan 528000, China; (Z.Z.); (Q.L.); (Y.Z.)
| |
Collapse
|
10
|
Hsueh FC, Kuo KL, Hsu FY, Wang SY, Chiu HJ, Wu MT, Lin CF, Huang YH, Chiou MT, Lin CN. Molecular Characteristics and Pathogenicity of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) 1 in Taiwan during 2019-2020. Life (Basel) 2023; 13:life13030843. [PMID: 36983998 PMCID: PMC10056585 DOI: 10.3390/life13030843] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/16/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Two variants of porcine reproductive and respiratory syndrome virus (PRRSV), PRRSV 1 and PRRSV 2, have caused abortion in pregnant sows and respiratory distress in nursery pigs worldwide. PRRSV 2 has been thoroughly researched in Taiwan since 1993; however, the first case of PRRSV 1 was not reported until late 2018. To decipher the genetic characteristics of PRRSV 1 in Taiwan, open reading frame 5 (ORF5) genes of PRRSV 1 strains collected from 11 individual pig farms in 2019-2020 were successfully sequenced. All Taiwanese ORF5 sequences were closely related to Spanish-like PRRSV strains, which are considered to share a common evolutionary origin with the strain used for the PRRSV 1 vaccine. Analyses of amino acid (aa) and non-synonymous substitutions showed that genetic variations resulted in numerously specific codon mutations scattered across the neutralizing epitopes within the ORF5 gene. The PRRSV 1 challenge experiment disclosed the pathogenetic capability of the NPUST2789 isolate in nursery pigs. These findings provide comprehensive knowledge of the molecular diversity of the PRRSV 1 variant in local Taiwanese fields and facilitate the development of suitable immunization programs against this disease.
Collapse
Affiliation(s)
- Fu-Chun Hsueh
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Kun-Lin Kuo
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Feng-Yang Hsu
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Sheng-Yuan Wang
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Hsien-Jen Chiu
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Meng-Tien Wu
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Chuen-Fu Lin
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Yu-Han Huang
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Ming-Tang Chiou
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Chao-Nan Lin
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| |
Collapse
|
11
|
Cui Z, Zhou L, Hu X, Zhao S, Xu P, Li W, Chen J, Zhang Y, Xia P. Immune Molecules' mRNA Expression in Porcine Alveolar Macrophages Co-Infected with Porcine Reproductive and Respiratory Syndrome Virus and Porcine Circovirus Type 2. Viruses 2023; 15:v15030777. [PMID: 36992486 PMCID: PMC10058123 DOI: 10.3390/v15030777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus 2 (PCV2) are economically important pathogens in swine, and pigs with dual infections of PCV2 and PRRSV consistently have more severe clinical symptoms and interstitial pneumonia. However, the synergistic pathogenesis mechanism induced by PRRSV and PCV2 co-infection has not yet been illuminated. Therefore, the aim of this study was to characterize the kinetic changes of immune regulatory molecules, inflammatory factors and immune checkpoint molecules in porcine alveolar macrophages (PAMs) in individuals infected or co-infected with PRRSV and/or PCV2. The experiment was divided into six groups: a negative control group (mock, no infected virus), a group infected with PCV2 alone (PCV2), a group infected with PRRSV alone (PRRSV), a PCV2-PRRSV co-infected group (PCV2-PRRSV inoculated with PCV2, followed by PRRSV 12 h later), a PRRSV-PCV2 co-infected group (PRRSV-PCV2 inoculated with PRRSV, followed by PCV2 12 h later) and a PCV2 + PRRSV co-infected group (PCV2 + PRRSV, inoculated with PCV2 and PRRSV at the same time). Then, PAM samples from the different infection groups and the mock group were collected at 6, 12, 24, 36 and 48 h post-infection (hpi) to detect the viral loads of PCV2 and PRRSV and the relative quantification of immune regulatory molecules, inflammatory factors and immune checkpoint molecules. The results indicated that PCV2 and PRRSV co-infection, regardless of the order of infection, had no effect on promoting PCV2 replication, while PRRSV and PCV2 co-infection was able to promote PRRSV replication. The immune regulatory molecules (IFN-α and IFN-γ) were significantly down-regulated, while inflammatory factors (TNF-α, IL-1β, IL-10 and TGF-β) and immune checkpoint molecules (PD-1, LAG-3, CTLA-4 and TIM-3) were significantly up-regulated in the PRRSV and PCV2 co-infection groups, especially in PAMs with PCV2 inoculation first followed by PRRSV. The dynamic changes in the aforementioned immune molecules were associated with a high viral load, immunosuppression and cell exhaustion, which may explain, at least partially, the underlying mechanism of the enhanced pulmonary lesions by dual infection with PCV2 and PRRSV in PAMs.
Collapse
Affiliation(s)
- Zhiying Cui
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| | - Likun Zhou
- College of Life Science, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| | - Xingxing Hu
- Zhongnong Huada (Wuhan) Testing Technology Co., Ltd., Luoshi South Road#519, Hongshan District, Wuhan 430070, China
| | - Shijie Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| | - Pengli Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| | - Wen Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| | - Jing Chen
- College of Life Science, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| | - Yina Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| | - Pingan Xia
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| |
Collapse
|
12
|
Guo H, Gaowa W, Zhao H, Liu C, Hou L, Wen Y, Wang F. Glycosylated protein 4-deficient PRRSV in complementing cell line shows low virus titer. Res Vet Sci 2023; 158:84-95. [PMID: 36958176 DOI: 10.1016/j.rvsc.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/23/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023]
Abstract
Porcine Reproductive and Respiratory Syndrome (PRRS) threats the swine industry seriously. The spread of live vaccine virus leads to the emergence of recombinant virus, which brings biosafety problems. The replication-deficient virus as a vaccine candidate would avoid this problem. In the present study, the recombinant lentiviral plasmid pLV-EF1α-EGFP-2A-ORF4 was co-transfected with lentivirus in HEK293FT cells. The transfection mixture was harvested and transduced into Marc-145 to screen a cell line stably expressing the PRRSV ORF4 with puromycin. The cell line Marc-145-GP4 was confirmed with PCR, RT-PCR, IFA, and Western blotting using a monoclonal antibody against Glycoprotein 4 (GP4) of PRRSV. To obtain a replication-deficient PRRSV, Western blotting the recombinant plasmid pNM09-ΔORF4 was constructed by Overlap PCR and DNA recombinant technology with the pNM09 as a backbone plasmid. The pNM09-ΔORF4 was transfected into Marc-145-GP4 with electroporation after transcription in vitro. The replication-deficient virus was rescued on Marc-145-GP4 cells with trans-complementation of ORF4 gene and verified by RT-PCR and IFA. The results indicated that a cell line Marc-145-GP4 stably expressed PRRSV ORF4 was obtained. The recombinant GP4 was successfully expressed and obtained a monoclonal antibody Anti-A-GP4-70, which can specifically react with the virus. Finally, the replication-deficient virus rNM09-ΔORF4 can be rescued with low titer and could only reproduce on the Marc-145-GP4 cells. Unfortunately, the rNM09-ΔORF4 showed too low virus replication titer to determine it. This study lays the foundation for the rapid detection of PRRS and the functional study of GP4 and provides experience for replication-deficient PRRSV.
Collapse
Affiliation(s)
- Hao Guo
- Key Laboratory of Clinical diagnosis and treatment of Animal Diseases, Department of Agriculture and villages, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Wudong Gaowa
- Key Laboratory of Clinical diagnosis and treatment of Animal Diseases, Department of Agriculture and villages, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Hongzhe Zhao
- Key Laboratory of Clinical diagnosis and treatment of Animal Diseases, Department of Agriculture and villages, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Chunyu Liu
- Key Laboratory of Clinical diagnosis and treatment of Animal Diseases, Department of Agriculture and villages, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lina Hou
- Key Laboratory of Clinical diagnosis and treatment of Animal Diseases, Department of Agriculture and villages, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yongjun Wen
- Key Laboratory of Clinical diagnosis and treatment of Animal Diseases, Department of Agriculture and villages, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Fengxue Wang
- Key Laboratory of Clinical diagnosis and treatment of Animal Diseases, Department of Agriculture and villages, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China.
| |
Collapse
|
13
|
You X, Li G, Lei Y, Xu Z, Zhang P, Yang Y. Role of genetic factors in different swine breeds exhibiting varying levels of resistance/susceptibility to PRRSV. Virus Res 2023; 326:199057. [PMID: 36731630 DOI: 10.1016/j.virusres.2023.199057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023]
Abstract
Porcine reproductive and respiratory syndrome (PRRS), caused by the PRRS virus (PRRSV), is an economically significant contagious disease. Traditional approaches based on vaccines or medicines were challenging to control PRRSV due to the diversity of viruses. Different breeds of pigs infected with PRRSV have been reported to have different immune responses. However, due to the complexity of interaction mechanism between host and PRRSV, the genetic mechanism leading to PRRSV susceptibility/resistance in various pig breeds is still unclear. Herein, the role of host genetic components in PRRSV susceptibility is systematically described, and the molecular mechanisms by which host genetic factors such as SNPs, cytokines, receptor molecules, intestinal flora, and non-coding RNAs regulate PRRSV susceptibility/resistance. Therefore, improving the resistance to disease of individual animals through disease-resistance breeding technology is of profound significance for uplifting the sustainable and healthy development of the pig industry.
Collapse
Affiliation(s)
- Xiangbin You
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang 471023, China
| | - Gan Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang 471023, China
| | - Ying Lei
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang 471023, China
| | - Zhiqian Xu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang 471023, China
| | - Ping Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang 471023, China
| | - Youbing Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang 471023, China.
| |
Collapse
|
14
|
Clilverd H, Martín-Valls G, Li Y, Martín M, Cortey M, Mateu E. Infection dynamics, transmission, and evolution after an outbreak of porcine reproductive and respiratory syndrome virus. Front Microbiol 2023; 14:1109881. [PMID: 36846785 PMCID: PMC9947509 DOI: 10.3389/fmicb.2023.1109881] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/13/2023] [Indexed: 02/11/2023] Open
Abstract
The present study was aimed at describing the infection dynamics, transmission, and evolution of porcine reproductive and respiratory syndrome virus (PRRSV) after an outbreak in a 300-sow farrow-to-wean farm that was implementing a vaccination program. Three subsequent batches of piglets (9-11 litters/batch) were followed 1.5 (Batch 1), 8 (Batch 2), and 12 months after (Batch 3) from birth to 9 weeks of age. The RT-qPCR analysis showed that shortly after the outbreak (Batch 1), one third of sows were delivering infected piglets and the cumulative incidence reached 80% by 9 weeks of age. In contrast, in Batch 2, only 10% animals in total got infected in the same period. In Batch 3, 60% litters had born-infected animals and cumulative incidence rose to 78%. Higher viral genetic diversity was observed in Batch 1, with 4 viral clades circulating, of which 3 could be traced to vertical transmission events, suggesting the existence of founder viral variants. In Batch 3 though only one variant was found, distinguishable from those circulating previously, suggesting that a selection process had occurred. ELISA antibodies at 2 weeks of age were significantly higher in Batch 1 and 3 compared to Batch 2, while low levels of neutralizing antibodies were detected in either piglets or sows in all batches. In addition, some sows present in Batch 1 and 3 delivered infected piglets twice, and the offspring were devoid of neutralizing antibodies at 2 weeks of age. These results suggest that a high viral diversity was featured at the initial outbreak followed by a phase of limited circulation, but subsequently an escape variant emerged in the population causing a rebound of vertical transmission. The presence of unresponsive sows that had vertical transmission events could have contributed to the transmission. Moreover, the records of contacts between animals and the phylogenetic analyses allowed to trace back 87 and 47% of the transmission chains in Batch 1 and 3, respectively. Most animals transmitted the infection to 1-3 pen-mates, but super-spreaders were also identified. One animal that was born-viremic and persisted as viremic for the whole study period did not contribute to transmission.
