1
|
Xu J, Huo C, Yang Y, Han J, Zhou L, Hu Y, Yang H. Early Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus Infection Induces Necroptosis in Immune Cells of Peripheral Lymphoid Organs. Viruses 2025; 17:290. [PMID: 40143222 PMCID: PMC11946179 DOI: 10.3390/v17030290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 03/28/2025] Open
Abstract
The highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) has caused huge economic losses to the pig industry in China. This study evaluated the damage to peripheral immune tissues in the early infection of HP-PRRSV, including the hilar lymph nodes, mandibulares lymph nodes, inguinales superficials lymph nodes, spleens, and tonsils. HP-PRRSV infection led to a reduction in CD4+ and CD8+ T cells, as well as CD19+ B cells, in the tonsils. Additionally, CD163+ macrophages and CD56+ NK cells increased in all peripheral lymphoid organs, with NK cells migrating toward the lymphoid follicles. However, no significant changes were observed in CD11c+ dendritic cells. RNA-seq analysis showed the down-regulation of T and B cell functions, while macrophage and NK cell functions were enhanced. Gene Ontology (GO) and KEGG pathway analysis indicated the up-regulation of necroptosis processes. Western blotting and immunofluorescence confirmed that HP-PRRSV induced PKR-mediated necroptosis in immunocytes. This study provides new insights into the effects of early HP-PRRSV infection on peripheral immune organs, highlighting dynamic shifts in immune cell populations, virus-induced immunosuppression, and the role of PKR-mediated necroptosis. These findings improve our understanding of the immunomodulation induced by PRRSV infection.
Collapse
Affiliation(s)
| | | | | | | | | | - Yanxin Hu
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (J.X.); (C.H.); (Y.Y.); (J.H.); (L.Z.)
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (J.X.); (C.H.); (Y.Y.); (J.H.); (L.Z.)
| |
Collapse
|
2
|
Fiers J, Cay AB, Maes D, Tignon M. A Comprehensive Review on Porcine Reproductive and Respiratory Syndrome Virus with Emphasis on Immunity. Vaccines (Basel) 2024; 12:942. [PMID: 39204065 PMCID: PMC11359659 DOI: 10.3390/vaccines12080942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important pathogens in pig production worldwide and responsible for enormous production and economic losses. PRRSV infection in gestating gilts and sows induces important reproductive failure. Additionally, respiratory distress is observed in infected piglets and fattening pigs, resulting in growth retardation and increased mortality. Importantly, PRRSV infection interferes with immunity in the respiratory tract, making PRRSV-infected pigs more susceptible to opportunistic secondary pathogens. Despite the availability of commercial PRRSV vaccines for more than three decades, control of the disease remains a frustrating and challenging task. This paper provides a comprehensive overview of PRRSV, covering its history, economic and scientific importance, and description of the viral structure and genetic diversity. It explores the virus's pathogenesis, including cell tropism, viral entry, replication, stages of infection and epidemiology. It reviews the porcine innate and adaptative immune responses to comprehend the modulation mechanisms employed by PRRS for immune evasion.
Collapse
Affiliation(s)
- Jorian Fiers
- Unit Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Ukkel, Belgium
- Unit of Porcine Health Management, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium;
| | - Ann Brigitte Cay
- Unit Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Ukkel, Belgium
| | - Dominiek Maes
- Unit of Porcine Health Management, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium;
| | - Marylène Tignon
- Unit Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Ukkel, Belgium
| |
Collapse
|
3
|
Su F, Wu Y, Li J, Huang Y, Yu B, Xu L, Xue Y, Xiao C, Yuan X. Escherichia coli Heat-Labile Enterotoxin B Subunit Combined with Ginsenoside Rg1 as an Intranasal Adjuvant Triggers Type I Interferon Signaling Pathway and Enhances Adaptive Immune Responses to an Inactivated PRRSV Vaccine in ICR Mice. Vaccines (Basel) 2021; 9:vaccines9030266. [PMID: 33809809 PMCID: PMC8002527 DOI: 10.3390/vaccines9030266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/20/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a major pathogen that has threatened the global swine industry for almost 30 years. Because current vaccines do not provide complete protection, exploration of new preventive strategies is urgently needed. Here, we combined a heat-labile enterotoxin B subunit of Escherichia coli (LTB) and ginsenoside Rg1 to form an intranasal adjuvant and evaluated its enhancement of immune responses in mice when added to an inactivated-PRRSV vaccine. The combination adjuvant synergistically elicited higher neutralizing and non-neutralizing (immunoglobulin G and A) antibody responses in the circulatory system and respiratory tract, and enhanced T and B lymphocyte proliferation, CD4+ T-cell priming, and cytotoxic CD4+ T cell activities in mononuclear cells from spleen and lung tissues when compared to the PRRSV vaccine alone, and it resulted in balanced Th1/Th2/Th17 responses. More importantly, we observed that the combination adjuvant also up-regulated type I interferon signaling, which may contribute to improvement in adaptive immune responses. These results highlight the potential value of a combined adjuvant approach for improving the efficacy of vaccination against PRRSV. Further study is required to evaluate the efficacy of this combined adjuvant in swine.
