1
|
Cui X, Yang Y, Wang F, Luo J, Zhang P, Chen H, Zhao L, Ge J. Genomic characterization and phylogenetic analysis of Aleutian mink disease virus identified in a sudden death mink case. Comp Immunol Microbiol Infect Dis 2023; 101:102052. [PMID: 37651788 DOI: 10.1016/j.cimid.2023.102052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
Aleutian mink disease (AMD) is one of the most serious diseases in minks worldwide, it brings tremendous financial losses in mink farming. AMD virus (AMDV) has unusually high genetic diversity, its genomic structure remains unclear. In 2014, sudden death of breeding minks was occurred in northeast China. After clinical signs evaluation and virus isolation, AMDV was identified in all sudden death minks, we investigated the complete genomic sequence of AMDV-LM isolated from the sudden death case. The full-genome sequence of AMDV-LM was 7 nucleotides (nts) or 8 nts longer than isolates AMDV-BJ and AMDV-G. AMDV-LM contained two unique nucleotide changes in VP2 (G79T, T710C), which led to two amino acid changes G27W and L237S. For NS1, some unique point mutations, such as A374C, A428C, A463C, and T476A were found and resulted in four unique amino acid mutations at N24V, H125P, V143P, K155Q, and V159N, respectively. The predicted secondary structure of the 5' terminal of AMDV-LM formed a large bubble formation near the 5' end, which affected the stability of the U-shaped hairpin. Phylogenetic analysis demonstrated that AMDV-LM was closely related to Chinese isolates and confirmed that AMDV strains circulating in China had different origins of ancestors. This study was first to investigate the association of sudden death of adult breeding minks with AMDV infection. Our findings provide useful suggestions for evaluation of the pathogenic potential of AMDV, additional details on AMDV genome characterization were also presented. Future work should focus on the importance of AMDV-LM strain in mink infection.
Collapse
Affiliation(s)
- Xingyang Cui
- College of Animal Science, Wenzhou Vocational College of Science and Technology, Wenzhou, China; College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yan Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Fang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jilong Luo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ping Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China; Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin, China
| | - Hongyan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lili Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China; College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China; Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin, China.
| |
Collapse
|
2
|
Du Y, Hu X, Miao L, Chen J. Current status and development prospects of aquatic vaccines. Front Immunol 2022; 13:1040336. [PMID: 36439092 PMCID: PMC9684733 DOI: 10.3389/fimmu.2022.1040336] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
Diseases are a significant impediment to aquaculture's sustainable and healthy growth. The aquaculture industry is suffering significant financial losses as a result of the worsening water quality and increasing frequency of aquatic disease outbreaks caused by the expansion of aquaculture. Drug control, immunoprophylaxis, ecologically integrated control, etc. are the principal control strategies for fish infections. For a long time, the prevention and control of aquatic diseases have mainly relied on the use of various antibiotics and chemical drugs. However, long-term use of chemical inputs not only increases pathogenic bacteria resistance but also damages the fish and aquaculture environments, resulting in drug residues in aquatic products, severely impeding the development of the aquaculture industry. The development and use of aquatic vaccines are the safest and most effective ways to prevent aquatic animal diseases and preserve the health and sustainability of aquaculture. To give references for the development and implementation of aquatic vaccines, this study reviews the development history, types, inoculation techniques, mechanisms of action, development prospects, and challenges encountered with aquatic vaccines.
