1
|
Catalán-Tatjer D, Tzimou K, Nielsen LK, Lavado-García J. Unravelling the essential elements for recombinant adeno-associated virus (rAAV) production in animal cell-based platforms. Biotechnol Adv 2024; 73:108370. [PMID: 38692443 DOI: 10.1016/j.biotechadv.2024.108370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/05/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
Recombinant adeno-associated viruses (rAAVs) stand at the forefront of gene therapy applications, holding immense significance for their safe and efficient gene delivery capabilities. The constantly increasing and unmet demand for rAAVs underscores the need for a more comprehensive understanding of AAV biology and its impact on rAAV production. In this literature review, we delved into AAV biology and rAAV manufacturing bioprocesses, unravelling the functions and essentiality of proteins involved in rAAV production. We discuss the interconnections between these proteins and how they affect the choice of rAAV production platform. By addressing existing inconsistencies, literature gaps and limitations, this review aims to define a minimal set of genes that are essential for rAAV production, providing the potential to advance rAAV biomanufacturing, with a focus on minimizing the genetic load within rAAV-producing cells.
Collapse
Affiliation(s)
- David Catalán-Tatjer
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark
| | - Konstantina Tzimou
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark
| | - Lars K Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark; Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Australia
| | - Jesús Lavado-García
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark.
| |
Collapse
|
2
|
Xue S, Liu X, Liu Y, Lu C, Jia L, Yu Y, Liu H, Yang S, Zeng Z, Li H, Qin J, Wang Y, Sun J. Determination and Characterization of Novel Papillomavirus and Parvovirus Associated with Mass Mortality of Chinese Tongue Sole ( Cynoglossus semilaevis) in China. Viruses 2024; 16:705. [PMID: 38793587 PMCID: PMC11125579 DOI: 10.3390/v16050705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/28/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
A massive mortality event concerning farmed Chinese tongue soles occurred in Tianjin, China, and the causative agent remains unknown. Here, a novel Cynoglossus semilaevis papillomavirus (CsPaV) and parvovirus (CsPV) were simultaneously isolated and identified from diseased fish via electron microscopy, virus isolation, genome sequencing, experimental challenges, and fluorescence in situ hybridization (FISH). Electron microscopy showed large numbers of virus particles present in the tissues of diseased fish. Viruses that were isolated and propagated in flounder gill cells (FG) induced typical cytopathic effects (CPE). The cumulative mortality of fish given intraperitoneal injections reached 100% at 7 dpi. The complete genomes of CsPaV and CsPV comprised 5939 bp and 3663 bp, respectively, and the genomes shared no nucleotide sequence similarities with other viruses. Phylogenetic analysis based on the L1 and NS1 protein sequences revealed that CsPaV and CsPV were novel members of the Papillomaviridae and Parvoviridae families. The FISH results showed positive signals in the spleen tissues of infected fish, and both viruses could co-infect single cells. This study represents the first report where novel papillomavirus and parvovirus are identified in farmed marine cultured fish, and it provides a basis for further studies on the prevention and treatment of emerging viral diseases.
Collapse
Affiliation(s)
- Shuxia Xue
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China; (S.X.); (X.L.); (Y.L.); (C.L.); (S.Y.); (Z.Z.); (H.L.); (J.Q.); (Y.W.)
| | - Xinrui Liu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China; (S.X.); (X.L.); (Y.L.); (C.L.); (S.Y.); (Z.Z.); (H.L.); (J.Q.); (Y.W.)
| | - Yuru Liu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China; (S.X.); (X.L.); (Y.L.); (C.L.); (S.Y.); (Z.Z.); (H.L.); (J.Q.); (Y.W.)
| | - Chang Lu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China; (S.X.); (X.L.); (Y.L.); (C.L.); (S.Y.); (Z.Z.); (H.L.); (J.Q.); (Y.W.)
| | - Lei Jia
- Tianjin Fishery Institute, Tianjin 300221, China; (L.J.); (Y.Y.); (H.L.)
