1
|
Zinc(II)-Dipicolylamine Coordination Complexes as Targeting and Chemotherapeutic Agents for Leishmania major. Antimicrob Agents Chemother 2016; 60:2932-40. [PMID: 26926632 DOI: 10.1128/aac.00410-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 02/25/2016] [Indexed: 01/11/2023] Open
Abstract
Cutaneous leishmaniasis is a neglected tropical disease that causes painful lesions and severe disfigurement. Modern treatment relies on a few chemotherapeutics with serious limitations, and there is a need for more effective alternatives. This study describes the selective targeting of zinc(II)-dipicolylamine (ZnDPA) coordination complexes toward Leishmania major, one of the species responsible for cutaneous leishmaniasis. Fluorescence microscopy of L. major promastigotes treated with a fluorescently labeled ZnDPA probe indicated rapid accumulation of the probe within the axenic promastigote cytosol. The antileishmanial activities of eight ZnDPA complexes were measured using an in vitro assay. All tested complexes exhibited selective toxicity against L. major axenic promastigotes, with 50% effective concentration values in the range of 12.7 to 0.3 μM. Similar toxicity was observed against intracellular amastigotes, but there was almost no effect on the viability of mammalian cells, including mouse peritoneal macrophages. In vivo treatment efficacy studies used fluorescence imaging to noninvasively monitor changes in the red fluorescence produced by an infection of mCherry-L. major in a mouse model. A ZnDPA treatment regimen reduced the parasite burden nearly as well as the reference care agent, potassium antimony(III) tartrate, and with less necrosis in the local host tissue. The results demonstrate that ZnDPA coordination complexes are a promising new class of antileishmanial agents with potential for clinical translation.
Collapse
|
2
|
Banerjee M, Farahat AA, Kumar A, Wenzler T, Brun R, Munde MM, Wilson WD, Zhu X, Werbovetz KA, Boykin DW. Synthesis, DNA binding and antileishmanial activity of low molecular weight bis-arylimidamides. Eur J Med Chem 2012; 55:449-54. [PMID: 22840696 DOI: 10.1016/j.ejmech.2012.06.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 06/22/2012] [Accepted: 06/28/2012] [Indexed: 10/28/2022]
Abstract
The effects of reducing the molecular weight of the antileishmanial compound DB766 on DNA binding affinity, antileishmanial activity and cytotoxicity are reported. The bis-arylimidamides were prepared by the coupling of aryl S-(2-naphthylmethyl)thioimidates with the corresponding amines. Specifically, we have prepared new series of bis-arylimidamides which include 3a, 3b, 6, 9a, 9b, 9c, 13, and 18. Three compounds 9a, 9c, and 18 bind to DNA with similar or moderately lower affinity to that of DB766, the rest of these compounds either show quite weak binding or no binding at all to DNA. Compounds 9a, 9c, and 13 were the most active against Leishmania amazonensis showing IC(50) values of less than 1 μM, so they were screened against intracellular Leishmania donovani, showing outstanding activity with IC(50) values of 25-79 nM. Despite exhibiting little in vitro cytotoxicity these three compounds were quite toxic to mice.