Collapse
Affiliation(s)
| | - Gerard Martín-Valls
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Yanli Li
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Marga Martín
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | | | | |
Collapse
|
15
|
Shin GE, Park JY, Lee KK, Ko MK, Ku BK, Park CK, Jeoung HY. Genetic diversity of porcine reproductive and respiratory syndrome virus and evaluation of three one-step real-time RT-PCR assays in Korea. BMC Vet Res 2022; 18:327. [PMID: 36042510 PMCID: PMC9429472 DOI: 10.1186/s12917-022-03407-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 07/29/2022] [Indexed: 11/23/2022] Open
Abstract
Background Porcine reproductive and respiratory syndrome virus (PRRSV) has caused huge economic losses in the global swine industry. Frequent genetic variations in this virus cause difficulties in controlling and accurately diagnosing PRRSV. Methods In this study, we investigated the genetic characteristics of PRRSV-1 and PRRSV-2 circulating in Korea from January 2018 to September 2021 and evaluated three one-step real-time reverse transcription polymerase chain reaction (RT-PCR) assays. Results A total of 129 lung samples were collected, consisting of 47 samples for PRRSV-1, 62 samples for PRRSV-2, and 20 PRRSV-negative samples. Nucleotide sequence analysis of open reading frames (ORFs) 5, ORF6, and ORF7 genes from PRRSV samples showed that PRRSV-1 belonged to subgroup A (43/47, 91.49%) and subgroup C (4/47, 8.51%), whereas PRRSV-2 was classified as lineage 1 (25/62, 40.32%), Korean lineage (Kor) C (13/62, 20.97%), Kor B (10/62, 16.13%), lineage 5 (9/62, 14.52%), and Kor A (5/62, 8.06%). Amino acid sequence analysis showed that the neutralizing epitope and T cell epitope of PRRSV-1, and the decoy epitope region and hypervariable regions of PRRSV-2 had evolved under positive selection pressure. In particular, the key amino acid substitutions were found at positions 102 and 104 of glycoprotein 5 (GP5) in some PRRSV-2, and at positions 10 and 70 of membrane protein (M) in most PRRSV-2. In addition, one-step real-time RT-PCR assays, comprising two commercial tests and one test recommended by the World Organization for Animal Health (OIE), were evaluated. Conclusion The results revealed that two of the real-time RT-PCR assays had high sensitivities and specificities, whereas the real-time RT-PCR assay of the OIE had low sensitivity due to mismatches between nucleotides of Korean PRRSVs and forward primers. In this study, we genetically characterized recent PRRSV occurrences and evaluated three one-step real-time RT-PCR assays used in Korea. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03407-0.
Collapse
Affiliation(s)
- Go-Eun Shin
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Korea.,College of Veterinary Medicine, Kyungbuk National University, 80, Daehak-ro, Daegu, 41566, Korea
| | - Ji-Young Park
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Korea
| | - Kyoung-Ki Lee
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Korea
| | - Mi-Kyeong Ko
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Korea
| | - Bok-Kyung Ku
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Korea
| | - Choi-Kyu Park
- College of Veterinary Medicine, Kyungbuk National University, 80, Daehak-ro, Daegu, 41566, Korea.
| | - Hye-Young Jeoung
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Korea.
| |
Collapse
|
16
|
Sha H, Zhang H, Chen Y, Huang L, Zhao M, Wang N. Research Progress on the NSP9 Protein of Porcine Reproductive and Respiratory Syndrome Virus. Front Vet Sci 2022; 9:872205. [PMID: 35898550 PMCID: PMC9309524 DOI: 10.3389/fvets.2022.872205] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a contagious disease caused by the porcine reproductive and respiratory syndrome virus (PRRSV). PRRS is also called “blue ear disease” because of the characteristic blue ear in infected sows and piglets. Its main clinical features are reproductive disorders of sows, breathing difficulties in piglets, and fattening in pigs, which cause considerable losses to the swine industry. NSP9, a non-structural protein of PRRSV, plays a vital role in PRRSV replication and virulence because of its RNA-dependent RNA polymerase (RdRp) structure. The NSP9 sequence is highly conserved and contains T cell epitopes, which are beneficial for the development of future vaccines. NSP9 acts as the protein interaction hub between virus and host during PRRSV infection, especially in RNA replication and transcription. Herein, we comprehensively review the application of NSP9 in terms of genetic evolution analysis, interaction with host proteins that affect virus replication, interaction with other viral proteins, pathogenicity, regulation of cellular immune response, antiviral drugs, vaccines, and detection methods. This review can therefore provide innovative ideas and strategies for PRRSV prevention and control.
Collapse
Affiliation(s)
- Huiyang Sha
- Department of Veterinary Medicine, School of Life Science and Engineering, Foshan University, Foshan, China
- Veterinary Teaching Hospital, Foshan University, Foshan, China
| | - Hang Zhang
- Department of Veterinary Medicine, School of Life Science and Engineering, Foshan University, Foshan, China
- Veterinary Teaching Hospital, Foshan University, Foshan, China
| | - Yao Chen
- Department of Veterinary Medicine, School of Life Science and Engineering, Foshan University, Foshan, China
- Veterinary Teaching Hospital, Foshan University, Foshan, China
| | - Liangzong Huang
- Department of Veterinary Medicine, School of Life Science and Engineering, Foshan University, Foshan, China
- Veterinary Teaching Hospital, Foshan University, Foshan, China
- *Correspondence: Liangzong Huang
| | - Mengmeng Zhao
- Department of Veterinary Medicine, School of Life Science and Engineering, Foshan University, Foshan, China
- Veterinary Teaching Hospital, Foshan University, Foshan, China
- Mengmeng Zhao
| | - Nina Wang
- Department of Veterinary Medicine, School of Life Science and Engineering, Foshan University, Foshan, China
- Veterinary Teaching Hospital, Foshan University, Foshan, China
- Nina Wang
| |
Collapse
|
17
|
Li L, Chen J, Cao Z, Cao Y, Guo Z, Tong W, Zhou Y, Li G, Jiang Y, Liu C, Yu L, Qiao S, Liu J, Tong G, Gao F. Recombinant Bivalent Live Vectored Vaccine Against Classical Swine Fever and HP-PRRS Revealed Adequate Heterogeneous Protection Against NADC30-Like Strain. Front Microbiol 2022; 12:822749. [PMID: 35069517 PMCID: PMC8767063 DOI: 10.3389/fmicb.2021.822749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/13/2021] [Indexed: 11/20/2022] Open
Abstract
The recombinant bivalent live vectored vaccine rPRRSV-E2 has been proved to be a favorable genetic engineering vaccine against classical swine fever (CSF) and highly pathogenic porcine reproductive and respiratory syndrome (HP-PRRS). NADC30-like strains have recently emerged in China and caused severe disease, and it is necessary to evaluate the vaccine candidate for the currently circulating viruses. This study established a good challenge model to evaluate the candidate rPRRSV-E2 vaccine in preventing infection with a representative NADC30-like strain (ZJqz21). It was shown that the challenge control piglets displayed clinical signs typical of PRRSV, including a persistent fever, dyspnea, moderate interstitial pneumonia, lymph node congestion, and viremia. In contrast, the rPRRSV-E2 vaccination significantly alleviated the clinical signs, yielded a high level of antibodies, provided adequate protection against challenge with ZJqz21, and inhibited viral shedding and the viral load in target tissues. Our results demonstrated that the recombinant bivalent live vectored vaccine strain rPRRSV-E2 can provide efficient protection against the challenge of heterologous circulating NADC30-like strain and could be a promising vaccine candidate for the swine industry.
Collapse
Affiliation(s)
- Liwei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jinxia Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zhengda Cao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yunlei Cao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ziqiang Guo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wu Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yanjun Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Guoxin Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yifeng Jiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Changlong Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Lingxue Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Sina Qiao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jiachen Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Fei Gao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
18
|
Synergistic Pathogenicity by Coinfection and Sequential Infection with NADC30-like PRRSV and PCV2 in Post-Weaned Pigs. Viruses 2022; 14:v14020193. [PMID: 35215787 PMCID: PMC8877551 DOI: 10.3390/v14020193] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus (PCVs) are two major viruses that affect pigs. Coinfections between PRRSV and PCV2 are frequently reported in most outbreaks, with clinical presentations involving dyspnea, fever, reduced feed intake, weight loss, and death in fattening pigs. The NADC30-like PRRSV and PCV2d are the main circulating virus strains found in China. This study determines the impact of NADC30-like PRRSV and PCV2d mono-infection and coinfection on the immune system, organ pathology, and viral shedding in five-week-old post-weaned pigs. Pigs were randomly divided into six groups: PBS, PRRSV, PCV2, PRRSV-PCV2 coinfection (co), and PRRSV-PCV2 or PCV2-PRRSV sequential infections. Fever, dyspnea, decreased feed intake, weight loss, and pig deaths occurred in groups infected with PRRSV, Co-PRRSV-PCV2, and PRRSV-PCV2. The viral load was higher in Co-PRRSV-PCV2, PRRSV-PCV2, and PCV2-PRRSV than those mono-infected with PRRSV or PCV2. Additionally, cytokines (IFN-γ, TNF-α, IL-4, and IL-10) produced by pigs under Co-PRRSV-PCV2 and PRRSV-PCV2 groups were more intense than the other groups. Necropsy findings showed hemorrhage, emphysema, and pulmonary adhesions in the lungs of pigs infected with PRRSV. Smaller alveoli and widened lung interstitium were found in the Co-PRRSV-PCV2 and PRRSV-PCV2 groups. In conclusion, PRRSV and PCV2 coinfection and sequential infection significantly increased viral pathogenicity and cytokine responses, resulting in severe clinical signs, lung pathology, and death.
Collapse
|
19
|
WGS- versus ORF5-Based Typing of PRRSV: A Belgian Case Study. Viruses 2021; 13:v13122419. [PMID: 34960688 PMCID: PMC8707199 DOI: 10.3390/v13122419] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 12/18/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of one of the most widespread and economically devastating diseases in the swine industry. Typing circulating PRRSV strains by means of sequencing is crucial for developing adequate control strategies. Most genetic studies only target the highly variable open reading frame (ORF) 5, for which an extensive database is available. In this study, we performed whole-genome sequencing (WGS) on a collection of 124 PRRSV-1 positive serum samples that were collected over a 5-year period (2015–2019) in Belgium. Our results show that (nearly) complete PRRSV genomes can be obtained directly from serum samples with a high success rate. Analysis of the coding regions confirmed the exceptionally high genetic diversity, even among Belgian PRRSV-1 strains. To gain more insight into the added value of WGS, we performed phylogenetic cluster analyses on separate ORF datasets as well as on a single, concatenated dataset (CDS) containing all ORFs. A comparison between the CDS and ORF clustering schemes revealed numerous discrepancies. To explain these differences, we performed a large-scale recombination analysis, which allowed us to identify a large number of potential recombination events that were scattered across the genome. As PRRSV does not contain typical recombination hot-spots, typing PRRSV strains based on a single ORF is not recommended. Although the typing accuracy can be improved by including multiple regions, our results show that the full genetic diversity among PRRSV strains can only be captured by analysing (nearly) complete genomes. Finally, we also identified several vaccine-derived recombinant strains, which once more raises the question of the safety of these vaccines.