Collapse
Affiliation(s)
- Yang Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoman Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Liang Miao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| |
Collapse
|
3
|
Long-term antibody production and viremia in American mink (Neovison vison) challenged with Aleutian mink disease virus. BMC Vet Res 2022; 18:364. [PMID: 36192746 PMCID: PMC9531452 DOI: 10.1186/s12917-022-03462-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 09/16/2022] [Indexed: 11/20/2022] Open
Abstract
Background Selecting American mink (Neovison vison) for tolerance to Aleutian mink disease virus (AMDV) has gained popularity in recent years, but data on the outcomes of this activity are scant. The objectives of this study were to determine the long-term changes in viremia, seroconversion and survival in infected mink. Mink were inoculated intranasally with a local isolate of Aleutian mink disease virus (AMDV) over 4 years (n = 1742). The animals had been selected for tolerance to AMDV for more than 20 years (TG100) or were from herds free of AMDV (TG0). The progenies of TG100 and TG0, and their crosses with 25, 50 and 75% tolerance ancestry were also used. Blood samples were collected from each mink up to 14 times until 1211 days post-inoculation (dpi) and were tested for viremia by PCR and for anti-AMDV antibodies by counter-immunoelectrophoresis (CIEP). Viremia and CIEP status were not considered when selecting replacements. Low-performing animals were pelted and the presence of antibodies in their blood and antibody titer were measured by CIEP, and viremia and viral DNA in seven organs (n = 936) were tested by PCR. Results The peak incidences of viremia (66.7%) and seropositivity (93.5%) were at 35 dpi. The incidence of viremia decreased over time while the incidence of seroconversion increased. The least-squares means of the incidence of PCR positive of lymph node (0.743) and spleen (0.656) were significantly greater than those of bone marrow, liver, kidneys, lungs and small intestine (0.194 to 0.342). Differences in tolerant ancestry were significant for every trait measured. Incidences of viremia over time, terminal viremia, seropositivity over time, AMDV DNA in organs and antibody titer were highest in the susceptible groups (TG0 or TG25) and lowest in the tolerant groups (TG100 or TG75). Conclusion Previous history of selection for tolerance resulted in mink with reduced viral replication and antibody titer. Viremia had a negative effect and antibody production had a positive effect on survival and productivity. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03462-7.
Collapse
|
4
|
Virtanen J, Aaltonen K, Moisander-Jylhä AM, Nordgren H, Paulin L, Peura J, Vapalahti O, Kant R, Sironen T. Mechanisms behind the varying severity of Aleutian mink disease virus: Comparison of three farms with a different disease status. Vet Microbiol 2022; 270:109452. [DOI: 10.1016/j.vetmic.2022.109452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/02/2022] [Accepted: 05/07/2022] [Indexed: 10/18/2022]
|
5
|
Alex CE, Canuti M, Schlesinger MS, Jackson KA, Needle D, Jardine C, Nituch L, Bourque L, Lang AS, Pesavento PA. Natural disease and evolution of an amdoparvovirus endemic in striped skunks (
Mephitis mephitis
). Transbound Emerg Dis 2022; 69:e1758-e1767. [DOI: 10.1111/tbed.14511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Charles E. Alex
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine University of California‐Davis Davis CA USA
| | - Marta Canuti
- Department of Biology Memorial University of Newfoundland St. John's NL Canada
| | - Maya S. Schlesinger
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine University of California‐Davis Davis CA USA
| | - Kenneth A. Jackson
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine University of California‐Davis Davis CA USA
| | - David Needle
- New Hampshire Veterinary Diagnostic Laboratory, College of Life Sciences and Agriculture University of New Hampshire Durham NH USA
| | - Claire Jardine
- Department of Pathobiology, Canadian Wildlife Health Cooperative University of Guelph Guelph ON Canada
| | - Larissa Nituch
- Ontario Ministry of Northern Development Mines, Natural Resources and Forestry Peterborough ON Canada
| | - Laura Bourque
- Canadian Wildlife Health Cooperative – Atlantic Region University of Prince Edward Island 550 University Ave Charlottetown PE C1A4P3 Canada
| | - Andrew S. Lang
- Department of Biology Memorial University of Newfoundland St. John's NL Canada
| | - Patricia A. Pesavento
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine University of California‐Davis Davis CA USA
| |
Collapse
|
6
|
Lu T, Zhang H, Zhou J, Ma Q, Yan W, Zhao L, Wu S, Chen H. Aptamer-targeting of Aleutian mink disease virus (AMDV) can be an effective strategy to inhibit virus replication. Sci Rep 2021; 11:4649. [PMID: 33633317 PMCID: PMC7907208 DOI: 10.1038/s41598-021-84223-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/12/2021] [Indexed: 12/03/2022] Open
Abstract
Aleutian mink disease (AMD), which is caused by Aleutian mink disease virus (AMDV), is an important contagious disease for which no effective vaccine is yet available. AMD causes major economic losses for mink farmers globally and threatens some carnivores such as skunks, genets, foxes and raccoons. Aptamers have exciting potential for the diagnosis and/or treatment of infectious viral diseases, including AMD. Using a magnetic beads-based systemic evolution of ligands by exponential enrichment (SELEX) approach, we have developed aptamers with activity against AMDV after 10 rounds of selection. After incubation with the ADVa012 aptamer (4 μM) for 48 h, the concentration of AMDV in the supernatant of infected cells was 47% lower than in the supernatant of untreated cells, whereas a random library of aptamers has no effect. The half-life of ADVa012 was ~ 32 h, which is significantly longer than that of other aptamers. Sequences and three dimensions structural modeling of selected aptamers indicated that they fold into similar stem-loop structures, which may be a preferred structure for binding to the target protein. The ADVa012 aptamer was shown to have an effective and long-lasting inhibitory effect on viral production in vitro.