Collapse
Affiliation(s)
- Moloy Banerjee
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
de Castro SL, Batista DGJ, Batista MM, Batista W, Daliry A, de Souza EM, Menna-Barreto RFS, Oliveira GM, Salomão K, Silva CF, Silva PB, Soeiro MDNC. Experimental Chemotherapy for Chagas Disease: A Morphological, Biochemical, and Proteomic Overview of Potential Trypanosoma cruzi Targets of Amidines Derivatives and Naphthoquinones. Mol Biol Int 2011; 2011:306928. [PMID: 22091400 PMCID: PMC3195292 DOI: 10.4061/2011/306928] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 02/25/2011] [Accepted: 03/21/2011] [Indexed: 01/31/2023] Open
Abstract
Chagas disease (CD), caused by Trypanosoma cruzi, affects approximately eight million individuals in Latin America and is emerging in nonendemic areas due to the globalisation of immigration and nonvectorial transmission routes. Although CD represents an important public health problem, resulting in high morbidity and considerable mortality rates, few investments have been allocated towards developing novel anti-T. cruzi agents. The available therapy for CD is based on two nitro derivatives (benznidazole (Bz) and nifurtimox (Nf)) developed more than four decades ago. Both are far from ideal due to substantial secondary side effects, limited efficacy against different parasite isolates, long-term therapy, and their well-known poor activity in the late chronic phase. These drawbacks justify the urgent need to identify better drugs to treat chagasic patients. Although several classes of natural and synthetic compounds have been reported to act in vitro and in vivo on T. cruzi, since the introduction of Bz and Nf, only a few drugs, such as allopurinol and a few sterol inhibitors, have moved to clinical trials. This reflects, at least in part, the absence of well-established universal protocols to screen and compare drug activity. In addition, a large number of in vitro studies have been conducted using only epimastigotes and trypomastigotes instead of evaluating compounds' activities against intracellular amastigotes, which are the reproductive forms in the vertebrate host and are thus an important determinant in the selection and identification of effective compounds for further in vivo analysis. In addition, due to pharmacokinetics and absorption, distribution, metabolism, and excretion characteristics, several compounds that were promising in vitro have not been as effective as Nf or Bz in animal models of T. cruzi infection. In the last two decades, our team has collaborated with different medicinal chemistry groups to develop preclinical studies for CD and investigate the in vitro and in vivo efficacy, toxicity, selectivity, and parasite targets of different classes of natural and synthetic compounds. Some of these results will be briefly presented, focusing primarily on diamidines and related compounds and naphthoquinone derivatives that showed the most promising efficacy against T. cruzi.
Collapse
Affiliation(s)
- Solange L. de Castro
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Denise G. J. Batista
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Marcos M. Batista
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Wanderson Batista
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Anissa Daliry
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Elen M. de Souza
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Rubem F. S. Menna-Barreto
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Gabriel M. Oliveira
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Kelly Salomão
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Cristiane F. Silva
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Patricia B. Silva
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Maria de Nazaré C. Soeiro
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
4
|
Soeiro MDNC, de Castro SL. Screening of Potential anti-Trypanosoma cruzi Candidates: In Vitro and In Vivo Studies. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2011; 5:21-30. [PMID: 21629508 PMCID: PMC3103897 DOI: 10.2174/1874104501105010021] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 04/21/2010] [Accepted: 05/28/2010] [Indexed: 01/21/2023]
Abstract
Chagas disease (CD), caused by the intracellular protozoan Trypanosoma cruzi, is a parasitic illness endemic in Latin America. In the centennial after CD discovery by Carlos Chagas (1909), although it still represents an important public health problem in these affected areas, the existing chemotherapy, based on benznidazole and nifurtimox (both introduced more than four decades ago), is far from being considered ideal due to substantial toxicity, variable effect on different parasite stocks and well-known poor activity on the chronic phase. CD is considered one of the major "neglected" diseases of the world, as commercial incentives are very limited to guarantee investments for developing and discovering novel drugs. In this context, our group has been pursuing, over the last years, the efficacy, selectivity, toxicity, cellular targets and mechanisms of action of new potential anti-T. cruzi candidates screened from an in-house compound library of different research groups in the area of medicinal chemistry. A brief review regarding these studies will be discussed, mainly related to the effect on T. cruzi of (i) diamidines and related compounds, (ii) natural naphthoquinone derivatives, and (iii) megazol derivatives.