Collapse
|
20
|
Zhu Z, Yuan L, Hu D, Lian Z, Yao X, Liu P, Li X. Isolation and genomic characterization of a Chinese NADC34-like PRRSV isolated from Jiangsu province. Transbound Emerg Dis 2021; 69:e1015-e1027. [PMID: 34786872 DOI: 10.1111/tbed.14392] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/28/2021] [Accepted: 10/31/2021] [Indexed: 11/30/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important causative agents to swine industry, which has been epidemic more than 30 years. The emergence and recombination of new virus strains bring great challenges to the prevention and control of PRRSV. In the present study, we reported and characterized a novel PRRSV strain, designated as JS2021NADC34, which was for the first time isolated from clinical samples in Jiangsu province, China. Phylogenetic analysis demonstrated that JS2021NADC34 belonging to sublineage 1.5 of PRRSV-2 and was highly related to NADC34-like strains. Genetically, JS2021NADC34 strain had a continuous 100 aa depletion in NSP2, as compared to VR-2332 strain, which was consistent with most reported NADC34-like strains. Moreover, there were several amino acid substitutions occurred in the antigenic regions of GP2-GP5. Similar to other reported NADC34-like PRRSV in China, JS2021NADC34 had no recombination with other domestic strains, which indicates this sublineage of PRRSV may be directly transported from the United States and have not undergone extensive mutation and recombination with local strains yet.
Collapse
Affiliation(s)
- Zhenbang Zhu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Lili Yuan
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Danhe Hu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhengmin Lian
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiaohui Yao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Panrao Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiangdong Li
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
21
|
Ding Y, Wubshet AK, Ding X, Zhang Z, Li Q, Dai J, Hou Q, Hu Y, Zhang J. Evaluation of Four Commercial Vaccines for the Protection of Piglets against the Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus (hp-PRRSV) QH-08 Strain. Vaccines (Basel) 2021; 9:vaccines9091020. [PMID: 34579257 PMCID: PMC8471949 DOI: 10.3390/vaccines9091020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/23/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
Vaccination is the best way to prevent economic losses from highly pathogenic porcine reproductive and respiratory syndrome virus (hp-PRRSV) disease. However, the commercially available vaccines need to periodically evaluate their efficacy against infections caused by new hp-PRRSV variants. Therefore, the objective of this study was to evaluate the efficacy of four (two modified live vaccines (MLV) and two inactivated) PRRSV commercial vaccines in piglets challenged with QH-08 and to estimate the genetic distance of the vaccine strains from recently isolated (QH-08) filed strain. Randomly, piglets (n = 5) allocated in groups 1–4 were immunized with Ingelvac PRRS MLV, CH-1a, JXA1, and JXA1-RMLV vaccines, whereas the infected and non-infected control piglets in groups 5 and 6 (n = 3), respectively, were subjected to PBS. Results indicated that JXA1 and JXA1-R MLV vaccines showed complete protection, but Ingelvac PRRS MLV and CH-1α vaccines revealed partial protection against the QH-08 PRRSV challenge. Similarly, vaccinated and challenged pigs showed lower macroscopic and microscopic lesions than the pigs in group 5. Our findings demonstrated a new insight that the variation in ORF1a and 1b coding sequence could significantly affect PRRSV vaccines efficacy. In conclusion, QH-08 is a good candidate for the design and development of an innovative PRRSV vaccine that ultimately helps in the control and prevention strategies.
Collapse
Affiliation(s)
- Yaozhong Ding
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (A.K.W.); (X.D.); (Z.Z.); (Q.L.); (J.D.); (Q.H.)
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China;
- Correspondence: (Y.D.); (J.Z.)
| | - Ashenafi Kiros Wubshet
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (A.K.W.); (X.D.); (Z.Z.); (Q.L.); (J.D.); (Q.H.)
- Department of Basic and Diagnostic Sciences, College of Veterinary Science, Mekelle University, Mekelle 280, Ethiopia
| | - Xiaolong Ding
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (A.K.W.); (X.D.); (Z.Z.); (Q.L.); (J.D.); (Q.H.)
| | - Zhongwang Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (A.K.W.); (X.D.); (Z.Z.); (Q.L.); (J.D.); (Q.H.)
| | - Qian Li
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (A.K.W.); (X.D.); (Z.Z.); (Q.L.); (J.D.); (Q.H.)
| | - Junfei Dai
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (A.K.W.); (X.D.); (Z.Z.); (Q.L.); (J.D.); (Q.H.)
| | - Qian Hou
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (A.K.W.); (X.D.); (Z.Z.); (Q.L.); (J.D.); (Q.H.)
| | - Yonghao Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China;
| | - Jie Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (A.K.W.); (X.D.); (Z.Z.); (Q.L.); (J.D.); (Q.H.)
- Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
- Correspondence: (Y.D.); (J.Z.)
| |
Collapse
|
22
|
Li Y, Mateu E. Interaction of Type 1 Porcine Reproductive and Respiratory Syndrome Virus With In Vitro Derived Conventional Dendritic Cells. Front Immunol 2021; 12:674185. [PMID: 34177915 PMCID: PMC8221110 DOI: 10.3389/fimmu.2021.674185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/12/2021] [Indexed: 12/22/2022] Open
Abstract
The present study delineates the interaction of a typical PRRSV1.1 isolate 3267 (moderate virulence) with in vitro derived pig conventional dendritic cells, cDC1, cDC2, and a CD14+ population (designated as CD14+ DCs). cDC1 and cDC2 were not susceptible to 3267 infection, but a fraction of CD14+ DCs were infected. After exposure to the virus, all three DC types remained immature as determined by no increase of maturation molecules (MHC-I, MHC-II, CD80/86, CCR7), no release of cytokines, no modification of antigen presentation abilities, and no alteration of endocytic/phagocytic capabilities. However, when infected MARC-145 cells were used as a source of viral antigens, cDC2 and CD14+ DCs showed a significant increase in the expression of maturation molecules and substantial release of cytokines, notably IL-12/IL-23p40 (by both DC types) and IL-10 (by CD14+ DCs). To address the impact of PRRSV1 3267 on TLR3- and TLR7-mediated activation, cDC1, cDC2, and CD14+ DCs were inoculated by the virus (live or UV-inactivated) for 6 h prior to or simultaneously with the addition of poly I:C (TLR3 ligand) or gardiquimod (TLR7 ligand; not used for cDC1). Compared with using TLR ligand alone, combination with the virus did not result in any alteration to the maturation markers on all DC types but changed the cytokine response to either TLR3 or TLR7 ligand. Pre-exposure of cDC2 or CD14+ DCs to the live virus resulted in an increased production of IFN-α upon poly I:C stimulation, while pre-exposure to UV-inactivated virus tended to enhance the release of IL-10 upon gardiquimod stimulation. Simultaneous addition of the live virus and the TLR ligand either had no effect (mainly in cDC2) or impaired most of the cytokine release after gardiquimod stimulation (in CD14+ DCs). When used as antigen presenting cells, cDC2 pre-inoculated by the live virus before addition of gardiquimod impaired the proliferation of CD4–CD8– T cells. In the case of CD14+ DCs, pre-exposure to the live virus or simultaneously added with TLR3 or TLR7 ligand largely decreased the proliferation of CD4–CD8+ and CD4–CD8+ T-cell subsets. For cDC1, no significant changes were observed in cytokine responses or T-cell proliferation after poly I:C stimulation. Of note, cDC1 had a short life during in vitro culturing, for which the results obtained might be biased. Overall, exposure to PRRSV1 did not induce maturation of cDC1, cDC2, or CD14+ DCs, but modified TLR3 and TLR7-associated responses (except for cDC1), which may affect the development of adaptive immunity during PRRSV1 infection. Moreover, the sensing of infected cells was different from that of the free virus.
Collapse
Affiliation(s)
- Yanli Li
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Enric Mateu
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Bellaterra, Spain
| |
Collapse
|
23
|
Zhang L, Wang L, Cao S, Lv H, Huang J, Zhang G, Tabynov K, Zhao Q, Zhou EM. Nanobody Nb6 fused with porcine IgG Fc as the delivering tag to inhibit porcine reproductive and respiratory syndrome virus replication in porcine alveolar macrophages. Vet Res 2021; 52:25. [PMID: 33596995 PMCID: PMC7887809 DOI: 10.1186/s13567-020-00868-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/06/2020] [Indexed: 11/10/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly contagious virus that has led to enormous economic loss worldwide because of ineffective prevention and treatment. In view of their minimized size, high target specificity and affinity, nanobodies have been extensively investigated as diagnostic tools and treatments of many diseases. Previously, a PRRSV Nsp9-specific nanobody (Nb6) was identified as a PRRSV replication inhibitor. When it was fused with cell-penetrating peptide (CPP) TAT, Nb6-TAT could enter the cells for PRRSV suppression. However, delivery of molecules by CPP lack cell specificity and have a short duration of action. PRRSV has a tropism for monocyte/macrophage lineage, which expresses high levels of Fcγ receptors. Herein, we designed a nanobody containing porcine IgG Fc (Fcγ) to inhibit PRRSV replication in PRRSV permissive cells. Fcγ fused Nb6 chimeric antibody (Nb6-pFc) was assembled into a dimer with interchain disulfide bonds and expressed in a Pichia pastoris system. The results show that Nb6-pFc exhibits a well-binding ability to recombinant Nsp9 or PRRSV-encoded Nsp9 and that FcγR-mediated endocytosis of Nb6-pFc into porcine alveolar macrophages (PAM) was in a dose-dependent manner. Nb6-pFc can inhibit PRRSV infection efficiently not only by binding with Nsp9 but also by upregulating proinflammatory cytokine production in PAM. Together, this study proposes the design of a porcine IgG Fc-fused nanobody that can enter PRRSV susceptible PAM via FcγR-mediated endocytosis and inhibit PRRSV replication. This research reveals that nanobody-Fcγ chimeric antibodies might be effective for the control and prevention of monocyte/macrophage lineage susceptible pathogeneses.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Lizhen Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Shuaishuai Cao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Huanhuan Lv
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Jingjing Huang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Guixi Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Kaissar Tabynov
- Kazakh National Agrarian University, 050010, Almaty, Kazakhstan
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China.
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
24
|
Wang Y, Li R, Qiao S, Wang J, Liu H, Li Z, Ma H, Yang L, Ruan H, Weng M, Hiscox JA, Stewart JP, Nan Y, Zhang G, Zhou EM. Structural Characterization of Non-structural Protein 9 Complexed With Specific Nanobody Pinpoints Two Important Residues Involved in Porcine Reproductive and Respiratory Syndrome Virus Replication. Front Microbiol 2020; 11:581856. [PMID: 33281776 PMCID: PMC7688669 DOI: 10.3389/fmicb.2020.581856] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS), caused by PRRS virus (PRRSV), is a widespread viral disease that has led to huge economic losses for the global swine industry. Non-structural protein 9 (Nsp9) of PRRSV possesses essential RNA-dependent RNA polymerase (RdRp) activity for viral RNA replication. Our previous report showed that Nsp9-specific nanobody, Nb6, was able to inhibit PRRSV replication. In this study, recombinant Nsp9 and Nsp9-Nb6 complex were prepared then characterized using bio-layer interferometry (BLI) and dynamic light scattering (DLS) analyses that demonstrated high-affinity binding of Nb6 to Nsp9 to form a homogeneous complex. Small-angle X-ray scattering (SAXS) characterization analyses revealed that spatial interactions differed between Nsp9 and Nsp9-Nb6 complex molecular envelopes. Enzyme-linked immunosorbent assays (ELISAs) revealed key involvement of Nsp9 residues Ile588, Asp590, and Leu643 and Nb6 residues Tyr62, Trp105, and Pro107 in the Nsp9-Nb6 interaction. After reverse genetics-based techniques were employed to generate recombinant Nsp9 mutant viruses, virus replication efficiencies were assessed in MARC-145 cells. The results revealed impaired viral replication of recombinant viruses bearing I588A and L643A mutations as compared with replication of wild type virus, as evidenced by reduced negative-strand genomic RNA [(−) gRNA] synthesis and attenuated viral infection. Moreover, the isoleucine at position 588 of Nsp9 was conserved across PRRSV genotypes. In conclusion, structural analysis of the Nsp9-Nb6 complex revealed novel amino acid interactions involved in viral RNA replication that will be useful for guiding development of structure-based anti-PRRSV agents.