Collapse
Affiliation(s)
- Taofeng Lu
- Institute for Laboratory Animal Research, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Hui Zhang
- Institute for Laboratory Animal Research, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Jie Zhou
- Shanghai Laboratory Animal Research Center, Shanghai, 201203, China.
| | - Qin Ma
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Wenzhuo Yan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Lili Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Shuguang Wu
- Institute for Laboratory Animal Research, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Hongyan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| |
Collapse
|
7
|
Canuti M, McDonald E, Graham SM, Rodrigues B, Bouchard É, Neville R, Pitcher M, Whitney HG, Marshall HD, Lang AS. Multi-host dispersal of known and novel carnivore amdoparvoviruses. Virus Evol 2020; 6:veaa072. [PMID: 36158990 PMCID: PMC9492287 DOI: 10.1093/ve/veaa072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Amdoparvoviruses (family Parvoviridae) are ssDNA viruses that cause an immune complex-mediated wasting syndrome in carnivores. They are multi-host pathogens and cross-species infection is facilitated by the fact that viral entry is mediated by cellular Fc receptors recognizing antibody-coated viruses. We developed a pan-amdoparvovirus PCR and screened tissue samples from 666 wild carnivores (families Felidae, Canidae, and Mustelidae) from Newfoundland or Labrador (Canada) and molecularly characterized the identified strains. Fifty-four out of 666 (8.1%) animals were amdoparvovirus-positive. Infection rate was the highest in American mink (34/47, 72.3%), followed by foxes (Arctic and red foxes, 13/311, 4.2%), lynx (2/58, 3.5%), and American martens (5/156, 3.4%). No virus was detected in samples from 87 coyotes and 17 ermines. Viruses from Newfoundland were classified as Aleutian mink disease virus (AMDV). Mink harvested near AMDV-affected fur farms had higher prevalence (24/24, 100%) than other mink (10/23, 43.5%; P < 0.001) and their viruses were phylogenetically closely related to those from farms, while most viruses from other mink were in other clades. Strains from three foxes and two lynx were highly related to mink strains. This proves that farms disperse AMDV that subsequently spreads among wild mink (maintenance host) and transmits to other spillover carnivore hosts. In Labrador two novel viruses were identified, Labrador amdoparvovirus 1 (LaAV-1) found in foxes (9/261, 3.5%) and martens (5/156, 3.4%), and LaAV-2 found in one fox (0.4%). LaAV-1 fulfills all requirements to be classified as a novel species. LaAV-1 was most similar to viruses of mink and skunks (AMDV and skunk amdoparvovirus (SKAV)) while LaAV-2 was more closely related to other viruses infecting canids. LaAV-1 capsid proteins were almost indistinguishable from those of AMDV in some regions, suggesting that LaAV-1 could be a virus of mustelids that can infect foxes. While intensive farming practices provide occasions for inter-species transmission in farms, niche overlap or predation could explain cross-species transmission in the wild, but competition among sympatric species reduces the chances of direct contacts, making this an infrequent event. Pan-amdoparvovirus detection methods in wide epidemiological investigations can play a crucial role in defining amdoparvoviral ecology and evolution and discovering novel viruses.