| | - Yanguang Yu
- Tianjin Fishery Institute, Tianjin 300221, China; (L.J.); (Y.Y.); (H.L.)
| | - Houfu Liu
- Tianjin Fishery Institute, Tianjin 300221, China; (L.J.); (Y.Y.); (H.L.)
| | - Siyu Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China; (S.X.); (X.L.); (Y.L.); (C.L.); (S.Y.); (Z.Z.); (H.L.); (J.Q.); (Y.W.)
| | - Zhu Zeng
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China; (S.X.); (X.L.); (Y.L.); (C.L.); (S.Y.); (Z.Z.); (H.L.); (J.Q.); (Y.W.)
| | - Hui Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China; (S.X.); (X.L.); (Y.L.); (C.L.); (S.Y.); (Z.Z.); (H.L.); (J.Q.); (Y.W.)
| | - Jiatong Qin
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China; (S.X.); (X.L.); (Y.L.); (C.L.); (S.Y.); (Z.Z.); (H.L.); (J.Q.); (Y.W.)
| | - Yuxuan Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China; (S.X.); (X.L.); (Y.L.); (C.L.); (S.Y.); (Z.Z.); (H.L.); (J.Q.); (Y.W.)
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China; (S.X.); (X.L.); (Y.L.); (C.L.); (S.Y.); (Z.Z.); (H.L.); (J.Q.); (Y.W.)
| |
Collapse
|
3
|
Meier AF, Fraefel C, Seyffert M. The Interplay between Adeno-Associated Virus and its Helper Viruses. Viruses 2020; 12:E662. [PMID: 32575422 PMCID: PMC7354565 DOI: 10.3390/v12060662] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
The adeno-associated virus (AAV) is a small, nonpathogenic parvovirus, which depends on helper factors to replicate. Those helper factors can be provided by coinfecting helper viruses such as adenoviruses, herpesviruses, or papillomaviruses. We review the basic biology of AAV and its most-studied helper viruses, adenovirus type 5 (AdV5) and herpes simplex virus type 1 (HSV-1). We further outline the direct and indirect interactions of AAV with those and additional helper viruses.
Collapse
Affiliation(s)
| | | | - Michael Seyffert
- Institute of Virology, University of Zurich, CH-8057 Zurich, Switzerland; (A.F.M.); (C.F.)
| |
Collapse
|
4
|
Cao M, Bandyopadhyay S, Zhu H, You H, Hermonat PL. The HPV16 E1 Carboxyl Domain Provides a Helper Function for Adeno-Associated Virus Replication. Intervirology 2019; 61:185-192. [PMID: 30654371 DOI: 10.1159/000495137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/15/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Recombinant adeno-associated virus (rAAV) is now in the clinic, yet production of rAAV remains problematic. We previously determined that human papillomavirus type 16 (HPV16) E1 protein boosts rAAV yields and E1 enhances AAV Rep78's replication-related biochemistries. Here, we deletion-mapped the helper domain within E1 to help glean its mechanism of action. METHODS Rep78-E1 interaction was analyzed by Gal4-based yeast two-hybrid (Y2H)-cDNA assay. rAAV DNA replication was studied by AAV/helper plasmid transfection into HEK293 cells and Southern blot. Gene expression analysis was made of AAV and E1 plasmid transfection, cDNA generation, and then quantitative polymerase chain reaction. NCBI protein BLAST was used for the homology analysis. RESULTS Gal4-Y2H- cDNA assay found in vivo Rep78-E1-binding activity across E1, but the carboxyl-third (amino acids [aa] 421-649) of E1 contained the predominant DNA replication helper domain. The amino-half of E1 (aa 1-337) inhibited transcription of rep (p5 promoter) and cap (p40, trending lower) from non-replicating helper plasmid by quantitative (q)RT-PCR. CONCLUSIONS The aa 421-649 helper domain of HPV16 E1 includes the ATP-binding/helicase region of E1 which boosts rAAV production and has homology with the analogous region of parvovirus NS-1/Rep78 by NCBI protein BLAST, suggesting these biochemistries are responsible for the mechanism of action in E1 helper function.
