1
|
Nak-on S, Campbell P, Shalaby MM, McIntyre J, Antonopoulos A, Chontananarth T, Laing R. Development of a loop-mediated isothermal amplification detection assay for Dictyocaulus viviparus (Bloch, 1782) lungworm: DviLAMP. Front Vet Sci 2024; 11:1454065. [PMID: 39430381 PMCID: PMC11486680 DOI: 10.3389/fvets.2024.1454065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024] Open
Abstract
The bovine lungworm, Dictyocaulus viviparus (Bloch, 1782), is highly pathogenic and disease outbreaks can be difficult to predict and manage. Rapid and accurate diagnosis is vital, but without a sensitive diagnostic test this remains challenging in clinical practice. High performance molecular detection tools are therefore required to improve the diagnosis of this parasite and promote the implementation of strategic control measures. Loop-mediated isothermal amplification (LAMP), a rapid DNA assay, offers potential for field-based detection. Here we report a novel LAMP assay (DviLAMP), that was designed to target the D. viviparus internal transcribed spacer 2 (ITS2) ribosomal DNA region. Firstly, genomic DNA was extracted from a single D. viviparus L1 larva to amplify and clone the ITS2 into the recombinant plasmid (DviITS2). The DviLAMP successfully detected the target, with results shown by gel electrophoresis and real-time analysis, in addition to point-of-care amenable end-point detection: colorimetry and lateral flow dipstick (LFD). Analytical sensitivity can detect 0.5 ng DviITS2 following 45 min of incubation at 64°C, increasing to just 1 pg following 90 min of incubation. Using the same primers, other nematodes of cattle, Ostertagia ostertagi and Cooperia oncophora, were also detectable both by gel electrophoresis and real-time. However, when FITC and biotin tagged primers were incorporated to adapt the DviLAMP to LFD end-point detection, the LFD showed specific detection of D. viviparus. Further development of DviLAMP as a point-of-care test could significantly improve the sensitivity of lungworm diagnosis in the field.
Collapse
Affiliation(s)
- Sirapat Nak-on
- Applied Parasitology Research Laboratory, Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Paul Campbell
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Maha Mansour Shalaby
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
- James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
- Food Control Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr-El-Sheikh, Egypt
| | - Jennifer McIntyre
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Alistair Antonopoulos
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
- Kreavet, Kruibeke, Belgium
| | - Thapana Chontananarth
- Applied Parasitology Research Laboratory, Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
- Research and Innovation Unit for Diagnosis of Medical and Veterinary Important Parasites, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
| | - Roz Laing
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
2
|
Panich W, Nak-On S, Sabaijai M, Raksaman A, Puttharugsa C, Tejangkura T, Chontananarth T. Evaluation of semi-quantitative colorimetric assays based on loop-mediated isothermal amplification indicators by using image analysis. Anal Biochem 2024; 688:115481. [PMID: 38360170 DOI: 10.1016/j.ab.2024.115481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
Colorimetric assays are some of the most convenient detection methods, creating discoloration in solutions that is visible to the naked eye. However, colorimetric reactions have some limitations regarding the variability in the color perception of individuals caused by factors such as color blindness, experience, and gender. Semi-quantitative chromatic analysis has been used as an alternative method to differentiate between two colors and accurately interpret the results from a numerical value, with high confidence. Therefore, we developed and determined the optimal model between Red-Green-Blue (RGB) and Commission Internationale de l'Eclairage (CIE) Lab color spaces to establish a semi-quantitative colorimetric assay via image analysis by the ImageJ program for loop-mediated isothermal amplification (LAMP), using the dyes malachite green and phenol red. The semi-quantitative colorimetric assays using the color distance values of the CIELab color space (ΔEab) were more suitable than those using the RGB color space (ΔERGB) for chromatic differentiation between positive and negative reactions in both indicator dyes, demonstrating the feasibility of this assay to be applied in the detection of a wide range of pathogens and infectious diseases.
Collapse
Affiliation(s)
- Wasin Panich
- Applied Parasitology Research Laboratory, Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Sirapat Nak-On
- Applied Parasitology Research Laboratory, Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Metawee Sabaijai
- Applied Parasitology Research Laboratory, Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Awika Raksaman
- Applied Parasitology Research Laboratory, Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Chokchai Puttharugsa
- Department of Physics, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Thanawan Tejangkura
- Applied Parasitology Research Laboratory, Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand; Research and Innovation Unit for Diagnosis of Medical and Veterinary Important Parasites, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Thapana Chontananarth
- Applied Parasitology Research Laboratory, Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand; Research and Innovation Unit for Diagnosis of Medical and Veterinary Important Parasites, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand.