Collapse
Affiliation(s)
- Marta Canuti
- Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Ave, St. John’s, Newfoundland and Labrador A1B 3X9, Canada
| | - Emily McDonald
- Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Ave, St. John’s, Newfoundland and Labrador A1B 3X9, Canada
| | - Stephanie M Graham
- Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Ave, St. John’s, Newfoundland and Labrador A1B 3X9, Canada
| | - Bruce Rodrigues
- Wildlife Division, Newfoundland and Labrador Department of Fisheries, Forestry, and Agriculture, PO Box 2007, Corner Brook, Newfoundland and Labrador A2H 7S1 Canada
| | - Émilie Bouchard
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Richard Neville
- Wildlife Division, Newfoundland and Labrador Department of Fisheries, Forestry, and Agriculture, PO Box 3014, Stn. B, Happy Valley-Goose Bay, Newfoundland and Labrador A0P 1E0, Canada
| | - Mac Pitcher
- Wildlife Division, Newfoundland and Labrador Department of Fisheries, Forestry, and Agriculture, PO Box 2007, Corner Brook, Newfoundland and Labrador A2H 7S1 Canada
| | - Hugh G Whitney
- Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Ave, St. John’s, Newfoundland and Labrador A1B 3X9, Canada
| | - H Dawn Marshall
- Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Ave, St. John’s, Newfoundland and Labrador A1B 3X9, Canada
| | - Andrew S Lang
- Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Ave, St. John’s, Newfoundland and Labrador A1B 3X9, Canada
| |
Collapse
|
8
|
Farid AH, Smith NJ. Dietary supplementation of Ascophylum nodosum improved kidney function of mink challenged with Aleutian mink disease virus. BMC Vet Res 2020; 16:465. [PMID: 33256708 PMCID: PMC7706252 DOI: 10.1186/s12917-020-02685-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/19/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Feed additives which can ease the negative effects of infection by the Aleutian mink disease virus (AMDV) are of interest to mink farmers. The effects of kelp meal (Ascophylum nodosum) supplementation on immune response, virus replication and blood parameters of mink inoculated with AMDV were assessed. AMDV-free black mink (n = 75) were intranasally inoculated with a local strain of AMDV and fed a commercial pellet supplemented with kelp meal at the rates of 1.5% or 0.75% of the feed or were kept as controls (no kelp) for 451 days. Blood was collected on days 0 (pre-inoculation), 31, 56, 99, 155, 366 and 451 post-inoculation (dpi). RESULTS No significant difference was observed among the treatments for the proportion of animals positive for antibodies against the virus measured by the counter-immunoelectrophoresis (CIEP), viremia measured by PCR, antibody titer measured by quantitative ELISA, total serum protein measured by a refractometer or elevated levels of gamma globulin measured by iodine agglutination test at the sampling occasions. At the termination of the experiment on 451 dpi, there were no differences among treatments for antibody titer measured by CIEP, total serum protein, albumin, globulins, albumin:globulin ratio, alkaline phosphatase, gamma-glutamyl transferase, and proportions of PCR positive spleen, lymph node or bone marrow samples, but blood urea nitrogen and creatine levels were significantly lower in the 1.5% kelp supplemented group than in the controls. CONCLUSION Kelp supplementation improved kidney function of mink infected with AMDV with no effect on liver function, immune response to infection by AMDV or virus replication.
Collapse
Affiliation(s)
- A. Hossain Farid
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia B2N 5E3 Canada
| | - Nancy J. Smith
- Perennia Food and Agriculture, Bible Hill, Nova Scotia B4N 1J5 Canada
- Present Address: Farm Credit Canada, 332 Willow St, Truro, Nova Scotia B2N 5A5 Canada
| |
Collapse
|
9
|
Lu T, Wang Y, Wu Y, Zhao L, Wu S, Chen H. Development of an antigen-capture enzyme-linked immunosorbent assay for diagnosis of Aleutian mink disease virus. Arch Virol 2020; 166:83-90. [PMID: 33068192 DOI: 10.1007/s00705-020-04850-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 09/06/2020] [Indexed: 11/24/2022]
Abstract
Aleutian mink disease (AMD), caused by Aleutian mink disease virus (AMDV), is a very important infectious disease of mink. Currently, elimination of antibody- or antigen-positive animals is the most successful strategy for eradicating AMD, but the claw-cutting method of blood sampling is difficult to perform and painful for the animal. In this study, we aimed to establish an antigen capture enzyme-linked immunosorbent assay (AC-ELISA) method for the efficient detection of AMDV antigens using fecal samples. A purified mouse monoclonal antibody (mAb) was used as the capture antibody, and a rabbit polyclonal antibody (pAb) was used as the detection antibody. The assay was optimized by adjusting a series of parameters. Using a cutoff value of 0.205, the limit of detection of the AC-ELISA for strain AMDV-G antigen was 2 μg/mL, and there was no cross-reaction with other mink viruses. The intra- and inter-assay standard deviations were below 0.046, and the correlation of variance (CV) values were 1.24-7.12% when testing fecal samples. Compared with conventional PCR results, the specificity and sensitivity were 91.5% and 90.6%, respectively, and the concordance rate between the two methods was 91.1%.