Collapse
Affiliation(s)
- Maohua Cao
- Departments of Obstetrics and Gynecology and Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Sarmistha Bandyopadhyay
- Departments of Obstetrics and Gynecology and Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Hongqing Zhu
- Departments of Obstetrics and Gynecology and Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Hong You
- Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Departments of Obstetrics and Gynecology and Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Paul L Hermonat
- Beijing Friendship Hospital, Capital Medical University, Beijing, China, .,Departments of Obstetrics and Gynecology and Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA,
| |
Collapse
|
5
|
The X gene of adeno-associated virus 2 (AAV2) is involved in viral DNA replication. PLoS One 2014; 9:e104596. [PMID: 25127256 PMCID: PMC4134208 DOI: 10.1371/journal.pone.0104596] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 07/15/2014] [Indexed: 01/26/2023] Open
Abstract
Adeno-associated virus (AAV) (type 2) is a popular human gene therapy vector with a long active transgene expression period and no reported vector-induced adverse reactions. Yet the basic molecular biology of this virus has not been fully addressed. One potential gene at the far 3′ end of the AAV2 genome, previously referred to as X (nt 3929 to 4393), overlapping the 3′ end of the cap gene, has never been characterized, although we did previously identify a promoter just up-stream (p81). Computer analysis suggested that X was involved in replication and transcription. The X protein was identified during active AAV2 replication using a polyclonal antibody against a peptide starting at amino acid 98. Reagents for the study of X included an AAV2 deletion mutant (dl78-91), a triple nucleotide substitution mutant that destroys all three 5′ AUG-initiation products of X, with no effect on the cap coding sequence, and X-positive-293 cell lines. Here, we found that X up-regulated AAV2 DNA replication in differentiating keratinocytes (without helper virus, autonomous replication) and in various forms of 293 cell-based assays with help from wild type adenovirus type 5 (wt Ad5) or Ad5 helper plasmid (pHelper). The strongest contribution by X was seen in increasing wt AAV2 DNA replication in keratinocytes and dl78-91 in Ad5-infected X-positive-293 cell lines (both having multi-fold effects). Mutating the X gene in pAAV-RC (pAAV-RC-3Xneg) yielded approximately a ∼33% reduction in recombinant AAV vector DNA replication and virion production, but a larger effect was seen when using this same X-knockout AAV helper plasmid in X-positive-293 cell lines versus normal 293 cells (again, multi-fold). Taken together these data strongly suggest that AAV2 X encodes a protein involved in the AAV life cycle, particularly in increasing AAV2 DNA replication, and suggests that further studies are warranted.
Collapse
|
6
|
HPV-16 E2 physical status and molecular evolution in vivo in cervical carcinomas. Int J Biol Markers 2014; 29:e78-85. [PMID: 24170557 DOI: 10.5301/jbm.5000051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2013] [Indexed: 11/20/2022]
Abstract
A key event in the development of cervical carcinoma is the deregulated expression of high-risk human papillomavirus (HR-HPV) oncogenes, most commonly due to HPV integration into host DNA. Here we explored whether HPV-16 E2 gene integrity is a biomarker of progressive disease with oncogenes expression. HPV-16 genome disruption was assessed by amplification of the entire E2 gene, while mRNA expression patterns of the E1, E2, E6, and E7 genes were evaluated by reverse transcription PCR (RT-PCR). As expected, E2 disruption was significantly higher among patients with cervical cancers than subjects with benign lesions (p=0.02). The status of the E2 gene correlated with tumorogenesis, and seemed also to correlate with the stage of the carcinomas, since integrated HPV-16 DNA was frequently detected in patients with advanced cancer stages (75% of stage III vs 60% stages I and II). In bivariate analysis, the lesions’ grade was most significantly associated with HPV-16 DNA disruption (p<0.05). In cervical carcinoma the deletion pattern involved more frequently the E2 gene rather than the E1 gene (62.5% vs 45.8%). The prevalence of the E6/E7 HPV-16 transcripts in cervical carcinoma specimens and in benign cervical lesions were detected with frequencies of, respectively, 91.6% and 45.4%. The mRNA levels of the HPV-16 E6/E7 genes were expressed at approximately the same levels in each physical state. We consistently observed that E6/E7 were absent or weakly detectable in the presence of E2. However, in the absence of E2 the levels of E6/E7 markedly increased (p<0.05). This study underscores the significance of investigating alternative mechanisms of E2 expression and oncogenes E6/E7 transcripts in vivo as biomarkers for disease severity in cervical carcinomas.