Collapse
Affiliation(s)
- Fei Su
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310002, China; (F.S.); (Y.W.); (J.L.); (Y.H.); (B.Y.); (L.X.); (C.X.)
| | - Yige Wu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310002, China; (F.S.); (Y.W.); (J.L.); (Y.H.); (B.Y.); (L.X.); (C.X.)
| | - Junxing Li
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310002, China; (F.S.); (Y.W.); (J.L.); (Y.H.); (B.Y.); (L.X.); (C.X.)
| | - Yee Huang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310002, China; (F.S.); (Y.W.); (J.L.); (Y.H.); (B.Y.); (L.X.); (C.X.)
| | - Bin Yu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310002, China; (F.S.); (Y.W.); (J.L.); (Y.H.); (B.Y.); (L.X.); (C.X.)
| | - Lihua Xu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310002, China; (F.S.); (Y.W.); (J.L.); (Y.H.); (B.Y.); (L.X.); (C.X.)
| | - Yin Xue
- Zhejiang Center of Animal Disease Control, Hangzhou 310020, China;
| | - Chenwen Xiao
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310002, China; (F.S.); (Y.W.); (J.L.); (Y.H.); (B.Y.); (L.X.); (C.X.)
| | - Xiufang Yuan
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310002, China; (F.S.); (Y.W.); (J.L.); (Y.H.); (B.Y.); (L.X.); (C.X.)
- Correspondence:
| |
Collapse
|
4
|
Wang G, Yu Y, Cai X, Zhou EM, Zimmerman JJ. Effects of PRRSV Infection on the Porcine Thymus. Trends Microbiol 2019; 28:212-223. [PMID: 31744664 DOI: 10.1016/j.tim.2019.10.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 12/13/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) dramatically affects the thymus and its ability to carry out its normal functions. In particular, infection incapacitates PRRSV-susceptible CD14pos antigen-presenting cells (APCs) in the thymus and throughout the body. PRRSV-induced autophagy in thymic epithelial cells modulates the development of T cells, and PRRSV-induced apoptosis in CD4posCD8pos thymocytes modulates cellular immunity against PRRSV and other pathogens. Pigs are less able to resist and/or eliminate secondary infectious agents due the effect of PRRSV on the thymus, and this susceptibility phenomenon is long recognized as a primary characteristic of PRRSV infection.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China; Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| | - Ying Yu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China; College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jeffrey J Zimmerman
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| |
Collapse
|
5
|
Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus Induces Interleukin-17 Production via Activation of the IRAK1-PI3K-p38MAPK-C/EBPβ/CREB Pathways. J Virol 2019; 93:JVI.01100-19. [PMID: 31413135 DOI: 10.1128/jvi.01100-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/08/2019] [Indexed: 12/26/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is widely prevalent in pigs, resulting in significant economic losses worldwide. A compelling impact of PRRSV infection is severe pneumonia. In the present study, we found that interleukin-17 (IL-17) was upregulated by PRRSV infection. Subsequently, we demonstrated that PI3K and p38MAPK signaling pathways were essential for PRRSV-induced IL-17 production as addition of phosphatidylinositol 3-kinase (PI3K) and p38MAPK inhibitors dramatically reduced IL-17 production. Furthermore, we show here that deleting the C/EBPβ and CREB binding motif in porcine IL-17 promoter abrogated its activation and that knockdown of C/EBPβ and CREB remarkably impaired PRRSV-induced IL-17 production, suggesting that IL-17 expression was dependent on C/EBPβ and CREB. More specifically, we demonstrate that PRRSV nonstructural protein 11 (nsp11) induced IL-17 production, which was also dependent on PI3K-p38MAPK-C/EBPβ/CREB pathways. We then show that Ser74 and Phe76 amino acids were essential for nsp11 to induce IL-17 production and viral rescue. In addition, IRAK1 was required for nsp11 to activate PI3K and enhance IL-17 expression by interacting with each other. Importantly, we demonstrate that PI3K inhibitor significantly suppressed IL-17 production and lung inflammation caused by HP-PRRSV in vivo, implicating that higher IL-17 level induced by HP-PRRSV might be associated with severe lung inflammation. These findings provide new insights onto the molecular mechanisms of the PRRSV-induced IL-17 production and help us further understand the pathogenesis of PRRSV infection.IMPORTANCE Highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) associated with severe pneumonia has been one of the most important viral pathogens in pigs. IL-17 is a proinflammatory cytokine that might be associated with the strong inflammation caused by PRRSV. Therefore, we sought to determine whether PRRSV infection affects IL-17 expression, and if so, determine this might partially explain the underlying mechanisms for the strong inflammation in HP-PRRSV-infected pigs, especially in lungs. Here, we show that PRRSV significantly induced IL-17 expression, and we subsequently dissected the molecular mechanisms about how PRRSV regulated IL-17 production. Furthermore, we show that Ser74 and Phe76 in nsp11 were indispensable for IL-17 production and viral replication. Importantly, we demonstrated that PI3K inhibitor impaired IL-17 production and alleviated lung inflammation caused by HP-PRRSV infection. Our findings will help us for a better understanding of PRRSV pathogenesis.