Collapse
Affiliation(s)
- Taofeng Lu
- Institute for Laboratory Animal Research, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Yuanzhi Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, China
| | - Yanjun Wu
- Institute for Laboratory Animal Research, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Lili Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, China
| | - Shuguang Wu
- Institute for Laboratory Animal Research, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Hongyan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, China.
| |
Collapse
|
10
|
Farid AH, Smith NJ, White MB. Effects of dietary kelp (Ascophylum nodosum) supplementation on survival rate and reproductive performance of mink challenged with Aleutian mink disease virus. CANADIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1139/cjas-2019-0221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Infection with Aleutian mink disease virus (AMDV) has negative effects on reproductive performance and survival rate of American mink (Neovison vison). The objectives of this study were to assess the effects of kelp (Ascophylum nodosum) supplementation on survival, growth rate, and reproductive performance of mink challenged with AMDV. AMDV-free female black mink (n = 75) were intranasally inoculated with a local AMDV strain. Mink were fed a commercial pellet supplemented with 1.5% or 0.75% kelp or were kept as controls (received no kelp) for 451 d. Body weight and rectal temperature were recorded on days 0, 31, 56, 99, 155, 366, and 451 post inoculation (PI). Annual mortality rates were 13.6%, 20.0%, and 31.8% for mink fed 1.5%, 0.75%, or 0.0% kelp, respectively (P = 0.29). Mink which were fed 1.5% kelp had a significantly (P < 0.01) greater daily weight loss during breeding and post-breeding periods (days 155–366 PI), and outperformed (P < 0.01) the other groups in regard to litter sizes at birth and weaning. Differences among treatments were not significant for the number of females mated, or whelped of those exposed to males, kit survival from birth to weaning, or rectal temperature. It was concluded that 1.5% kelp supplementation had beneficial effects on survival rate of adult mink and litter size.
Collapse
Affiliation(s)
- A. Hossain Farid
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Nancy J. Smith
- Perennia Food and Agriculture, Bible Hill, NS B4N 1J5, Canada
| | - Margot B. White
- Perennia Food and Agriculture, Bible Hill, NS B4N 1J5, Canada
| |
Collapse
|
11
|
Virtanen J, Smura T, Aaltonen K, Moisander-Jylhä AM, Knuuttila A, Vapalahti O, Sironen T. Co-circulation of highly diverse Aleutian mink disease virus strains in Finland. J Gen Virol 2018; 100:227-236. [PMID: 30526739 DOI: 10.1099/jgv.0.001187] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aleutian mink disease virus (AMDV) is the causative agent of Aleutian disease (AD), which affects mink of all genotypes and also infects other mustelids such as ferrets, martens and badgers. Previous studies have investigated diversity in Finnish AMDV strains, but these studies have been restricted to small parts of the virus genome, and mostly from newly infected farms and free-ranging mustelids. Here, we investigated the diversity and evolution of Finnish AMDV strains by sequencing the complete coding sequences of 31 strains from mink originating from farms differing in their virus history, as well as from free-ranging mink. The data set was supplemented with partial genomes obtained from 26 strains. The sequences demonstrate that the Finnish AMDV strains have considerable diversity, and that the virus has been introduced to Finland in multiple events. Frequent recombination events were observed, as well as variation in the evolutionary rate in different parts of the genome and between different branches of the phylogenetic tree. Mink in the wild carry viruses with high intra-host diversity and are occasionally even co-infected by two different strains, suggesting that free-ranging mink tolerate chronic infections for extended periods of time. These findings highlight the need for further sampling to understand the mechanisms playing a role in the evolution and pathogenesis of AMDV.