Collapse
Affiliation(s)
- Yan Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Rui Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Jiaxi Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Hongliang Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Zhijun Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Hongfang Ma
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Lei Yang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Haiyu Ruan
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Maoyang Weng
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Julian A Hiscox
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - James P Stewart
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Gaiping Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
25
|
Go N, Belloc C, Bidot C, Touzeau S. Why, when and how should exposure be considered at the within-host scale? A modelling contribution to PRRSv infection. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2020; 36:179-206. [PMID: 29790952 DOI: 10.1093/imammb/dqy005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/11/2018] [Indexed: 12/25/2022]
Abstract
Understanding the impact of pathogen exposure on the within-host dynamics and its outcome in terms of infectiousness is a key issue to better understand and control the infection spread. Most experimental and modelling studies tackling this issue looked at the impact of the exposure dose on the infection probability and pathogen load, very few on the within-host immune response. Our aim was to explore the impact on the within-host response not only of the exposure dose, but also of its duration and peak, for contrasted virulence levels. We used an integrative modelling approach of the within-host dynamics at the between-cell level. We focused on the porcine reproductive and respiratory syndrome virus, a major concern for the swine industry. We quantified the impact of exposure and virulence on the viral dynamics and immune response by global sensitivity analyses and descriptive statistics. We found that the area under the viral curve, an indicator of the infection severity, was fully determined by the exposure intensity. The infection duration increased with the strain virulence and, for a given strain, exhibited a positive linear correlation with the exposure intensity logarithm and the exposure duration. Taking into account the exposure intensity is hence necessary. Besides, representing the exposure due to contacts by a single punctual dose would tend to underestimate the infection duration. As the infection severity and duration both contribute to the pig infectiousness, a prolonged exposure of the adequate intensity would be recommended in an immuno-epidemiological context.
Collapse
Affiliation(s)
- Natacha Go
- BIOEPAR, INRA, Oniris, LUNAM Université, Nantes, France.,MaIAGE, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Caroline Bidot
- MaIAGE, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Suzanne Touzeau
- ISA, INRA, CNRS, Université Côte d'Azur, France.,BIOCORE, Inria, INRA, CNRS, UPMC Université, Université Côte d'Azur, France
| |
Collapse
|
26
|
Yuzhakov AG, Raev SA, Shchetinin AM, Gushchin VA, Alekseev KP, Stafford VV, Komina AK, Zaberezhny AD, Gulyukin AM, Aliper TI. Full-genome analysis and pathogenicity of a genetically distinct Russian PRRSV-1 Tyu16 strain. Vet Microbiol 2020; 247:108784. [PMID: 32768228 DOI: 10.1016/j.vetmic.2020.108784] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/17/2022]
Abstract
Porcine reproductive and respiratory syndrome virus-1 (PRRSV-1) strains from Eastern Europe have a high diversity. All three known subtypes (1, 2, 3) of PRRSV-1 have been detected in Russia. There are two different groups of viruses belonging to the subtype 1: pan-European subtype 1 strains, and insufficiently studied Russian strains. The main objective of this study was to characterize the full genomic structure of the atypical Tyu16 strain of the Russian group subtype 1 PRRSV-1 and to assess its pathogenicity. Complete sequencing of the Tyu16 strain revealed that it did not belong to any existing subtype. Comparison of the whole genome sequence of the Tyu16 strain with that of PRRSV-1 prototype strains revealed 78.1 % (subtype 1 Lelystad), 78.1 % (subtype 2 WestSib13) and 77.7 % (subtype 3 Lena) nucleotide identity level, respectively. The coding sequence of different parts of the Tyu16 strain genome demonstrated a varying percentage identity to the different reference PRRSV-1 strains, which may indicate recombination events in its evolutionary history. We assume that among PRRSV-1 isolates, the Tyu16 is the closest relative to the common ancestor of PRRSV-1 and PRRSV-2. Low pathogenicity of the Tyu16 was demonstrated by experimental infection of 70-day-old piglets. Infected animals showed fever not exceeding 7 days, dyspnea in two out of five pigs and reduced weight gain. The virus shedding was undetectable and viremia was at low level.
Collapse
Affiliation(s)
- Anton G Yuzhakov
- Federal State Budget Scientific Institution "Federal Scientific Centre VIEV" (FSC VIEV), Moscow, Russia.
| | - Sergei A Raev
- Federal State Budget Scientific Institution "Federal Scientific Centre VIEV" (FSC VIEV), Moscow, Russia.
| | - Alexey M Shchetinin
- N. F. Gamaleya Federal Research Center for Epidemiology & Microbiology, Moscow, Russia.
| | - Vladimir A Gushchin
- N. F. Gamaleya Federal Research Center for Epidemiology & Microbiology, Moscow, Russia.
| | - Konstantin P Alekseev
- Federal State Budget Scientific Institution "Federal Scientific Centre VIEV" (FSC VIEV), Moscow, Russia.
| | - Viсtoria V Stafford
- Federal State Budget Scientific Institution "Federal Scientific Centre VIEV" (FSC VIEV), Moscow, Russia.
| | - Alina K Komina
- Federal State Budget Scientific Institution "Federal Scientific Centre VIEV" (FSC VIEV), Moscow, Russia.
| | - Alexei D Zaberezhny
- Federal State Budget Scientific Institution "Federal Scientific Centre VIEV" (FSC VIEV), Moscow, Russia.
| | - Alexey M Gulyukin
- Federal State Budget Scientific Institution "Federal Scientific Centre VIEV" (FSC VIEV), Moscow, Russia.
| | - Taras I Aliper
- Federal State Budget Scientific Institution "Federal Scientific Centre VIEV" (FSC VIEV), Moscow, Russia.
| |
Collapse
|
27
|
Sánchez-Carvajal JM, Rodríguez-Gómez IM, Ruedas-Torres I, Larenas-Muñoz F, Díaz I, Revilla C, Mateu E, Domínguez J, Martín-Valls G, Barranco I, Pallarés FJ, Carrasco L, Gómez-Laguna J. Activation of pro- and anti-inflammatory responses in lung tissue injury during the acute phase of PRRSV-1 infection with the virulent strain Lena. Vet Microbiol 2020; 246:108744. [PMID: 32605751 PMCID: PMC7265841 DOI: 10.1016/j.vetmic.2020.108744] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 12/16/2022]
Abstract
Lena virulent strain caused an increase in sera levels of IFN-γ and IL-6. Lung viral load and PRRSV-N-protein+ cells were inversely correlated with CD163+ macrophages in the lung. CD14+ cells infiltrated interstitium to possibly replenish macrophages subsets. Lena-induced microscopic lung injury was linked to an increase of iNOS+ cells. The increase of CD200R1+ and FoxP3+ cells was associated with the course of lung injury.
Porcine reproductive and respiratory syndrome virus (PRRSV) plays a key role in porcine respiratory disease complex modulating the host immune response and favouring secondary bacterial infections. Pulmonary alveolar macrophages (PAMs) are the main cells supporting PRRSV replication, with CD163 as the essential receptor for viral infection. Although interstitial pneumonia is by far the representative lung lesion, suppurative bronchopneumonia is described for PRRSV virulent strains. This research explores the role of several immune markers potentially involved in the regulation of the inflammatory response and sensitisation of lung to secondary bacterial infections by PRRSV-1 strains of different virulence. Conventional pigs were intranasally inoculated with the virulent subtype 3 Lena strain or the low virulent subtype 1 3249 strain and euthanised at 1, 3, 6 and 8 dpi. Lena-infected pigs exhibited more severe clinical signs, macroscopic lung score and viraemia associated with an increase of IL-6 and IFN-γ in sera compared to 3249-infected pigs. Extensive areas of lung consolidation corresponding with suppurative bronchopneumonia were observed in Lena-infected pigs. Lung viral load and PRRSV-N-protein+ cells were always higher in Lena-infected animals. PRRSV-N-protein+ cells were linked to a marked drop of CD163+ macrophages. The number of CD14+ and iNOS+ cells gradually increased along PRRSV-1 infection, being more evident in Lena-infected pigs. The frequency of CD200R1+ and FoxP3+ cells peaked late in both PRRSV-1 strains, with a strong correlation between CD200R1+ cells and lung injury in Lena-infected pigs. These results highlight the role of molecules involved in the earlier and higher extent of lung lesions in piglets infected with the virulent Lena strain, pointing out the activation of routes potentially involved in the restraint of the local inflammatory response.
Collapse
Affiliation(s)
- J M Sánchez-Carvajal
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain.
| | - I M Rodríguez-Gómez
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| | - I Ruedas-Torres
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| | - F Larenas-Muñoz
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| | - I Díaz
- Institut de Recerca i Tecnologia Agroalimentàries - Centre de Recerca en Sanitat Animal (IRTA-CReSA), Campus de la Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - C Revilla
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), 28040, Madrid, Spain
| | - E Mateu
- Institut de Recerca i Tecnologia Agroalimentàries - Centre de Recerca en Sanitat Animal (IRTA-CReSA), Campus de la Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Autonomous University of Barcelona, 08193, Bellaterra, Spain
| | - J Domínguez
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), 28040, Madrid, Spain
| | - G Martín-Valls
- Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Autonomous University of Barcelona, 08193, Bellaterra, Spain
| | - I Barranco
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| | - F J Pallarés
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Murcia, 30100, Murcia, Spain
| | - L Carrasco
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| | - J Gómez-Laguna
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| |
Collapse
|
28
|
Genetic diversity of porcine reproductive and respiratory syndrome virus 1 in the United States of America from 2010 to 2018. Vet Microbiol 2019; 239:108486. [PMID: 31767088 DOI: 10.1016/j.vetmic.2019.108486] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 01/27/2023]
Abstract
Porcine reproductive and respiratory syndrome virus 1 (PRRSV-1) was first detected in the United States of America (USA) in 1999, several strains were also recognized soon later, and these isolates are typically called North American (NA) PRRSV-1. However, few reports have characterized PRRSV-1 viruses in the USA. We explored the genetic characteristics and diversity of PRRSV-1 viruses circulating in the USA. PRRSV-1 PCR-positive samples collected from seven states in 2010-2018 (n = 27) were subjected to next-generation sequencing. The 27 PRRSV-1 viruses had 88.4-91.3% nucleotide identity to the PRRSV-1 Lelystad-virus strain (the type 1 prototype strain) and 87.4-89.8% to the previously reported NA PRRSV-1 viruses. Individual proteins had several unique genetic characteristics and only one of the 27 tested samples had the characteristic 17-amino acid (aa) deletion in Nsp2, a genetic marker of NA PRRSV-1 viruses described previously. Fourteen isolates displayed a 3-aa C-terminal truncation in the highly conserved Nsp12 gene; 16 samples had a 21- or 18-aa C-terminal truncation in GP3 gene; and one was observed with a 1-aa deletion at the overlapping region of GP3 and GP4. In addition, the GP5 protein in most isolates, excluding one exception, demonstrated similar genetic variation as other reported NA PRRSV-1 isolates. All tested isolates clustered within subtype 1 together with other available NA PRRSV-1 viruses. Collectively, our results provide up-to-date information on PRRSV-1 viruses circulating in the USA in the past 9 years although the number of PRRSV-1 isolates included in this study is limited. These PRRSV-1 viruses have undergone gradual genetic variation and exhibited some previously undescribed genetic characteristics and diversity, which complicates the diagnosis and control of NA PRRSV-1.