Collapse
|
6
|
Su F, Xu L, Xue Y, Li J, Fu Y, Yu B, Wang S, Yuan X. Th1-biased immunoadjuvant effect of the recombinant B subunit of an Escherichia coli heat-labile enterotoxin on an inactivated porcine reproductive and respiratory syndrome virus antigen via intranasal immunization in mice. J Vet Med Sci 2019; 81:1475-1484. [PMID: 31527353 PMCID: PMC6863725 DOI: 10.1292/jvms.19-0057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the major swine diseases
responsible for a significant challenge in the global swine industry. The current PRRS
inactivated vaccine only confers limited protection against PRRSV. Thus, using an
appropriate adjuvant via a suitable administration route may help improve vaccine
efficacy. In this study, the recombinant B subunit of the Escherichia
coli heat-labile enterotoxin rLTB, was highly expressed in Pichia
pastoris, through high-density fermentation. rLTB intranasal adjuvant
properties were evaluated on an inactivated PRRS antigen in mice. Compared to the group
immunized with solely PRRS antigen, a dose of 50 µg rLTB remarkably
raised antigen-specific IgA antibodies at mucosal sites, and increased serum IgG
antibodies, preferentially the IgG2a and IgG2b subclasses. Further, rLTB induced increases
in Th1- (IFN-γ and IL-12) and Th17 (IL-6) cytokine profiles, but had little effect on Th2
cytokine profiles (IL-4 and IL-10). Moreover, there were no overt toxicities associated
with intranasal rLTB administration. Our data provide evidence that the rLTB produced by
P. pastoris fermentation portrays low toxicity, and its intranasal
adjuvant effect involves immune system modulation to a Th1 profile.
Collapse
Affiliation(s)
- Fei Su
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310002, China
| | - Lihua Xu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310002, China
| | - Yin Xue
- Zhejiang Center of Animal Disease Control, Hangzhou, Zhejiang 310020, China
| | - Junxing Li
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310002, China
| | - Yuan Fu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310002, China
| | - Bin Yu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310002, China
| | - Sai Wang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310002, China
| | - Xiufang Yuan
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310002, China
| |
Collapse
|
7
|
Saleri R, Cavalli V, Ferrari L, Ogno G, Canelli E, Martelli P, Borghetti P. Modulation of the somatotropic axis, adiponectin and cytokine secretion during highly pathogenic porcine reproductive and respiratory syndrome virus type 1 (HP-PRRSV-1) infection. Res Vet Sci 2019; 124:263-269. [PMID: 31003008 DOI: 10.1016/j.rvsc.2019.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 01/07/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is known to be clinically responsible for reproductive failure in sows and post-weaning respiratory disease in growing piglets. During the last years, highly pathogenic PRRSV isolates have been discovered. In Italy, a PRRSV-1 subtype 1 strain (namely PR40/2014) characterized by high pathogenicity was isolated and experimental infection was characterized in terms of virological/clinical features and immune modulation (Canelli et al., 2017; Ferrari et al., 2018). The present study was performed in 4-week-old pigs experimentally infected with the highly pathogenic PRRSV1_PR40/2014 (HP-PR40) or with the conventional PRRSV1_PR11/2014 (PR11). The aim was to evaluate the interrelation between plasmatic hormones and cytokines in infected pigs compared to uninfected controls in order to address potential effects on the course of an experimental infection. The time-related changes of growth hormone (GH), insulin-like growth factor-1 (IGF-1), adiponectin, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) levels appear to be modulated by the infection depending on the PRRSV isolate (HP-PR40 vs. PR11). In particular, in HP-PR40 infected animals, the association between high GH levels and viremia may testify the need to block the anabolic action of GH in order to shift available energy towards the immune response. This need appeared to be delayed in PR11 animals, given the lower pathogenicity of the isolate. Adiponectin, IL-6 and TNF-α course supports the hypothesis of GH resistance mechanisms to guarantee homeostasis in HP-PR40 animals and underlines the key role of energy availability in events leading to an effective response to the virus.