Collapse
Affiliation(s)
- Jenni Virtanen
- 1Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, 00790, Helsinki, Finland
| | - Teemu Smura
- 2Department of Virology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00290, Helsinki, Finland
| | - Kirsi Aaltonen
- 1Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, 00790, Helsinki, Finland
| | - Anna-Maria Moisander-Jylhä
- 1Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, 00790, Helsinki, Finland
| | - Anna Knuuttila
- 1Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, 00790, Helsinki, Finland.,†Present address: Anna Knuuttila, Fimmic Oy, Helsinki, Finland
| | - Olli Vapalahti
- 1Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, 00790, Helsinki, Finland.,2Department of Virology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00290, Helsinki, Finland
| | - Tarja Sironen
- 1Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, 00790, Helsinki, Finland.,2Department of Virology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00290, Helsinki, Finland
| |
Collapse
|
12
|
Lesser housefly (Fannia canicularis) as possible mechanical vector for Aleutian mink disease virus. Vet Microbiol 2018; 221:90-93. [PMID: 29981714 DOI: 10.1016/j.vetmic.2018.05.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/17/2018] [Accepted: 05/29/2018] [Indexed: 11/24/2022]
Abstract
Flies are known vectors for a variety of infectious diseases in animals. In fur mink farming, one of the most severe diseases is Aleutian disease, which is caused by the Aleutian mink disease virus (AMDV). The presence of large fly populations is a frequent issue in mink farms; however, no studies assessing their role as AMDV carrier vectors have been conducted to-date. In order to determine the presence of AMDV in aerial flies from an infected mink farm, flies (n = 254) and environmental swab samples (n = 4) were collected from two farm barns. Fannia canicularis (L.) (Diptera: Muscidae) represented more than 99% of the fly population. One hundred and fifty specimens of this species were divided into pools of ten flies and analysed by qPCR, and positive samples were further sequenced. All fly pools and environmental samples tested positive for AMDV, and sequence analysis revealed identical genotypes in both types of samples. This is the first report of AMDV contamination in flies from mink farms, suggesting that F. canicularis may act as an AMDV vector. These results may be of interest for epidemiological studies and also for the improvement of control measures against this virus in mink farms.
Collapse
|
13
|
Ryt-Hansen P, Hagberg EE, Chriél M, Struve T, Pedersen AG, Larsen LE, Hjulsager CK. Global phylogenetic analysis of contemporary aleutian mink disease viruses (AMDVs). Virol J 2017; 14:231. [PMID: 29166950 PMCID: PMC5700682 DOI: 10.1186/s12985-017-0898-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/15/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aleutian mink disease has major economic consequences on the mink farming industry worldwide, as it causes a disease that affects both the fur quality and the health and welfare of the mink. The virus causing this disease is a single-stranded DNA virus of the genus Amdoparvovirus belonging to the family of Parvoviridae. In Denmark, infection with AMDV has largely been restricted to a region in the northern part of the country since 2001, affecting only 5% of the total Danish mink farms. However, in 2015 outbreaks of AMDV were diagnosed in all parts of the country. Initial analyses revealed that the out breaks were caused by two different strains of AMDV that were significant different from the circulating Danish strains. To track the source of these outbreaks, a major investigation of global AMDV strains was initiated. METHODS Samples from 13 different countries were collected and partial NS1 gene was sequenced and subjected to phylogenetic analyses. RESULTS The analyses revealed that AMDV exhibited substantial genetic diversity. No clear country wise clustering was evident, but exchange of viruses between countries was revealed. One of the Danish outbreaks was caused by a strain of AMDV that closely resembled a strain originating from Sweden. In contrast, we did not identify any potential source for the other and more widespread outbreak strain. CONCLUSION To the authors knowledge this is the first major global phylogenetic study of contemporary AMDV partial NS1 sequences. The study proved that partial NS1 sequencing can be used to distinguish virus strains belonging to major clusters. The partial NS1 sequencing can therefore be a helpful tool in combination with epidemiological data, in relation to outbreak tracking. However detailed information on farm to farm transmission requires full genome sequencing.