Collapse
|
7
|
Martin J, Frederick A, Luo Y, Jackson R, Joubert M, Sol B, Poulin F, Pastor E, Armentano D, Wadsworth S, Vincent K. Generation and characterization of adeno-associated virus producer cell lines for research and preclinical vector production. Hum Gene Ther Methods 2013; 24:253-69. [PMID: 23848282 DOI: 10.1089/hgtb.2013.046] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adeno-associated virus (AAV) producer cell lines represent an effective method for large-scale production of AAV vectors. We set out to evaluate and characterize the use of an abbreviated protocol to generate "masterwells" (MWs; a nonclonal cell population) as a platform for research and preclinical vector production. In this system, a single plasmid containing three components, the vector sequence, the AAV rep, and cap genes, and a selectable marker gene is stably transfected into HeLaS3 cells. Producer cell lines generating an AAV2 vector expressing a secreted form of human placental alkaline phosphatase (SEAP) have been created. Several MWs showed vector yields in the 5×10(4) to 2×10(5) DNase-resistant particles/cell range, and the productivity was stable over >60 population doublings. Integrated plasmid copy number in three high-producing MWs ranged from approximately 12 to 50; copies were arranged in a head-to-tail configuration. Upon infection with adenovirus, rep/cap copy number was amplified approximately 100-fold and high yield appeared to be dependent on the extent of amplification. Rep/cap gene expression and vector packaging both reached a peak at 48 hr postinfection. AAV2-SEAP vector was produced in 1-liter shaker culture and purified for assessment of vector quality and potency. The data showed that the majority of the capsids from the MWs contained vector DNA (≥70%) and that purified vector was free of replication-competent AAV. In vitro and in vivo analyses demonstrated that potency of the producer cell-derived vector was comparable to vector generated via the standard transfection method.
Collapse
Affiliation(s)
- John Martin
- Genzyme, a Sanofi company , Framingham, MA 01701-9322, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Cao M, Zhu H, Bandyopadhyay S, You H, Hermonat PL. HPV-16 E1, E2 and E6 each complement the Ad5 helper gene set, increasing rAAV2 and wt AAV2 production. Gene Ther 2012; 19:418-24. [PMID: 21850053 PMCID: PMC3220924 DOI: 10.1038/gt.2011.115] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 06/06/2011] [Accepted: 07/06/2011] [Indexed: 11/09/2022]
Abstract
Adeno-associated virus type 2 (AAV) is a popular vector for human gene therapy, because of its safety record and ability to express genes long term. Yet large-scale recombinant (r) AAV production remains problematic because of low particle yield. The adenovirus (Ad) and herpes (simplex) virus helper genes for AAV have been widely used and studied, but the helper genes of human papillomavirus (HPV) have not. HPV-16 E1, E2 and E6 help wild-type (wt) AAV productive infection in differentiating keratinocytes, however, HEK293 cells are the standard cell line used for generating rAAV. Here we demonstrate that the three HPV genes were unable to stimulate significant rAAV replication in HEK293 cells when used alone. However, when used in conjunction (complementation) with the standard Ad5 helper gene set, E1, E2 and E6 were each capable of significantly boosting rAAV DNA replication and virus particle yield. Moreover, wt AAV DNA replication and virion yield were also significantly boosted by each HPV gene along with wt Ad5 virus co-infection. Mild-to-moderate changes in rep- and cap-encoded protein levels were evident in the presence of the E1, E2 and E6 genes. Higher wt AAV DNA replication was not matched by similar increases in the levels of rep-encoded protein. Moreover, although rep mRNA was upregulated, cap mRNA was upregulated more. Higher virus yields did correlate most consistently with increased Rep52-, VP3- and VP-related 21/31 kDa species. The observed boost in wt and rAAV production by HPV genes was not unexpected, as the Ad and HPV helper gene sets do not seem to recapitulate each other. These results raise the possibility of generating improved helper gene sets derived from both the Ad and HPV helper gene sets.