Collapse
|
29
|
Paploski IAD, Corzo C, Rovira A, Murtaugh MP, Sanhueza JM, Vilalta C, Schroeder DC, VanderWaal K. Temporal Dynamics of Co-circulating Lineages of Porcine Reproductive and Respiratory Syndrome Virus. Front Microbiol 2019; 10:2486. [PMID: 31736919 PMCID: PMC6839445 DOI: 10.3389/fmicb.2019.02486] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/15/2019] [Indexed: 02/05/2023] Open
Abstract
Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) is the most important endemic pathogen in the U.S. swine industry. Despite control efforts involving improved biosecurity and different vaccination protocols, the virus continues to circulate and evolve. One of the foremost challenges in its control is high levels of genetic and antigenic diversity. Here, we quantify the co-circulation, emergence and sequential turnover of multiple PRRSV lineages in a single swine-producing region in the United States over a span of 9 years (2009-2017). By classifying over 4,000 PRRSV sequences (open-reading frame 5) into phylogenetic lineages and sub-lineages, we document the ongoing diversification and temporal dynamics of the PRRSV population, including the rapid emergence of a novel sub-lineage that appeared to be absent globally pre-2008. In addition, lineage 9 was the most prevalent lineage from 2009 to 2010, but its occurrence fell to 0.5% of all sequences identified per year after 2014, coinciding with the emergence or re-emergence of lineage 1 as the dominant lineage. The sequential dominance of different lineages, as well as three different sub-lineages within lineage 1, is consistent with the immune-mediated selection hypothesis for the sequential turnover in the dominant lineage. As host populations build immunity through natural infection or vaccination toward the most common variant, this dominant (sub-) lineage may be replaced by an emerging variant to which the population is more susceptible. An analysis of patterns of non- synonymous and synonymous mutations revealed evidence of positive selection on immunologically important regions of the genome, further supporting the potential that immune-mediated selection shapes the evolutionary and epidemiological dynamics for this virus. This has important implications for patterns of emergence and re-emergence of genetic variants of PRRSV that have negative impacts on the swine industry. Constant surveillance on PRRSV occurrence is crucial to a better understanding of the epidemiological and evolutionary dynamics of co-circulating viral lineages. Further studies utilizing whole genome sequencing and exploring the extent of cross-immunity between heterologous PRRS viruses could shed further light on PRRSV immunological response and aid in developing strategies that might be able to diminish disease impact.
Collapse
Affiliation(s)
| | - Cesar Corzo
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Albert Rovira
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Michael P. Murtaugh
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, United States
| | - Juan Manuel Sanhueza
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Carles Vilalta
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Declan C. Schroeder
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Kimberly VanderWaal
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
30
|
Guo Z, Chen XX, Li X, Qiao S, Deng R, Zhang G. Prevalence and genetic characteristics of porcine reproductive and respiratory syndrome virus in central China during 2016-2017: NADC30-like PRRSVs are predominant. Microb Pathog 2019; 135:103657. [PMID: 31398529 DOI: 10.1016/j.micpath.2019.103657] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/26/2019] [Accepted: 08/05/2019] [Indexed: 10/26/2022]
Abstract
NADC30-like strains of porcine reproductive and respiratory syndrome virus (PRRSV) were firstly reported in China in 2013. Since then, these strains have been epidemic in more than 13 provinces/regions. During 2016-2017, a total of 18 PRRSV isolates were obtained from 52 clinical samples in Henan province. Based on comparative and phylogenetic analyses of ORF5 and partial Nsp2 genes, 83.3% (15/18) isolates belonged to NADC30-like strains, and the ORF5 shared 87.4%-95.5% nucleotide identity with NADC30/JL580 and 84.2%-89.9% with JXA1/CH-1a, respectively. The genetic variation analysis showed that extensive amino acid substitutions happened in the significant regions of ORF5 including major linear antigenic epitopes (27-30aa, 37-45aa, 52-61aa) and the potential N-glycosylation sites (32-35aa). 16.7% (3/18) isolates were very close to HP-PRRSV derived attenuated strains. Moreover, these three isolates shared common residues at the positions 33D, 59 N, 164R, 196R in ORF5 and 303D, 399T, 575V, 598R, 604G in Nsp2, which were thought to be unique to modified live vaccines (MLVs) or their derivatives. Therefore, they were probably the revertants from MLVs. Our studies showed that the HP-PRRSV strains seemed to be gradually disappearing and NADC30-like strains had become the main causative agents of PRRS in central China. Comparing with HP-PRRSVs, the ORF5 of NADC30-like PRRSV strains displayed extensive amino acid mutations which may be related with immune evasion. Furthermore, the circulation of MLV derivatives in the fields made the diagnosis and control of PRRSV more complicated.
Collapse
Affiliation(s)
- Zhenhua Guo
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, PR China
| | - Xin-Xin Chen
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, PR China
| | - Xiang Li
- Department of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650100, PR China
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, PR China
| | - Ruiguang Deng
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, PR China
| | - Gaiping Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, PR China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China.
| |
Collapse
|
31
|
Toman M, Celer V, Kavanová L, Levá L, Frolichova J, Ondráčková P, Kudláčková H, Nechvátalová K, Salat J, Faldyna M. Dynamics and Differences in Systemic and Local Immune Responses After Vaccination With Inactivated and Live Commercial Vaccines and Subsequent Subclinical Infection With PRRS Virus. Front Immunol 2019; 10:1689. [PMID: 31447829 PMCID: PMC6691355 DOI: 10.3389/fimmu.2019.01689] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 07/04/2019] [Indexed: 12/12/2022] Open
Abstract
The goals of our study were to compare the immune response to different killed and modified live vaccines against PRRS virus and to monitor the antibody production and the cell mediated immunity both at the systemic and local level. In the experiment, we immunized four groups of piglets with two commercial inactivated (A1-Progressis, A2-Suivac) and two modified live vaccines (B3-Amervac, B4-Porcilis). Twenty-one days after the final vaccination, all piglets, including the control non-immunized group (C5), were i.n., infected with the Lelystad strain of PRRS virus. The serum antibody response (IgM and IgG) was the strongest in group A1 followed by two MLV (B3 and B4) groups. Locally, we demonstrated the highest level of IgG antibodies in bronchoalveolar lavages (BALF), and saliva in group A1, whereas low IgA antibody responses in BALF and feces were detected in all groups. We have found virus neutralization antibody at DPV 21 (days post vaccination) and higher levels in all groups including the control at DPI 21 (days post infection). Positive antigen specific cell-mediated response in lymphocyte transformation test (LTT) was observed in groups B3 and B4 at DPV 7 and in group B4 at DPV 21 and in all intervals after infection. The IFN-γ producing lymphocytes after antigen stimulation were found in CD4-CD8+ and CD4+CD8+ subsets of all immunized groups 7 days after infection. After infection, there were obvious differences in virus excretion. The virus was detected in all groups of piglets in serum, saliva, and occasionally in feces at DPI 3. Significantly lower virus load was found in groups A1 and B3 at DPI 21. Negative samples appeared at DPI 21 in B3 group in saliva. It can be concluded that antibodies after immunization and infection, and the virus after infection can be detected in all the compartments monitored. Immunization with inactivated vaccine A1-Progressis induces high levels of antibodies produced both systemically and locally. Immunization with MLV-vaccines (Amervac and Porcilis) produces sufficient antibody levels and also cell-mediated immunity. After infection virus secretion gradually decreases in group B3, indicating tendency to induce sterile immunity.
Collapse
Affiliation(s)
- Miroslav Toman
- Department of Immunology, Veterinary Research Institute, Brno, Czechia
| | - Vladimir Celer
- Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czechia
| | - Lenka Kavanová
- Department of Immunology, Veterinary Research Institute, Brno, Czechia
| | - Lenka Levá
- Department of Immunology, Veterinary Research Institute, Brno, Czechia
| | - Jitka Frolichova
- Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czechia
| | - Petra Ondráčková
- Department of Immunology, Veterinary Research Institute, Brno, Czechia
| | - Hana Kudláčková
- Department of Immunology, Veterinary Research Institute, Brno, Czechia
| | | | - Jiri Salat
- Department of Virology, Veterinary Research Institute, Brno, Czechia
| | - Martin Faldyna
- Department of Immunology, Veterinary Research Institute, Brno, Czechia
| |
Collapse
|
32
|
Dortmans JCFM, Buter GJ, Dijkman R, Houben M, Duinhof TF. Molecular characterization of type 1 porcine reproductive and respiratory syndrome viruses (PRRSV) isolated in the Netherlands from 2014 to 2016. PLoS One 2019; 14:e0218481. [PMID: 31246977 PMCID: PMC6597066 DOI: 10.1371/journal.pone.0218481] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/03/2019] [Indexed: 11/19/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of a devastating pig disease present all over the world. The remarkable genetic variation of PRRSV, makes epidemiological and molecular analysis of circulating viruses highly important to review current diagnostic tools and vaccine efficacy. Monitoring PRRS viruses supports modern herd management by explaining the source of found viruses, either internally or externally from the herd. No epidemiological or molecular study has been published on circulating PRRS-viruses in the Netherlands, since the early nineties. Therefore, the objective of this study is to investigate circulating PRRS-viruses in the Netherlands in 2014, 2015 and 2016 on a molecular level by sequencing ORF2, ORF3, ORF4, ORF5, ORF6 and ORF7. The results demonstrate that the 74 PRRSV strains belong to PRRSV-1, but the diversity among strains is high, based on nucleotide identity, individual ORF length and phylogenetic trees of individual ORFs. Furthermore, the data presented here show that the phylogenetic topology of some viruses is ORF dependent and suggests recombination. The identity of the strain of interest might be misinterpreted and wrong conclusions may be drawn in a diagnostic and epidemiological perspective, when only ORF5 is analyzed, as performed in many routine sequencing procedures.