| |
Collapse
|
3
|
Nak-On S, Sabaijai M, Raksaman A, Panich W, Tejangkura T, Chontananarth T. Visualization and development of colorimetric loop-mediated isothermal amplification for the rapid detection and diagnosis of paramphistome infection: colorimetric PAR-LAMP. Parasitol Res 2024; 123:126. [PMID: 38326433 DOI: 10.1007/s00436-024-08150-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Colorimetric detection can be applied to differentiate between positive and negative conditions. It can be coupled with loop-mediated isothermal amplification to diagnose rumen fluke or paramphistome infection, also called colorimetric PAR-LAMP. This study conducted LAMP using three candidate indicator dyes, namely malachite green (MLG), methyl green (MTG), and neutral red (NTR), and the results were observed by the naked eye. The dye concentration was optimized to obtain the most pronounced positive-negative result discrimination. Subsequently, we conducted target sensitivity tests using the DNA of Fischoederius elongatus at different concentrations. To validate the detection accuracy, the result was confirmed by gel electrophoresis. The sensitivity test presented the lowest detectable DNA concentration or limit of detection (LOD), with 1 pg for MLG, 0.5 ng for MTG, and 50 pg for NTR. Different LODs revealed inhibition of LAMP reaction and reduced efficiency of result presentation for colorimetric-based detection, particularly NTR and MTG. For MLG-LAMP, we observed no cross-reaction of non-target DNA and improved reaction with the DNA of Fischoederius cobboldi and Calicophoron sp., with multi-detection. In addition, naked eye observation and agarose gel electrophoresis (AGE) evaluation of the MLG-LAMP results showed a moderate and strong agreement with LAMP-AGE and microscopic examinations. Based on our results, colorimetric PAR-LAMP is a rapid, comfortable, and point-of-care procedure for the diagnosis of paramphistome infection.
Collapse
Affiliation(s)
- Sirapat Nak-On
- Applied Parasitology Research Laboratory, Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Metawee Sabaijai
- Applied Parasitology Research Laboratory, Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Awika Raksaman
- Applied Parasitology Research Laboratory, Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Wasin Panich
- Applied Parasitology Research Laboratory, Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Thanawan Tejangkura
- Applied Parasitology Research Laboratory, Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
- Research and Innovation Unit for Diagnosis of Medical and Veterinary Important Parasites, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Thapana Chontananarth
- Applied Parasitology Research Laboratory, Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand.
- Research and Innovation Unit for Diagnosis of Medical and Veterinary Important Parasites, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand.
| |
Collapse
|
4
|
Ping Y, Quanlin S, Yue H, Jing Z, Wenjun L. Screening and validation of double allele-specific binding F-primers for the measurement of antihypertensive pharmacogenomics. Front Med (Lausanne) 2023; 10:1269221. [PMID: 38173939 PMCID: PMC10761462 DOI: 10.3389/fmed.2023.1269221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Objective Previous studies have proposed that genetic polymorphisms of CYP2D6*10, ADRB1, NPPA, CYP3A5*3, ACE, CYP2C9*3, and AGTR1 are involved in antihypertensive pharmacogenomics. The purpose of this study is to develop an amplification analysis using double allele-specific (AS) binding primers for accurate measurement of antihypertensive pharmacogenomics. Methods To establish a quadruplex quantitative PCR (qPCR) analysis for genotyping of CYP2D6*10, ADRB1 (1165 G>C), NPPA (2238 T>C) and CYP3A5*3, and a triplex qPCR analysis for genotyping of ACE (I/D), CYP2C9*3 and AGTR1 (1166 A>C), mismatch AS F-primers were screened by detection of plasmid/gDNA, and were validated by agreement analysis/reproducibility evaluation, in which the ΔCq (differences in threshold cycles between the wild-type F-primer-based amplification assay and the mutant-type F-primer-based amplification assay) was employed to determine genotypes. Results Seven pairs of primers were successfully selected through three rounds of F-primers screening. Except for ADRB1, the robustness assessment showed the amplification efficiency ranging from 0.9 to 1.1. In agreement analysis, two specimens in the training set (n = 203) were defined by the triplex analysis rather than NGS as heterozygotes for ACE, which was evidenced by gel electrophoresis. Reproducibility evaluation demonstrated that the coefficient of variation (CV) was <5%. Conclusion Multiplex amplification analysis using screened AS binding primers is a simple, reliable, and accurate tool to guide drug delivery in antihypertensive personalized treatment.
Collapse
Affiliation(s)
| | | | | | - Zhang Jing
- Institute of Biomedical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Lan Wenjun
- Institute of Biomedical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| |
Collapse
|