Collapse
Affiliation(s)
- M Cao
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | | | | | |
Collapse
|
9
|
Gu JB, Dong YQ, Peng HJ, Chen XG. A recombinant AeDNA containing the insect-specific toxin, BmK IT1, displayed an increasing pathogenicity on Aedes albopictus. Am J Trop Med Hyg 2010; 83:614-23. [PMID: 20810829 PMCID: PMC2929060 DOI: 10.4269/ajtmh.2010.10-0074] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 04/22/2010] [Indexed: 11/07/2022] Open
Abstract
The Aedes aegypti densovirus (AeDNV) has previously shown potential in mosquito control. To improve its efficacy as a biopesticide, the gene for an excitatory insect-specific toxin from Buthus martensii Karsch (BmK IT1) was inserted into the AeDNV genome and cloned into pUCA plasmid. The coding sequence for green fluorescent protein was ligated to the C-terminus of the BmK IT1 gene as a screening marker. Recombinant and helper plasmids were cotransfected into C6/36 cells; wild-type viruses were the controls. The recombinant viruses were identified and quantified by real-time polymerase chain reaction and exposed to Ae. albopictus larvae for the evaluation of its bioinsecticidal activity. LT(50) and LD(50) bioassays showed that the recombinant AeDNV had stronger and faster pathogenic effects on Ae. albopictus than the wild-type virus. This is the first report on the recombinant AeDNA containing the insect-specific toxin, BmK IT1, which may be used to develop a novel type of insecticide.
Collapse
Affiliation(s)
- Jin-Bao Gu
- School of Public Health and Tropical Medicine, Southern Medical University, Guangdong, People's Republic of China.
| | | | | | | |
Collapse
|
10
|
Bandyopadhyay S, Cao M, Liu Y, Hermonat PL. HPV E1 up-regulates replication-related biochemistries of AAV Rep78. Virology 2010; 402:94-101. [PMID: 20378143 PMCID: PMC2873105 DOI: 10.1016/j.virol.2010.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 02/09/2010] [Accepted: 03/01/2010] [Indexed: 11/26/2022]
Abstract
Human papillomavirus type 16 (HPV) E1 protein provides helper function for the adeno-associated virus type 2 (AAV) life cycle. E1 is the replication protein of HPV, analogous to AAV Rep78, but without the endonuclease/covalent attachment activity of Rep78. Previously we have shown that E1 and Rep78 interact in vitro. Here we investigated E1's effects on Rep78 interaction with AAV's inverted terminal repeat (ITR) DNA in vitro, using purified Rep78 and E1 proteins from bacteria. E1 enhanced Rep78-ITR binding, ATPase activity, Rep78-ITR-covalent linkage and Rep78-ITR-endonuclease activity (central to AAV replication). These enhancements occurred in a dose-dependent manner whenever assayed. However, overall Rep78-plus-E1 helicase activity was lower than Rep78's helicase activity. These data suggest that E1's broad-based helper function for the AAV life cycle (AAV DNA, mRNA, and protein levels are up-regulated by E1) is likely through its ability to enhance Rep78's critical replication-required biochemistries on ITR DNA.