Collapse
Affiliation(s)
| | | | - R. Dijkman
- GD Animal Health, Deventer, The Netherlands
| | - M. Houben
- GD Animal Health, Deventer, The Netherlands
| | | |
Collapse
|
33
|
Bernelin-Cottet C, Urien C, Stubsrud E, Jakob V, Bouguyon E, Bordet E, Barc C, Boulesteix O, Contreras V, Barnier-Quer C, Collin N, Trus I, Nauwynck H, Bertho N, Schwartz-Cornil I. A DNA-Modified Live Vaccine Prime-Boost Strategy Broadens the T-Cell Response and Enhances the Antibody Response against the Porcine Reproductive and Respiratory Syndrome Virus. Viruses 2019; 11:E551. [PMID: 31207934 PMCID: PMC6630347 DOI: 10.3390/v11060551] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 02/07/2023] Open
Abstract
The Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) induces reproductive disorders in sows and respiratory illnesses in growing pigs and is considered as one of the main pathogenic agents responsible for economic losses in the porcine industry worldwide. Modified live PRRSV vaccines (MLVs) are very effective vaccine types against homologous strains but they present only partial protection against heterologous viral variants. With the goal to induce broad and cross-protective immunity, we generated DNA vaccines encoding B and T antigens derived from a European subtype 1 strain that include T-cell epitope sequences known to be conserved across strains. These antigens were expressed either in a native form or in the form of vaccibodies targeted to the endocytic receptor XCR1 and CD11c expressed by different types of antigen-presenting cells (APCs). When delivered in skin with cationic nanoparticles and surface electroporation, multiple DNA vaccinations as a stand-alone regimen induced substantial antibody and T-cell responses, which were not promoted by targeting antigens to APCs. Interestingly, a DNA-MLV prime-boost strategy strongly enhanced the antibody response and broadened the T-cell responses over the one induced by MLV or DNA-only. The anti-nucleoprotein antibody response induced by the DNA-MLV prime-boost was clearly promoted by targeting the antigen to CD11c and XCR1, indicating a benefit of APC-targeting on the B-cell response. In conclusion, a DNA-MLV prime-boost strategy, by enhancing the potency and breadth of MLV vaccines, stands as a promising vaccine strategy to improve the control of PRRSV in infected herds.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Antibody Formation
- Immunity, Cellular
- Immunization Schedule
- Organisms, Genetically Modified/genetics
- Organisms, Genetically Modified/immunology
- Porcine Reproductive and Respiratory Syndrome/prevention & control
- Porcine respiratory and reproductive syndrome virus/genetics
- Porcine respiratory and reproductive syndrome virus/immunology
- Swine
- T-Lymphocytes/immunology
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Cindy Bernelin-Cottet
- VIM, INRA, Université Paris-Saclay, Domaine de Vilvert, 78350 Jouy-en-Josas, France.
| | - Céline Urien
- VIM, INRA, Université Paris-Saclay, Domaine de Vilvert, 78350 Jouy-en-Josas, France.
| | | | - Virginie Jakob
- Vaccine Formulation Laboratory, University of Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland.
| | - Edwige Bouguyon
- VIM, INRA, Université Paris-Saclay, Domaine de Vilvert, 78350 Jouy-en-Josas, France.
| | - Elise Bordet
- VIM, INRA, Université Paris-Saclay, Domaine de Vilvert, 78350 Jouy-en-Josas, France.
| | - Céline Barc
- Plate-Forme d'Infectiologie Expérimentale-PFIE-UE1277, INRA, 37380 Nouzilly, France.
| | - Olivier Boulesteix
- Plate-Forme d'Infectiologie Expérimentale-PFIE-UE1277, INRA, 37380 Nouzilly, France.
| | - Vanessa Contreras
- Immunology of viral infections and autoimmune diseases, IDMIT Department, IBFJ, INSERM U1184-CEA-Université Paris Sud 11, 92260 Fontenay-Aux-Roses et 94270 Le Kremlin-Bicêtre, France.
| | - Christophe Barnier-Quer
- Vaccine Formulation Laboratory, University of Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland.
| | - Nicolas Collin
- Vaccine Formulation Laboratory, University of Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland.
| | - Ivan Trus
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | - Hans Nauwynck
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | - Nicolas Bertho
- VIM, INRA, Université Paris-Saclay, Domaine de Vilvert, 78350 Jouy-en-Josas, France.
| | | |
Collapse
|
34
|
Sánchez-Matamoros A, Camprodon A, Maldonado J, Pedrazuela R, Miranda J. Safety and long-lasting immunity of the combined administration of a modified-live virus vaccine against porcine reproductive and respiratory syndrome virus 1 and an inactivated vaccine against porcine parvovirus and Erysipelothrix rhusiopathiae in breeding pigs. Porcine Health Manag 2019; 5:11. [PMID: 31057805 PMCID: PMC6485153 DOI: 10.1186/s40813-019-0118-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/08/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND In the field, vaccination schedules based on modified-live virus (MLV) vaccines administered twice in gilts and every three to four months in sows are commonly used to immunize breeding herds against porcine reproductive and respiratory virus (PRRSV). Breeding sows are repeatedly vaccinated against several other agents. Thus, the combined administration of vaccines for their simultaneous use can simplify such complex immunization schedules. Here, we evaluated the safety and long-term immunity of the authorized combined administration of a PRRSV MLV vaccine and an inactivated vaccine against porcine parvovirus (PPV) and Erysipelothrix rhusiopathiae for their simultaneous use.Six-month-old naïve healthy gilts were vaccinated at day 0 and revaccinated at days 21 and 147, mimicking the abovementioned vaccination schedule. Systemic and local reactions, as well as body temperature, were measured. The excretion of PRRSV1 MLV was evaluated in oral fluids. Humoral responses against the three antigens were measured by ELISA. For PRRSV, homologous neutralizing antibodies (NAs) and homologous and heterologous cell-mediated immunity (CMI) were also assessed. RESULTS The combined administration of the tested vaccines, applied according to the manufacturer's instructions, was safe based on all evaluated parameters. Overall, we detected antibodies against PPV and PRRSV in all vaccinated pigs already after the first vaccination, whereas antibodies against E. rhusiopathiae were observed in all animals after revaccination. After subsequent revaccinations, we observed boosts for the humoral response for PPV at days 28 and 154 and at day 154 for E. rhusiopathiae. No boosts were detected during the experiment by PRRSV ELISA. In all vaccinated animals, homologous NAs against MLV were already detected before revaccination (day 21). After revaccination, there was a boost with mean titres of homologous NAs remaining constant thereafter. Concerning CMI, PRRSV-specific IFN-γ-secreting cells were already detected at day 21 for all evaluated strains and we observed boosts for all PRRSV1 strains after revaccination and recall revaccination. CONCLUSIONS We showed that the combined administration of tested vaccines described here using a vaccination schedule against PRRSV commonly implemented for breeding pigs in the field is safe and induces long-lasting humoral and cellular immunity against PRRSV, PPV, and E. rhusiopathiae.
Collapse
|
35
|
A Nanobody Targeting Viral Nonstructural Protein 9 Inhibits Porcine Reproductive and Respiratory Syndrome Virus Replication. J Virol 2019; 93:JVI.01888-18. [PMID: 30463975 DOI: 10.1128/jvi.01888-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/13/2018] [Indexed: 11/20/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is of great concern to the swine industry due to pandemic outbreaks of the disease, current ineffective vaccinations, and a lack of efficient antiviral strategies. In our previous study, a PRRSV Nsp9-specific nanobody, Nb6, was successfully isolated, and the intracellularly expressed Nb6 could dramatically inhibit PRRSV replication in MARC-145 cells. However, despite its small size, the application of Nb6 protein in infected cells is greatly limited, as the protein itself cannot enter the cells physically. In this study, a trans-activating transduction (TAT) peptide was fused with Nb6 to promote protein entry into cells. TAT-Nb6 was expressed as an inclusion body in Escherichia coli, and indirect enzyme-linked immunosorbent assays and pulldown assays showed that E. coli-expressed TAT-Nb6 maintained the binding ability to E. coli-expressed or PRRSV-encoded Nsp9. We demonstrated that TAT delivered Nb6 into MARC-145 cells and porcine alveolar macrophages (PAMs) in a dose- and time-dependent manner, and TAT-Nb6 efficiently inhibited the replication of several PRRSV genotype 2 strains as well as a genotype 1 strain. Using a yeast two-hybrid assay, Nb6 recognition sites were identified in the C-terminal part of Nsp9 and spanned two discontinuous regions (Nsp9aa454-551 and Nsp9aa599-646). Taken together, these results suggest that TAT-Nb6 can be developed as an antiviral drug for the inhibition of PRRSV replication and controlling PRRS disease.IMPORTANCE The pandemic outbreak of PRRS, which is caused by PRRSV, has greatly affected the swine industry. We still lack an efficient vaccine, and it is an immense challenge to control its infection. An intracellularly expressed Nsp9-specific nanobody, Nb6, has been shown to be able to inhibit PRRSV replication in MARC-145 cells. However, its application is limited, because Nb6 cannot physically enter cells. Here, we demonstrated that the cell-penetrating peptide TAT could deliver Nb6 into cultured cells. In addition, TAT-Nb6 fusion protein could suppress the replication of various PRRSV strains in MARC-145 cells and PAMs. These findings may provide a new approach for drug development to control PRRS.
Collapse
|
36
|
Go N, Touzeau S, Islam Z, Belloc C, Doeschl-Wilson A. How to prevent viremia rebound? Evidence from a PRRSv data-supported model of immune response. BMC SYSTEMS BIOLOGY 2019; 13:15. [PMID: 30696429 PMCID: PMC6352383 DOI: 10.1186/s12918-018-0666-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 11/21/2018] [Indexed: 01/24/2023]
Abstract
Background Understanding what determines the between-host variability in infection dynamics is a key issue to better control the infection spread. In particular, pathogen clearance is desirable over rebounds for the health of the infected individual and its contact group. In this context, the Porcine Respiratory and Reproductive Syndrome virus (PRRSv) is of particular interest. Numerous studies have shown that pigs similarly infected with this highly ubiquitous virus elicit diverse response profiles. Whilst some manage to clear the virus within a few weeks, others experience prolonged infection with a rebound. Despite much speculation, the underlying mechanisms responsible for this undesirable rebound phenomenon remain unclear. Results We aimed at identifying immune mechanisms that can reproduce and explain the rebound patterns observed in PRRSv infection using a mathematical modelling approach of the within-host dynamics. As diverse mechanisms were found to influence PRRSv infection, we established a model that details the major mechanisms and their regulations at the between-cell scale. We developed an ABC-like optimisation method to fit our model to an extensive set of experimental data, consisting of non-rebounder and rebounder viremia profiles. We compared, between both profiles, the estimated parameter values, the resulting immune dynamics and the efficacies of the underlying immune mechanisms. Exploring the influence of these mechanisms, we showed that rebound was promoted by high apoptosis, high cell infection and low cytolysis by Cytotoxic T Lymphocytes, while increasing neutralisation was very efficient to prevent rebounds. Conclusions Our paper provides an original model of the immune response and an appropriate systematic fitting method, whose interest extends beyond PRRS infection. It gives the first mechanistic explanation for emergence of rebounds during PRRSv infection. Moreover, results suggest that vaccines or genetic selection promoting strong neutralising and cytolytic responses, ideally associated with low apoptotic activity and cell permissiveness, would prevent rebound. Electronic supplementary material The online version of this article (10.1186/s12918-018-0666-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Natacha Go
- BIOEPAR, INRA, Oniris, Route de Gachet, CS 40706, Nantes, France. .,BIOCORE, Inria, INRA, CNRS, UPMC Univ Paris 06, Université Côte d'Azur, 2004 route des Lucioles, BP 93, Sophia Antipolis, France. .,Division of Genetics and Genomics, The Roslin Institute, Easter Bush, Midlothian, UK.
| | - Suzanne Touzeau
- BIOCORE, Inria, INRA, CNRS, UPMC Univ Paris 06, Université Côte d'Azur, 2004 route des Lucioles, BP 93, Sophia Antipolis, France.,ISA, INRA, CNRS, Université Côte d'Azur, 400 route des Chappes, BP 167, Sophia Antipolis, France
| | - Zeenath Islam
- Division of Genetics and Genomics, The Roslin Institute, Easter Bush, Midlothian, UK
| | - Catherine Belloc
- BIOEPAR, INRA, Oniris, Route de Gachet, CS 40706, Nantes, France
| | - Andrea Doeschl-Wilson
- Division of Genetics and Genomics, The Roslin Institute, Easter Bush, Midlothian, UK
| |
Collapse
|
37
|
Guo Z, Chen XX, Li R, Qiao S, Zhang G. The prevalent status and genetic diversity of porcine reproductive and respiratory syndrome virus in China: a molecular epidemiological perspective. Virol J 2018; 15:2. [PMID: 29301547 PMCID: PMC5753475 DOI: 10.1186/s12985-017-0910-6] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/12/2017] [Indexed: 12/14/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has been epidemic more than 30 years in America and 20 years in China. It is still one of the most important causative agents to the worldwide swine industry. Here, we systematically analyzed the prevalence status of PRRSV in China by a molecular epidemiological perspective. Now both PRRSV-1 and PRRSV-2 are circulating and approximately more than 80% of pig farms are seropositive for PRRSV. For PRRSV-2, there are four lineages (lineage 1, lineage 3, lineage 5, lineage 8) circulating in the fields. Lineage 8 (CH-1a-like) and lineage 5 (BJ-4-like) appeared almost at the same time during 1995-1996. Notably, BJ-4 shares 99.6% and 99.8% identity with VR2332 and RespPRRS MLV, respectively. It means that lineage 5 is likely to be imported from America. Now highly pathogenic PRRSV (HP-PRRSV) which was considered to be evolved from local diversity of lineage 8 strains is predominant with different variants. Lineage 3 appeared in 2010 which is mainly sporadic in south of China. Lineage 1, also known as NADC30-like strains in China, has been prevalent since 2013 and leads to PRRS pandemic again. For PRRSV-1, although sporadic at present, more than 9 provinces/regions have been reported. All the circulating strains belong to subtype I. It should be paid more attention since there are no vaccines available. Our analysis would help to deeply understand the prevalent status of PRRSV in China and provide useful information for prevention and control of porcine reproductive and respiratory syndrome (PRRS).