Collapse
Affiliation(s)
- R Saleri
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10, 43126 Parma, Italy.
| | - V Cavalli
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10, 43126 Parma, Italy
| | - L Ferrari
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10, 43126 Parma, Italy
| | - G Ogno
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10, 43126 Parma, Italy
| | - E Canelli
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10, 43126 Parma, Italy
| | - P Martelli
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10, 43126 Parma, Italy
| | - P Borghetti
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10, 43126 Parma, Italy
| |
Collapse
|
8
|
Abstract
Epidemiological investigations were conducted on recently emerging porcine reproductive and respiratory syndrome virus (PRRSV) strains in Shandong province in 2014–2015. The proportion of the NADC30 strain identified by ORF7 sequence alignment has been gradually increasing. Three emerging PRRSV strains were successfully isolated, and the complete genomic sequences were determined. Our results indicate the importance of recombinant strains in Shandong province, China. There was a varied degree of recombination of two or three strains (classical, HP-PRRSV and/or NADC30). Moreover, the recombination strains affected the pathogenicity of newly emerged strains.
Collapse
|
9
|
Canelli E, Catella A, Borghetti P, Ferrari L, Ogno G, De Angelis E, Corradi A, Passeri B, Bertani V, Sandri G, Bonilauri P, Leung FC, Guazzetti S, Martelli P. Phenotypic characterization of a highly pathogenic Italian porcine reproductive and respiratory syndrome virus (PRRSV) type 1 subtype 1 isolate in experimentally infected pigs. Vet Microbiol 2017; 210:124-133. [DOI: 10.1016/j.vetmic.2017.09.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 12/11/2022]
|
10
|
Rahe MC, Murtaugh MP. Mechanisms of Adaptive Immunity to Porcine Reproductive and Respiratory Syndrome Virus. Viruses 2017; 9:v9060148. [PMID: 28608816 PMCID: PMC5490824 DOI: 10.3390/v9060148] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/25/2017] [Accepted: 06/07/2017] [Indexed: 02/07/2023] Open
Abstract
The adaptive immune response is necessary for the development of protective immunity against infectious diseases. Porcine reproductive and respiratory syndrome virus (PRRSV), a genetically heterogeneous and rapidly evolving RNA virus, is the most burdensome pathogen of swine health and wellbeing worldwide. Viral infection induces antigen-specific immunity that ultimately clears the infection. However, the resulting immune memory, induced by virulent or attenuated vaccine viruses, is inconsistently protective against diverse viral strains. The immunological mechanisms by which primary and memory protection are generated and used are not well understood. Here, we summarize current knowledge regarding cellular and humoral components of the adaptive immune response to PRRSV infection that mediate primary and memory immune protection against viruses.
Collapse
Affiliation(s)
- Michael C Rahe
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Avenue, St. Paul, MN 55108, USA.
| | - Michael P Murtaugh
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Avenue, St. Paul, MN 55108, USA.
| |
Collapse
|
11
|
Han J, Zhou L, Ge X, Guo X, Yang H. Pathogenesis and control of the Chinese highly pathogenic porcine reproductive and respiratory syndrome virus. Vet Microbiol 2017; 209:30-47. [PMID: 28292547 DOI: 10.1016/j.vetmic.2017.02.020] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/22/2017] [Accepted: 02/27/2017] [Indexed: 12/24/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has remained a major threat to the worldwide swine industry ever since its first discovery in the early 1990s. Under the selective pressures in the field, this positive-stranded RNA virus undergoes rapid genetic evolution that eventually leads to emergence in 2006 of the devastating Chinese highly pathogenic PRRSV (HP-PRRSV). The atypical nature of HP-PRRSV has caused colossal economic losses to the swine producers in China and the surrounding countries. In this review, we summarize the recent advances in our understanding of the pathogenesis, evolution and ongoing field practices on the control of this troubling virus in China.
Collapse
Affiliation(s)
- Jun Han
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China.
| |
Collapse
|