Collapse
Affiliation(s)
| | - Maohua Cao
- Department of Internal Medicine, 4301 West Markham St., Little Rock, AR 72205, USA
| | - Yong Liu
- Department of Internal Medicine, 4301 West Markham St., Little Rock, AR 72205, USA
- Department of Obstetrics and Gynecology, University of Arkansas for Medical Sciences, 4301 West Markham St., Little Rock, AR 72205, USA
| | - Paul L. Hermonat
- Department of Internal Medicine, 4301 West Markham St., Little Rock, AR 72205, USA
- Department of Obstetrics and Gynecology, University of Arkansas for Medical Sciences, 4301 West Markham St., Little Rock, AR 72205, USA
- Veterans Administration Medical Center, 4300 West 7 St., Little Rock, AR 72205, USA
| |
Collapse
|
11
|
The nuclear localization signal of the NS1 protein is essential for Periplaneta fuliginosa densovirus infection. Virus Res 2009; 145:134-40. [PMID: 19596391 DOI: 10.1016/j.virusres.2009.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 07/02/2009] [Accepted: 07/02/2009] [Indexed: 11/21/2022]
Abstract
The regulatory protein NS1 is a key molecule in life cycle of Periplaneta fuliginosa densovirus (PfDNV). When we ectopically expressed the PfDNV NS1 protein in non-P. fuliginosa insect cells, the NS1 protein could not enter the nucleus and remained in the cytosol. However, the NS1 was localized to both the cytosol and nucleus of cockroach hemocyte cells. So we investigated the abilities of the potential nuclear localization signal (NLS) of P. fuliginosa Densovirus non-structural protein 1 (NS1) to translocate NS1 and a carrier protein to the nucleus following transfection into insect cells. Possible nuclear localization sequences were chosen from the NS1 on the basis of the presence of basic residues, which is a common theme in most of the previously identified targeting peptides. Nuclear localization activity was found within the residues 252-257 (RRRRRR) of the NS1, while replacement of a single arginine in this region with glycine abolished it. The targeting activity was enhanced with the arginine residues added.
Collapse
|
12
|
Freitas LB, Pereira CC, Checon R, Leite JPG, Nascimento JP, Spano LC. Adeno-associated virus and human papillomavirus types in cervical samples of pregnant and non-pregnant women. Eur J Obstet Gynecol Reprod Biol 2009; 145:41-4. [DOI: 10.1016/j.ejogrb.2009.03.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 02/27/2009] [Accepted: 03/30/2009] [Indexed: 11/30/2022]
|
13
|
Kang BY, You H, Bandyopadhyay S, Agrawal N, Melchert RB, Basnakian AG, Liu Y, Hermonat PL. Cervical cancer isolate PT3, super-permissive for adeno-associated virus replication, over-expresses DNA polymerase delta, PCNA, RFC and RPA. BMC Microbiol 2009; 9:79. [PMID: 19389243 PMCID: PMC2685399 DOI: 10.1186/1471-2180-9-79] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 04/23/2009] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Adeno-associated virus (AAV) type 2 is an important virus due to its use as a safe and effective human gene therapy vector and its negative association with certain malignancies. AAV, a dependo-parvovirus, autonomously replicates in stratified squamous epithelium. Such tissue occurs in the nasopharynx and anogenitals, from which AAV has been clinically isolated. Related autonomous parvoviruses also demonstrate cell tropism and preferentially replicate in oncogenically transformed cells. Combining these two attributes of parvovirus tropism, squamous and malignant, we assayed if AAV might replicate in squamous cervical carcinoma cell isolates. RESULTS Three primary isolates (PT1-3) and two established cervical cancer cell lines were compared to normal keratinocytes (NK) for their ability to replicate AAV. One isolate, PT3, allowed for high levels of AAV DNA replication and virion production compared to others. In research by others, four cellular components are known required for in vitro AAV DNA replication: replication protein A (RPA), replication factor C (RFC), proliferating cell nuclear antigen (PCNA), and DNA polymerase delta (POLD1). Thus, we examined PT3 cells for expression of these components by DNA microarray and real-time quantitative PCR. All four components were over-expressed in PT3 over two representative low-permissive cell isolates (NK and PT1). However, this super-permissiveness did not result in PT3 cell death by AAV infection. CONCLUSION These data, for the first time, provide evidence that these four cellular components are likely important for AAV in vivo DNA replication as well as in vitro. These data also suggest that PT3 will be a useful reagent for investigating the AAV-permissive transcriptome and AAV anti-cancer effect.