Collapse
Affiliation(s)
- P. Ryt-Hansen
- National Veterinary Institute, Technical University of Denmark, Bülowsvej 27, DK-1870 Frederiksberg C, Denmark
| | - E. E. Hagberg
- Kopenhagen Fur, Langagervej 60, DK-2600 Glostrup, Denmark
| | - M. Chriél
- National Veterinary Institute, Technical University of Denmark, Bülowsvej 27, DK-1870 Frederiksberg C, Denmark
| | - T. Struve
- Kopenhagen Fur, Langagervej 60, DK-2600 Glostrup, Denmark
| | - A. G. Pedersen
- Center for Biological Sequence Analysis, Technical University of Denmark, Kemitorvet Building 208, DK-2800 Lyngby, Denmark
| | - L. E. Larsen
- National Veterinary Institute, Technical University of Denmark, Bülowsvej 27, DK-1870 Frederiksberg C, Denmark
| | - C. K. Hjulsager
- National Veterinary Institute, Technical University of Denmark, Bülowsvej 27, DK-1870 Frederiksberg C, Denmark
| |
Collapse
|
14
|
Abstract
Background Aleutian Mink Disease (AMD) is an infectious disease of mink (Neovison vison) and globally a major cause of economic losses in mink farming. The disease is caused by Aleutian Mink Disease Virus (AMDV) that belongs to the genus Amdoparvovirus within the Parvoviridae family. Several strains have been described with varying virulence and the severity of infection also depends on the host’s genotype and immune status. Clinical signs include respiratory distress in kits and unthriftiness and low quality of the pelts. The infection can also be subclinical. Systematic control of AMDV in Danish mink farms was voluntarily initiated in 1976. Over recent decades the disease was mainly restricted to the very northern part of the country (Northern Jutland), with only sporadic outbreaks outside this region. Most of the viruses from this region have remained very closely related at the nucleotide level for decades. However, in 2015, several outbreaks of AMDV occurred at mink farms throughout Denmark, and the sources of these outbreaks were not known. Methods Partial NS1 gene sequencing, phylogenetic analyses data were utilized along with epidemiological to determine the origin of the outbreaks. Results The phylogenetic analyses of partial NS1 gene sequences revealed that the outbreaks were caused by two different clusters of viruses that were clearly different from the strains found in Northern Jutland. These clusters had restricted geographical distribution, and the variation within the clusters was remarkably low. The outbreaks on Zealand were epidemiologically linked and a close sequence match was found to two virus sequences from Sweden. The other cluster of outbreaks restricted to Jutland and Funen were linked to three feed producers (FP) but secondary transmissions between farms in the same geographical area could not be excluded. Conclusion This study confirmed that partial NS1 sequencing can be used in outbreak tracking to determine major viral clusters of AMDV. Using this method, two new distinct AMDV clusters with low intra-cluster sequence diversity were identified, and epidemiological data helped to reveal possible ways of viral introduction into the affected herds. Electronic supplementary material The online version of this article (doi:10.1186/s12985-017-0786-5) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
Prieto A, Fernández-Antonio R, Díaz-Cao JM, López G, Díaz P, Alonso JM, Morrondo P, Fernández G. Distribution of Aleutian mink disease virus contamination in the environment of infected mink farms. Vet Microbiol 2017; 204:59-63. [PMID: 28532807 DOI: 10.1016/j.vetmic.2017.04.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 11/27/2022]
Abstract
Control and eradication of Aleutian Mink Disease Virus (AMDV) are a major concern for fur-bearing animal production. Despite notably reducing disease prevalence, current control programs are unable to prevent the reinfection of farms, and environmental AMDV persistence seems to play a major role regarding this issue. In this study 114 samples from different areas and elements of seven infected mink farms were analyzed by qPCR in order to evaluate the environmental distribution of AMDV load. Samples were classified into nine categories, depending on the type of sample and degree of proximity to the animals, the main source of infection. Two different commercial DNA extraction kits were employed in parallel for all samples. qPCR analysis showed 69.3% positive samples with one kit and 81.6% with the other, and significant differences between the two DNA extraction methods were found regarding AMDV DNA recovery. Regarding sample categorization, all categories showed a high percentage of AMDV positive samples (31%-100%). Quantification of positive samples showed a decrease in AMDV load from animal barns to the periphery of the farm. In addition, those elements in direct contact with animals, the street clothes and vehicles of farm workers and personal protective equipment used for sampling showed a high viral load, and statistical analysis revealed significant differences in AMDV load between the first and last categories. These results indicate high environmental contamination of positive farms, which is helpful for future considerations about cleaning and disinfection procedures and biosecurity protocols.