Collapse
Affiliation(s)
- Zhenhua Guo
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China.
| | - Xin-Xin Chen
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
| | - Rui Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
| | - Gaiping Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China
| |
Collapse
|
38
|
Genetic and pathogenic characterization of a Russian subtype 2 PRRSV-1 isolate. Vet Microbiol 2017; 211:22-28. [PMID: 29102117 DOI: 10.1016/j.vetmic.2017.09.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/20/2017] [Accepted: 09/20/2017] [Indexed: 11/23/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes reproductive failure and respiratory problems. Data about the virulence and pathogenicity of subtype 2 PRRSV-1 strains are limited. The main purposes of this investigation were to characterize the full genome sequence of the subtype 2 PRRSV-1 WestSib13 strain and to compare the pathogenicity with that of the subtype 1 PRRSV-1 Lelystad strain. Comparison of the whole genome sequence of the WestSib13 strain with that of PRRSV-1 prototype strains revealed a 76.2% (subtype 1 Lelystad virus) and 79.0% (subtype 3 Lena virus) identity, respectively The virulence and pathogenicity of the European subtype 2 PRRSV strain WestSib13 and the European subtype 1 PRRSV strain Lelystad were compared in 3-week-old piglets upon inoculation of 105.4 TCID50 of virus. Non-infected animals (control group) as well as animals infected with the Lelystad strain were clinically healthy until 14days post challenge. In contrast, animals infected with the WestSib13 strain demonstrated dyspnea starting at 3days post-inoculation (dpi). All piglets in this group died between 5 and 8 dpi. During that period, fever was not observed in WestSib13-infected animals. Viremia was detected in animals from both infected groups starting from 2 dpi. Viral loads in serum and lungs upon euthanasia were significantly higher (3 log10) in the WestSib13-infected than in the LV-infected animals. Taken together, this study provides the full genome sequence and the unusual virological and clinical outcome (high level viremia without fever) of the novel WestSib13 strain.
Collapse
|
39
|
Cortey M, Díaz I, Martín-Valls G, Mateu E. Next-generation sequencing as a tool for the study of Porcine reproductive and respiratory syndrome virus (PRRSV) macro- and micro- molecular epidemiology. Vet Microbiol 2017; 209:5-12. [DOI: 10.1016/j.vetmic.2017.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/31/2017] [Accepted: 02/02/2017] [Indexed: 12/20/2022]
|
40
|
Chen N, Trible BR, Rowland RRR. Amplification and selection of PRRSV-activated VDJ repertoires in pigs secreting distinct neutralizing antiboidies. Vet Immunol Immunopathol 2017; 189:53-57. [PMID: 28669387 DOI: 10.1016/j.vetimm.2017.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/25/2017] [Accepted: 06/19/2017] [Indexed: 12/19/2022]
Abstract
Neutralizing antibodies (nAbs) play an important role in protective immunity against porcine reproductive and respiratory syndrome virus (PRRSV) infection. However, the characterization of PRRSV nAb repertoires is rarely investigated. In this study, we developed a swine VDJ amplification method and selection criteria for the characterization of PRRSV-activated VDJ repertoires. According to clonal expansion theory, two separated aliquots of lymph nodes from pigs producing different PRRSV nAbs were utilized to determine the activated B-cell repertoires. Swine VDJ repertoires from a mock-infected pig and PRRSV-infected pigs secreting no detectable nAbs, only homologous nAbs, and broad nAbs were amplified by a single pair of primers that could detect all seven major VDJ genes. The amplicons were cloned and sequenced to generate 385 VDJ sequences. Sequence alignment showed that the diversification of VDJ genes was mainly due to the variation in complementarity determining regions (CDRs), especially CDR3. Based on selection criteria, shared and abundant sequences were identified in two separated aliquots from PRRSV-infected pigs but not from the mock-infected pig, suggesting they were secreted from PRRSV-activated B cells. Thus, the amplification and selection method provide a potential alternative for the characterization of swine VDJ repertoires. However, additional experiments are required to determine whether the shared and abundant VDJ lineages identified in this study are PRRSV-specific or distinct neutralizing-antibodies-associated.
Collapse
Affiliation(s)
- Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Jiangsu 225009, PR China; Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States.
| | - Benjamin R Trible
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States
| | - Raymond R R Rowland
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States
| |
Collapse
|
41
|
Gibert E, Martín-Valls G, Mateu E. Comparison of protocols for the analysis of type 1 porcine reproductive and respiratory syndrome virus by RT-PCR using oral fluids. J Virol Methods 2017; 243:190-195. [PMID: 28213086 DOI: 10.1016/j.jviromet.2017.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/12/2017] [Accepted: 02/13/2017] [Indexed: 11/17/2022]
Abstract
The detection of porcine reproductive and respiratory syndrome virus (PRRSV) in oral fluids (OF) by quantitative real-time polymerase chain reaction (qRT-PCR) is gaining increasing popularity. However, the different steps leading to a result have not been extensively evaluated. The aim of the present study was to examine the effect on the performance of qRT-PCR with different sampling materials, conditions of storage of the OF, the need for centrifuging OF, as well as to compare RNA extraction methods and PCR mixes. For the assays, pen-based oral fluids were used, which were pooled and spiked in a serial dilution (up to genotype 100 TCID50/mL) of type 1 PRRSV isolate 3267. Centrifugation at 15,000g for 15min resulted in an increase in sensitivity (1-2 PCR cycles) that was significant (P<0.05) at the lowest dilution tested. The TRIzol and MagMAX RNA extraction methods gave the maximum sensitivity, lowest threshold cycle (Ct), at equivalent virus concentrations. The AgPath-ID One-Step RT-PCR Kit PCR mix reagents were more sensitive for the detection of PRRSV using a purified plasmid as standard, but LSI VetMAX PRRSV EU/NA PRRSV reagents resulted in a slightly better sensitivity with OF (p<0.05). The present results may be useful to standardize protocols for optimizing detection of type 1 PRRSV in OF by qRT-PCR.
Collapse
Affiliation(s)
- Elisa Gibert
- Centre de Recerca en Sanitat Animal (CReSA), IRTA-UAB, Edifici CReSA, Campus UAB, 08193, Bellaterra, Spain.
| | - Gerard Martín-Valls
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona (UAB), Campus UAB, 08193, Bellaterra, Spain.
| | - Enric Mateu
- Centre de Recerca en Sanitat Animal (CReSA), IRTA-UAB, Edifici CReSA, Campus UAB, 08193, Bellaterra, Spain; Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona (UAB), Campus UAB, 08193, Bellaterra, Spain.
| |
Collapse
|
42
|
Diseases Primarily Affecting the Reproductive System. Vet Med (Auckl) 2017. [PMCID: PMC7150237 DOI: 10.1016/b978-0-7020-5246-0.00018-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Transmission of Porcine reproductive and respiratory syndrome virus 1 to and from vaccinated pigs in a one-to-one model. Vet Microbiol 2016; 201:18-25. [PMID: 28284607 DOI: 10.1016/j.vetmic.2016.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/09/2016] [Accepted: 12/09/2016] [Indexed: 11/23/2022]
Abstract
The present study examined transmission by contact of Porcine reproductive and respiratory syndrome virus (PRRSV) 1 in a one-to-one model to vaccinated and unvaccinated pigs and from vaccinated infected pigs to other vaccinated pigs. The experiment started by randomly assigning weaned pigs to groups V (n=24) and U (n=26). V pigs were vaccinated with a commercial live attenuated PRRSV vaccine and the U animals were kept as unvaccinated controls. Twenty-eight days later, 6U pigs were separated and allocated in individual boxes. The remaining 20U pigs were intranasally inoculated with PRRSV isolate 3267 (from now on designated as seeder (S) pigs) and 48h later were distributed in boxes where they were commingled with either V or U pigs in 1:1 groups (first contact phase), resulting in 6S:U and 14S:V pairs. As soon as a V pig was detected to be viremic because of contact with a S, the infected V (from now on designated as Vinf) was transferred (<24h after detection) to a new pen where it was comingled with a new V pig (designated as V2) in a second contact phase. For the first contact phase, pigs were maintained 21days at maximum and for the second contact phase the maximum exposure period was 14days. Two V pigs tested positive for the vaccine virus (>99.5% similarity) when they were relocated with the corresponding V2 pigs and they were removed; thus, only 12Vinf were finally considered. All V pigs (12/12) exposed to S animals became infected although the first detection of viremia occurred at 13.6±3.6days, one week later than in U (p<0.05). Also, duration of viremia was shorter for Vinf compared to U, (5.5±4.3days versus 12.5±2.7days). The Vinf group showed remarkable individual variability: eight animals had a viremic period of 5 or less days (3.0±1.4) while the remaining four had a longer viremic period of more than one week (10.8±2.9). This situation was not observed in U. In the second contact phase, transmission from Vinf to V2 pigs occurred in 7/8 cases (87.5%). The mean duration of viremia for V2 was 4.8±3.4 and two different patterns were again observed: two animals had viremias of 9-10days and the rest averaged 3.0±1.4days (range: 2-5days). Vaccinated groups Vinf and V2 had a significantly lower PRRSV shedding in oral fluids for at least the first 9days after the onset of the viremia compared to U, and shedding for V2 was even significantly lower (p<0.05) than shedding for Vinf. Our experimental design reproduced the worst-case scenario for evaluating the effect of vaccination and, under such conditions; it was still efficacious in slowering PRRSV transmission and decreasing the global viral load and particularly oral shedding.
Collapse
|
44
|
Ait-Ali T, Díaz I, Soldevila F, Cano E, Li Y, Wilson AD, Giotti B, Archibald AL, Mateu E, Darwich L. Distinct functional enrichment of transcriptional signatures in pigs with high and low IFN-gamma responses after vaccination with a porcine reproductive and respiratory syndrome virus (PRRSV). Vet Res 2016; 47:104. [PMID: 27765052 PMCID: PMC5073823 DOI: 10.1186/s13567-016-0392-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 10/05/2016] [Indexed: 01/05/2023] Open
Abstract
Little is known about the host factor in the response to PRRSV vaccination. For this purpose, piglets were immunized with a commercial PRRSV-live vaccine and classified as high responders (HR) or low responders (LR) as regards to the frequencies of virus-specific IFN-γ-secreting cells. Six weeks post vaccination, PBMCs isolated from three individuals with the most extreme responses in each HR and LR groups and 3 unvaccinated controls, were either stimulated with phytohaemagglutinin, challenged with the vaccine or mock treated for 24 h, prior conducting transcriptional studies, gene ontology and pathway analyses. The LR group had very low neutralizing antibody levels and showed a higher number of down-regulated transcripts compared with the HR group (FDR < 0.2, P < 0.001). Down-regulated genes encoded chemoattractants, proinflammatory cytokines and the interferon-inducible GBP family, and showed enrichment in wounding (FDR < 3.6E-13), inflammation (FDR < 8E-12), defence (FDR < 8.7E-09) and immunity (FDR < 7.6E-08), suggesting immune response impairment. In the HR group, down-regulated genes were involved in protein transport (FDR < 4.77E-03), locomotory behavior (FDR < 5.47E-3), regulation of protein localization (FDR < 1.02E-02), and regulation of TNF superfamily member 15 and miR181. In contrast, the HR group presented up-regulated transcripts associated with wounding (FDR < 4.95). Moreover, IFN-γ was predicted to be an inhibited upstream regulator since IFN-γ pathways were associated with higher number of down-regulated genes in the LR (n = 40) than the HR (n = 10). Divergent responses to PRRSV-vaccination may be the result of the genetic background of the host.