Collapse
Affiliation(s)
- Bum Yong Kang
- Obstetrics and Gynecology, University of Arkansas for Medical Sciences, 4301 West Markham St, Little Rock, AR 72205, USA
- Central Arkansas Veterans Healthcare System, John L McClellan Memorial Veterans Hospital, 4300 West 7th St., Little Rock, AR 72205, USA
| | - Hong You
- Department of Internal Medicine, Gene Therapy Program, University of Arkansas for Medical Sciences, 4301 West Markham St, Little Rock, AR 72205, USA
- Obstetrics and Gynecology, University of Arkansas for Medical Sciences, 4301 West Markham St, Little Rock, AR 72205, USA
| | - Sarmistha Bandyopadhyay
- Department of Internal Medicine, Gene Therapy Program, University of Arkansas for Medical Sciences, 4301 West Markham St, Little Rock, AR 72205, USA
| | - Nalini Agrawal
- Obstetrics and Gynecology, University of Arkansas for Medical Sciences, 4301 West Markham St, Little Rock, AR 72205, USA
| | - Russell B Melchert
- Pharmaceutical Sciences, University of Arkansas for Medical Sciences, 4301 West Markham St, Little Rock, AR 72205, USA
| | - Alexei G Basnakian
- Pharmacology and Toxicology, University of Arkansas for Medical Sciences, 4301 West Markham St, Little Rock, AR 72205, USA
- Central Arkansas Veterans Healthcare System, John L McClellan Memorial Veterans Hospital, 4300 West 7th St., Little Rock, AR 72205, USA
| | - Yong Liu
- Department of Internal Medicine, Gene Therapy Program, University of Arkansas for Medical Sciences, 4301 West Markham St, Little Rock, AR 72205, USA
- Obstetrics and Gynecology, University of Arkansas for Medical Sciences, 4301 West Markham St, Little Rock, AR 72205, USA
| | - Paul L Hermonat
- Department of Internal Medicine, Gene Therapy Program, University of Arkansas for Medical Sciences, 4301 West Markham St, Little Rock, AR 72205, USA
- Obstetrics and Gynecology, University of Arkansas for Medical Sciences, 4301 West Markham St, Little Rock, AR 72205, USA
- Central Arkansas Veterans Healthcare System, John L McClellan Memorial Veterans Hospital, 4300 West 7th St., Little Rock, AR 72205, USA
| |
Collapse
|
14
|
Abstract
Vectors based on recombinant adeno-associated viruses (AAVs) are being extensively explored for gene therapy owing to some of their distinguishing characteristicss such as lack of pathogenicity, wide range of infectivity and ability to provide long-term transgene expression. For many of the same reasons, recombinant AAV (rAAV) vectors have also been used as vaccine carriers to elicit immune responses against their transgene products. Extensive studies of rAAV vectors in animal models and in the clinic have revealed some safety concerns relating to their construction and production, adverse events following delivery, potential integration of the vector’s genome into host cell genomes, and the impairment of rAAV-induced CD8+ T-cell responses, which could have dire consequences for rAAV-treated individuals. Further studies to advance our knowledge of the biology of AAV and rAAV vectors are deemed necessary to allow for their more successful application in the clinic.