Collapse
Affiliation(s)
| | - Solange Lisboa de Castro
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-900, Brazil
| |
Collapse
|
5
|
Freeman K. Update on the Diagnosis and Management of Leishmania spp Infections in Dogs in the United States. Top Companion Anim Med 2010; 25:149-54. [DOI: 10.1053/j.tcam.2010.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 07/26/2010] [Indexed: 11/11/2022]
|
6
|
Abstract
Arylimidamides (AIAs) represent a new class of molecules that exhibit potent antileishmanial activity (50% inhibitory concentration [IC(50)], <1 microM) against both Leishmania donovani axenic amastigotes and intracellular Leishmania, the causative agent for human visceral leishmaniasis (VL). A systematic lead discovery program was employed to characterize in vitro and in vivo antileishmanial activities, pharmacokinetics, mutagenicities, and toxicities of two novel AIAs, DB745 and DB766. They were exceptionally active (IC(50) < or = 0.12 microM) against intracellular L. donovani, Leishmania amazonensis, and Leishmania major and did not exhibit mutagenicity in an Ames screen. DB745 and DB766, given orally, produced a dose-dependent inhibition of liver parasitemia in two efficacy models, L. donovani-infected mice and hamsters. Most notably, DB766 (100 mg/kg of body weight/day for 5 days) reduced liver parasitemia in mice and hamsters by 71% and 89%, respectively. Marked reduction of parasitemia in the spleen (79%) and bone marrow (92%) of hamsters was also observed. Furthermore, these compounds distributed to target tissues (liver and spleen) and had a moderate oral bioavailability (up to 25%), a large volume of distribution, and an elimination half-life ranging from 1 to 2 days in mice. In a repeat-dose toxicity study of mice, there was no indication of liver or kidney toxicity for DB766 from serum chemistries, although mild hepatic cell eosinophilia, hypertrophy, and fatty changes were noted. These results demonstrated that arylimidamides are a promising class of molecules that possess good antileishmanial activity and desirable pharmacokinetics and should be considered for further preclinical development as an oral treatment for VL.
Collapse
|
7
|
Soeiro MDNC, Dantas AP, Daliry A, Silva CFD, Batista DGJ, de Souza EM, Oliveira GM, Salomão K, Batista MM, Pacheco MGO, Silva PBD, Santa-Rita RM, Barreto RFSM, Boykin DW, Castro SLD. Experimental chemotherapy for Chagas disease: 15 years of research contributions from in vivo and in vitro studies. Mem Inst Oswaldo Cruz 2010; 104 Suppl 1:301-10. [PMID: 19753489 DOI: 10.1590/s0074-02762009000900040] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 06/08/2009] [Indexed: 11/22/2022] Open
Abstract
Chagas disease, which is caused by the intracellular parasite Trypanosoma cruzi, is a neglected illness with 12-14 million reported cases in endemic geographic regions of Latin America. While the disease still represents an important public health problem in these affected areas, the available therapy, which was introduced more than four decades ago, is far from ideal due to its substantial toxicity, its limited effects on different parasite stocks, and its poor activity during the chronic phase of the disease. For the past 15 years, our group, in collaboration with research groups focused on medicinal chemistry, has been working on experimental chemotherapies for Chagas disease, investigating the biological activity, toxicity, selectivity and cellular targets of different classes of compounds on T. cruzi. In this report, we present an overview of these in vitro and in vivo studies, focusing on the most promising classes of compounds with the aim of contributing to the current knowledge of the treatment of Chagas disease and aiding in the development of a new arsenal of candidates with anti-T. cruzi efficacy.
Collapse
|
8
|
Patrick DA, Bakunov SA, Bakunova SM, Kumar EVKS, Chen H, Jones SK, Wenzler T, Barzcz T, Werbovetz KA, Brun R, Tidwell RR. Synthesis and antiprotozoal activities of dicationic bis(phenoxymethyl)benzenes, bis(phenoxymethyl)naphthalenes, and bis(benzyloxy)naphthalenes. Eur J Med Chem 2009; 44:3543-51. [PMID: 19409677 DOI: 10.1016/j.ejmech.2009.03.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 03/06/2009] [Accepted: 03/12/2009] [Indexed: 10/21/2022]
Abstract
A series of 37 dicationically substituted bis(phenoxymethyl)benzene bis(phenoxymethyl)naphthalene, and bis(benzyloxy)naphthalene analogues of pentamidine was prepared and evaluated for antiprotozoal activities and cytotoxicity in in vitro. 1,3-Bis(4-amidinophenoxymethyl)benzene (1) was the most active against Trypanosoma brucei rhodesiense (IC(50)=2.1 nM). 1,3-Bis[4-(N-isopropylamidino)phenoxymethyl]benzene (2) was most active against Plasmodium falciparum (IC(50)=3.6 nM) and displayed a selectivity index more than 50 times greater than that of pentamidine. Several other compounds displayed lower antiplasmodial IC(50) values and higher selectivity indices relative to pentamidine. 1,4-Bis(4-amidinophenoxymethyl)benzene (14) was the most active against Leishmania donovani (IC(50)=1.3 microM). Compound 2 displayed the greatest activity against T. b. rhodesiense in vivo, curing three of four infected mice dosed intraperitoneally at 5 mg/kg x 4 days.