Collapse
Affiliation(s)
- Tahar Ait-Ali
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Ivan Díaz
- Centre de Recerca en Sanitat Animal (CReSA)- IRTA, Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Cerdanyola del Valles, Spain
| | - Ferran Soldevila
- Virology Department, Animal and Plant Health and Agency, Addlestone, KT15 3NB, UK.,Department of Pathology and Pathogen Biology, Royal Veterinary College, Hatfield, AL9 7TA, UK
| | - Esmeralda Cano
- Centre de Recerca en Sanitat Animal (CReSA)- IRTA, Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Cerdanyola del Valles, Spain
| | - Yanli Li
- Department Sanitat i Anatomia Animals, Faculty of Veterinary, UAB, 08193, Cerdanyola del Valles, Spain
| | - Alison D Wilson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Bruno Giotti
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Alan L Archibald
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Enric Mateu
- Centre de Recerca en Sanitat Animal (CReSA)- IRTA, Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Cerdanyola del Valles, Spain.,Department Sanitat i Anatomia Animals, Faculty of Veterinary, UAB, 08193, Cerdanyola del Valles, Spain
| | - Laila Darwich
- Centre de Recerca en Sanitat Animal (CReSA)- IRTA, Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Cerdanyola del Valles, Spain. .,Department Sanitat i Anatomia Animals, Faculty of Veterinary, UAB, 08193, Cerdanyola del Valles, Spain.
| |
Collapse
|
45
|
Wang X, Yang X, Zhou R, Zhou L, Ge X, Guo X, Yang H. Genomic characterization and pathogenicity of a strain of type 1 porcine reproductive and respiratory syndrome virus. Virus Res 2016; 225:40-49. [DOI: 10.1016/j.virusres.2016.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 08/24/2016] [Accepted: 09/08/2016] [Indexed: 02/08/2023]
|
46
|
Chen N, Trible BR, Kerrigan MA, Tian K, Rowland RRR. ORF5 of porcine reproductive and respiratory syndrome virus (PRRSV) is a target of diversifying selection as infection progresses from acute infection to virus rebound. INFECTION GENETICS AND EVOLUTION 2016; 40:167-175. [PMID: 26961593 DOI: 10.1016/j.meegid.2016.03.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 02/28/2016] [Accepted: 03/02/2016] [Indexed: 02/05/2023]
Abstract
Genetic variation in both structural and nonstructural genes is a key factor in the capacity of porcine reproductive and respiratory syndrome virus (PRRSV) to evade host defenses and maintain within animals, farms and metapopulations. However, the exact mechanisms by which genetic variation contribute to immune evasion remain unclear. In a study to understand the role of host genetics in disease resistance, a population of pigs were experimentally infected with a type 2 PRRSV isolate. Four pigs that showed virus rebound at 42days post-infection (dpi) were analyzed by 454 sequencing to characterize the rebound quasispecies. Deep sequencing of variable regions in nsp1, nsp2, ORF3 and ORF5 showed the largest number of nucleotide substitutions at day 28 compared to days 4 and 42 post-infection. Differences were also found in genetic variations when comparing tonsil versus serum. The results of dN/dS ratios showed that the same regions evolved under negative selection. However, eight amino acid sites were identified as possessing significant levels of positive selection, including A27V and N32S substitutions in the GP5 ectodomain region. These changes may alter GP5 peptide signal sequence processing and N-glycosylation, respectively. The results indicate that the greatest genetic diversity occurs during the transition between acute and rebound stages of infection, and the introduction of mutations that may result in a gain of fitness provides a potential mechanism for persistence.
Collapse
Affiliation(s)
- Nanhua Chen
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States; College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| | - Benjamin R Trible
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States
| | - Maureen A Kerrigan
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States
| | - Kegong Tian
- OIE Porcine Reproductive and Respiratory Syndrome Reference Laboratory, Beijing, PR China
| | - Raymond R R Rowland
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States
| |
Collapse
|
47
|
Differences of immune responses between Tongcheng (Chinese local breed) and Large White pigs after artificial infection with highly pathogenic porcine reproductive and respiratory syndrome virus. Virus Res 2016; 215:84-93. [PMID: 26878768 DOI: 10.1016/j.virusres.2016.02.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 02/05/2016] [Accepted: 02/10/2016] [Indexed: 12/22/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the severest infectious diseases of pigs throughout the world. Pigs of different breeds infected with PRRS virus (PRRSV) have been reported to vary in their immune responses. Here, the differences of immune responses to highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) were investigated by artificially infecting Tongcheng (TC) pigs (a Chinese indigenous breed) and Large White (LW) pigs with PRRSV WUH3. Compared to LW pigs, TC pigs showed less severe symptoms and lower level of viral load. The routine blood test results indicated that TC pigs were relatively steady in terms of erythrocyte, leukocyte and platelet. Additionally, PRRSV infection induced higher IFN-γ activity in TC pigs, but stimulated an excessive level of IL-10 and IL-12p40 in LW pigs. Our study provides direct evidence that TC pigs have stronger resistance to early PRRSV infection than LW pigs, suggesting that the resistance of pigs to PRRSV is likely associated with breed differences.
Collapse
|
48
|
Serological profile of offspring on an intensive pig farm affected by porcine reproductive and respiratory syndrome. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2015. [DOI: 10.1016/j.apjr.2015.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
49
|
Liu H, Wang Y, Duan H, Zhang A, Liang C, Gao J, Zhang C, Huang B, Li Q, Li N, Xiao S, Zhou EM. An intracellularly expressed Nsp9-specific nanobody in MARC-145 cells inhibits porcine reproductive and respiratory syndrome virus replication. Vet Microbiol 2015; 181:252-60. [PMID: 26525739 DOI: 10.1016/j.vetmic.2015.10.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 10/17/2015] [Accepted: 10/20/2015] [Indexed: 02/04/2023]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a widespread viral disease affecting the swine industry, with no cure or effective treatment. Current vaccines are inefficient mainly due to the high degree of genetic and antigenic variation within PRRS virus (PRRSV) strains. Thus, the development of novel anti-PRRSV strategies is an important area of research. The nonstructural protein 9 (Nsp9) of PRRSV is essential for viral replication, and its sequence is relatively conserved, making it a logical antiviral target for PRRSV. Camel single-domain antibodies (nanobodies) represent a promising antiviral approach because of their small size, high specificity, and solubility. However, no nanobodies against PRRSV have been reported to date. In this study, Nsp9-specific nanobodies were isolated from a phage display library of variable domains of Camellidaeheavy chain-only antibodies (VHH). One of the isolated nanobodies, Nb6, was chosen for further investigation. Co-immunoprecipitation experiments indicated that Nb6 can still maintain antigen binding capabilities when expressed in the cell cytoplasm. A MARC-145 cell line stably expressing Nb6 was established to investigate its potential antiviral activity. Our results showed that intracellularly expressed Nb6 could potently suppress PRRSV replication by inhibiting viral genome replication and transcription. More importantly, Nb6 could protect MARC-145 cells from virus-induced cytopathic effect (CPE) and fully block PRRSV replication at an MOI of 0.01 or lower. To our knowledge, this is the first report of a nanobody based antiviral strategy against PRRSV, and this finding has the potential to lead to future developments of novel antiviral treatments for PRRSV infection.
Collapse
Affiliation(s)
- Hongliang Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Yan Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Hong Duan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Angke Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Chao Liang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Jiming Gao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Chong Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Baicheng Huang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Qiongyi Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Na Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Shuqi Xiao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
50
|
Ferrarini G, Borghetti P, De Angelis E, Ferrari L, Canelli E, Catella A, Di Lecce R, Martelli P. Immunoregulatory signal FoxP3, cytokine gene expression and IFN-γ cell responsiveness upon porcine reproductive and respiratory syndrome virus (PRRSV) natural infection. Res Vet Sci 2015; 103:96-102. [PMID: 26679802 DOI: 10.1016/j.rvsc.2015.09.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/18/2015] [Accepted: 09/23/2015] [Indexed: 10/23/2022]
Abstract
The study aims at evaluating gene expression of pro-inflammatory (IL-1β, IL-8, TNF-α), pro-immune (IFN-γ), anti-inflammatory (IL-10) cytokines and of the immunoregulatory signal FoxP3 in association with PRRSV-specific IFN-γ secreting cell (SC) responsiveness upon PRRSV natural infection. Forty PRRSV-negative pigs were assigned to two groups: 20 pigs were vaccinated at 3 weeks of age (weaning) against PRRSV (V-PRRSV) with a modified live virus vaccine (MLV) and 20 pigs were kept non-vaccinated (NV) as controls. Blood samples were collected at 3 (vaccination), 6, 8, 10, 12, 14, and 16 weeks of age. Natural infection occurred from 8 weeks of age onward in both groups and viremia lasted 8 weeks. In the early phase of infection, pro-inflammatory cytokines (IL-1β, IL-8, TNF-α) showed a delayed increase concomitant with the peak of viremia in both groups. In both groups, IL-10 peaked at 12 weeks in association with the increase of pro-inflammatory cytokines. Conversely, in vaccinated pigs (V-PRRSV), IFN-γ showed higher gene expression during the early phase of infection and a more intense secreting cell (SC) response in the late phase. Differently, gene expression of the transcription factor FoxP3, expressed by T regulatory lymphocytes (Tregs), increased significantly in controls only and was associated with the rise of the viral load. Moreover, FoxP3 levels remained significantly higher during the late phase of infection and paralleled with lower levels of IFN-γ SC detected by ELISPOT. The expression/production of immunoregulatory signals involved in Treg activation could be a promising marker to study the immunobiology of PRRSV infection.
Collapse
Affiliation(s)
- Giulia Ferrarini
- Department of Veterinary Sciences, University of Parma, Via del Taglio, 10, 43126 Parma, Italy.
| | - Paolo Borghetti
- Department of Veterinary Sciences, University of Parma, Via del Taglio, 10, 43126 Parma, Italy.
| | - Elena De Angelis
- Department of Veterinary Sciences, University of Parma, Via del Taglio, 10, 43126 Parma, Italy.
| | - Luca Ferrari
- Department of Veterinary Sciences, University of Parma, Via del Taglio, 10, 43126 Parma, Italy.
| | - Elena Canelli
- Department of Veterinary Sciences, University of Parma, Via del Taglio, 10, 43126 Parma, Italy.
| | - Alessia Catella
- Department of Veterinary Sciences, University of Parma, Via del Taglio, 10, 43126 Parma, Italy.
| | - Rosanna Di Lecce
- Department of Veterinary Sciences, University of Parma, Via del Taglio, 10, 43126 Parma, Italy.
| | - Paolo Martelli
- Department of Veterinary Sciences, University of Parma, Via del Taglio, 10, 43126 Parma, Italy.
| |
Collapse
|