Collapse
Affiliation(s)
- Shih-Wen Lin
- School of Medicine, The University of Pennsylvania, Philadelphia, PA 19104, USA and, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Hildegund CJ Ertl
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| |
Collapse
|
15
|
Adeno-associated virus infection and cervical neoplasia: is there a protective role against human papillomavirus-related carcinogenesis? Eur J Cancer Prev 2008; 17:364-8. [DOI: 10.1097/cej.0b013e3282b6fd2e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Au WW, Abdou-Salama S, Sierra-Torres CH, Al-Hendy A. Environmental risk factors for prevention and molecular intervention of cervical cancer. Int J Hyg Environ Health 2006; 210:671-678. [PMID: 17157560 DOI: 10.1016/j.ijheh.2006.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 10/06/2006] [Accepted: 10/31/2006] [Indexed: 10/23/2022]
Abstract
Cervical cancer (CC) is potentially the most preventable and treatable cancer in human but it is a leading cause for cancer morbidity and mortality in women around the world. Therefore, more innovative prevention and treatment protocols need to be developed and implemented. With better understanding of the etiology of the disease, specific prevention protocols that involve life-style modifications to minimize the impact of environmental risk factors can be developed. It may be necessary to implement unique modification protocols for different countries. In addition, antiviral vaccine is a highly promising prevention approach. With respect to therapy, the development of more specific protocols that have fewer side effects is needed. With the availability of sophisticated molecular techniques, a new generation of targeted approach that has the potential to generate outstanding efficacy is being tested. Using the siRNA technology against the expression of human papillomavirus oncogenes, specific biological pathways that are essential to the growth and survival of the CC cells can be interrupted. Another promising approach is the molecular intervention of the estrogen pathway by blocking the expression of estrogen receptors. These molecular techniques may work by reactivating endogenous regulatory processes, e.g., the core apoptotic machinery, that can cause self-destruction of the CC cells, thus providing potentially effective molecular therapy. These topics are discussed in this review.
Collapse
Affiliation(s)
- William W Au
- Department of Preventive Medicine and Community Health, The University of Texas Medical Branch, Galveston, TX 77555-1110, USA.
| | - Salama Abdou-Salama
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Carlos H Sierra-Torres
- Laboratorio de Genética Humana, Departamento de Ciencias Fisiológicas, Facultad Ciencias de la Salud, Universidad del Cauca, Popayán, Colombia
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
17
|
Au WW, Abdou-Salama S, Al-Hendy A. Inhibition of growth of cervical cancer cells using a dominant negative estrogen receptor gene. Gynecol Oncol 2006; 104:276-80. [PMID: 17137618 PMCID: PMC1831876 DOI: 10.1016/j.ygyno.2006.10.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 09/27/2006] [Accepted: 10/03/2006] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Estrogen stimulates human papilloma virus oncogene expression, promotes cervical cancer (CC) cell proliferation and prevents apoptosis. Therefore, blockage of estrogen function may have therapeutic application to CC. METHODS CasKi CC cells were transfected with an adenovirus expressing a dominant negative estrogen receptor gene (Ad-ER-DN) and their responses were investigated by RT-PCR, Flow Cytometry and Western blot assays. RESULT Transfected cells showed disturbance of cell colony morphology, reduced HPV E6 and E7 mRNA, interruption of cell proliferation, reduced cyclin D1 protein and expression of apoptosis. CONCLUSION We report, for the first time, the use of Ad-ER-DN to block estrogen receptors which led to dramatic changes in CC cells that are consistent with the possible reactivation of cellular p53 and Rb function. Their reactivation most likely allowed the recognition of existing chromosome abnormalities as a serious stress signal and the initiation of a cascade of cellular events in response to the stress, including the activation of the core apoptotic machinery which led to self-destruction of the CC cells.
Collapse
Affiliation(s)
- William W Au
- Department of Preventive Medicine and Community Health, The University of Texas Medical Branch, Galveston, TX 77555-1110, USA.
| | | | | |
Collapse
|