Collapse
Affiliation(s)
- A Prieto
- Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - R Fernández-Antonio
- Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Universidade de Santiago de Compostela, 27002 Lugo, Spain; Galician Association of Mink Breeders (AGAVI), 15705 Santiago de Compostela, Spain
| | - J M Díaz-Cao
- Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - G López
- Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - P Díaz
- Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - J M Alonso
- Deparment of Statistics, Mathematical Analysis and Optimization, Faculty of Sciences, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - P Morrondo
- Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - G Fernández
- Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| |
Collapse
|
16
|
Ma F, Zhang L, Wang Y, Lu R, Hu B, Lv S, Xue X, Li X, Ling M, Fan S, Zhang H, Yan X. Development of a Peptide ELISA for the Diagnosis of Aleutian Mink Disease. PLoS One 2016; 11:e0165793. [PMID: 27802320 PMCID: PMC5089682 DOI: 10.1371/journal.pone.0165793] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 10/18/2016] [Indexed: 01/26/2023] Open
Abstract
Aleutian disease (AD) is a common immunosuppressive disease in mink farms world-wide. Since the 1980s, counterimmunoelectrophoresis (CIEP) has been the main detection method for infection with the Aleutian Mink Disease Virus (AMDV). In this study, six peptides derived from the AMDV structural protein VP2 were designed, synthesized, and used as ELISA antigens to detect anti-AMDV antibodies in the sera of infected minks. Serum samples were collected from 764 minks in farms from five different provinces, and analyzed by both CIEP (a gold standard) and peptide ELISA. A peptide designated P1 (415 aa-433 aa) exhibited good antigenicity. A novel ELISA was developed using ovalbumin-linked peptide P1 to detect anti-AMDV antibodies in mink sera. The sensitivity and specificity of the peptide ELISA was 98.0% and 97.5%, respectively. Moreover, the ELISA also detected 342 early-stage infected samples (negative by CIEP and positive by PCR), of which 43.6% (149/342) were true positives. These results showed that the peptide ELISA had better sensitivity compared with CIEP, and therefore could be preferable over CIEP for detecting anti-AMDV antibodies in serological screening.
Collapse
Affiliation(s)
- Fanshu Ma
- Division of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun, China
| | - Lei Zhang
- Division of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yang Wang
- Division of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun, China
| | - Rongguang Lu
- Division of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun, China
| | - Bo Hu
- Division of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun, China
| | - Shuang Lv
- Division of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xianghong Xue
- Division of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xintong Li
- Division of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun, China
| | - Mingyu Ling
- Division of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun, China
| | - Sining Fan
- Division of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun, China
| | - Hailing Zhang
- Division of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xijun Yan
- Division of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
17
|
Farid AH, Hussain I, Arju I. Detection of Aleutian mink disease virus DNA and antiviral antibodies in American mink (Neovison vison) 10 days postinoculation. J Vet Diagn Invest 2015; 27:287-94. [DOI: 10.1177/1040638715580982] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Early detection of infection by the Aleutian mink disease virus (AMDV; Carnivore amdoparvovirus 1) by polymerase chain reaction (PCR) or counterimmunoelectrophoresis (CIEP) has important ramifications in virus eradication programs. A spleen homogenate containing a local isolate of AMDV was injected intraperitoneally into black ( n = 44) and sapphire ( n = 12) American mink ( Neovison vison). Animals were euthanized 10 days postinoculation and anti-AMDV antibodies and AMDV DNA were tested in plasma and 7 organs by CIEP and PCR, respectively. Viral DNA was detected in the plasma, spleen, lymph nodes, bone marrow, and lung samples of all inoculated mink, but was not detected in some small intestine, kidney, and liver samples. In contrast, antibodies were detected in the plasma of 3 sapphire (25.0%) and 19 black (43.2%) mink but not in any of the organs. The sensitivity of the CIEP test on plasma samples was 39.3%, implying that low levels of antibodies during the early stages of virus exposure resulted in failure to detect infection by the CIEP test. We concluded that CIEP is not a reliable test for early detection of AMDV infection in mink and that there were considerable differences among mink of each color type for production of detectable levels of antibodies. PCR tests on samples of saliva, rectal swabs, and feces did not produce consistent and reliable results.
Collapse
Affiliation(s)
- A. Hossain Farid
- Department of Plant and Animal Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - Irshad Hussain
- Department of Plant and Animal Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - Irin Arju
- Department of Plant and Animal Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| |
Collapse
|