Collapse
Affiliation(s)
- Donald A Patrick
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7525, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Rosypal AC, Werbovetz KA, Salem M, Stephens CE, Kumar A, Boykin DW, Hall JE, Tidwell RR. Inhibition by Dications of in vitro growth of Leishmania major and Leishmania tropica: causative agents of old world cutaneous leishmaniasis. J Parasitol 2008; 94:743-9. [PMID: 18605790 DOI: 10.1645/ge-1387.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Accepted: 10/12/2007] [Indexed: 11/10/2022] Open
Abstract
Old World cutaneous leishmaniasis is caused by infection with Leishmania major and Leishmania tropica. Pentamidine and related dications exhibit broad spectrum antiprotozoal activity. Based on the previously reported efficacy of these compounds against related organisms, 18 structural analogs of pentamidine were evaluated for in vitro antileishmanial activity, using pentamidine as the standard reference drug for comparison. Furan analogs and reversed amidine compounds were examined for activity against L. major and L. tropica promastigotes. The most active compounds against both Leishmania species were in the reversed amidine series. DB745 and DB746 exhibited the highest activity against L. major and DB745 was the most active compound against L. tropica. Both of these compounds exhibited 50% inhibitory concentrations (IC50) below 1 nM for L. major. Ten reversed amidines were also tested for their ability to inhibit growth in an axenic amastigote model. Nine of 10 reversed amidine analogs were active at concentrations below 1 nM. These results justify further study of dicationic compounds as potential new agents for treating cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Alexa C Rosypal
- School of Medicine, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Rosypal AC, Werbovetz KA, Salem M, Stephens CE, Kumar A, Boykin DW, Hall JE, Tidwell RR. Inhibition by Dications of In Vitro Growth of Leishmania major and Leishmania tropica: Causative Agents of Old World Cutaneous Leishmaniasis. J Parasitol 2008. [DOI: 10.1645/ge-1387r1.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
11
|
Silva CF, Batista MM, Mota RA, de Souza EM, Stephens CE, Som P, Boykin DW, Soeiro MDNC. Activity of “reversed” diamidines against Trypanosoma cruzi “in vitro”. Biochem Pharmacol 2007; 73:1939-46. [PMID: 17462605 DOI: 10.1016/j.bcp.2007.03.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 03/05/2007] [Accepted: 03/20/2007] [Indexed: 11/23/2022]
Abstract
Chagas' disease is an important parasitic illness caused by the flagellated protozoan Trypanosoma cruzi. The disease affects nearly 17 million individuals in endemic areas of Latin America and the current chemotherapy is quite unsatisfactory based on nitroheterocyclic agents (nifurtimox and benznidazol). The need for new compounds with different modes of action is clear. Due to the broad-spectrum antimicrobial activity of the aromatic dicationic compounds, this study focused on the activity of four such diamidines (DB811, DB889, DB786, DB702) and a closely related diguanidine (DB711) against bloodstream trypomastigotes as well as intracellular amastigotes of T. cruzi in vitro. Additional studies were also conducted to access the toxicity of the compounds against mammalian cells in vitro. Our data show that the four diamidines compounds presented early and high anti-parasitic activity (IC50 in low-micromolecular range) exhibiting trypanocidal dose-dependent effects against both trypomastigote and amastigote forms of T. cruzi 2h after drug treatment. Most of the diamidines compounds (except the DB702) exerted high anti-parasitic activity and low toxicity to the mammalian cells. Our results show the activity of reversed diamidines against T. cruzi and suggested that the compounds merit in vivo studies.
Collapse
Affiliation(s)
- C F Silva
- Lab. Biologia Celular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | |
Collapse
|