1
|
Roma K, Chandler TM, Dossaji Z, Patel A, Gupta K, Minacapelli CD, Rustgi V, Gish R. A Review of the Systemic Manifestations of Hepatitis B Virus Infection, Hepatitis D Virus, Hepatocellular Carcinoma, and Emerging Therapies. GASTRO HEP ADVANCES 2023; 3:276-291. [PMID: 39129946 PMCID: PMC11308766 DOI: 10.1016/j.gastha.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/26/2023] [Indexed: 08/13/2024]
Abstract
Chronic hepatitis B virus (HBV) infection affects about 262 million people worldwide, leading to over 820,000 deaths each year primarily due to cirrhosis and hepatocellular carcinoma. The World Health Organization has pledged to eliminate HBV as a health threat by 2030, but currently, no countries are on track to achieve this goal. One of the barriers to HBV elimination is stigma, causing shame, denial, self-isolation, self-rejection, and depression leading to those with chronic HBV less likely to get tested or seek treatment and more likely to conceal their infection. Other barriers include limited access to care and complicated and restrictive clinical practice guidelines. Increasing public and political efforts are necessary to raise awareness, increase access to care, and change screening and treatment guidelines. The current guidance of the American Association for the Study of Liver Diseases (AASLD) recommends testing only if patients are considered at risk, but this has proven to be ineffective. We propose a simplified "test all and treat all" approach with a 5-line guideline for HBV infection. Universal screening and treatment of adults is cost-effective and can prevent transmission by effectively managing chronic HBV. All patients who are hepatitis B surface antigen (HBsAg) positive with detectable HBV-DNA should receive treatment until HBsAg is undetectable for 12 months, as HBV-DNA transmission via blood transfusion can occur even at low viral loads of 16 copies/mL, and mother-to-child transmission is still a risk even with passive-active immunoprophylaxis. Furthermore, clinical outcomes after HBsAg clearance are significantly better than the clinical outcomes of those who remain HBsAg positive.
Collapse
Affiliation(s)
- Katerina Roma
- Internal Medicine, Kirk Kerkorian School of Medicine at the University of Nevada, Las Vegas, Nevada
| | - Toni-Marie Chandler
- Division of Gastroenterology and Hepatology, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences (RBHS), New Brunswick, New Jersey
| | - Zahra Dossaji
- Internal Medicine, Kirk Kerkorian School of Medicine at the University of Nevada, Las Vegas, Nevada
| | - Ankoor Patel
- Internal Medicine, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences (RBHS), Rutgers University, New Brunswick, New Jersey
| | - Kapil Gupta
- Division of Gastroenterology and Hepatology, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences (RBHS), New Brunswick, New Jersey
| | - Carlos D. Minacapelli
- Division of Gastroenterology and Hepatology, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences (RBHS), New Brunswick, New Jersey
- Center for Liver Diseases and Masses, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences (RBHS), New Brunswick, New Jersey
| | - Vinod Rustgi
- Division of Gastroenterology and Hepatology, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences (RBHS), New Brunswick, New Jersey
- Center for Liver Diseases and Masses, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences (RBHS), New Brunswick, New Jersey
| | - Robert Gish
- Hepatitis B Foundation, Doylestown, Pennsylvania
| |
Collapse
|
2
|
Lee HW, Lee JS, Ahn SH. Hepatitis B Virus Cure: Targets and Future Therapies. Int J Mol Sci 2020; 22:ijms22010213. [PMID: 33379331 PMCID: PMC7795643 DOI: 10.3390/ijms22010213] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection is a major global health problem. It can cause progressive liver fibrosis leading to cirrhosis with end-stage liver disease, and a markedly increased risk of hepatocellular carcinoma. In the last two decades, substantial progress has been made in the treatment of chronic hepatitis, B. However, HBV is often reactivated after stopping nucloes(t)ide analogues because antivirals alone do not directly target covalently closed circular DNA, which is the template for all viral RNAs. Therefore, although currently available antiviral therapies achieve suppression of HBV replication in the majority of patients, hepatitis B surface antigen (HBsAg) loss and seroconversion is rarely achieved despite long-term antiviral treatment (HBsAg loss of less than 10% in 5 years). Various clinical trials of agents that interrupt the HBV life cycle in hepatocytes have been conducted. Potential treatment strategies and new agents are emerging as HBV cure. A combination of current and new anti-HBV agents may increase the rate of HBsAg seroclearance; thus, optimized regimens must be validated. Here, we review the newly investigated therapeutic compounds and the results of preclinical and/or clinical trials.
Collapse
Affiliation(s)
- Hye Won Lee
- Department of Internal Medicine, College of Medicine, Yonsei University, Seoul 03722, Korea; (H.W.L.); (J.S.L.)
- Institute of Gastroenterology, College of Medicine, Yonsei University, Seoul 03722, Korea
- Yonsei Liver Center, Severance Hospital, Seoul 03722, Korea
| | - Jae Seung Lee
- Department of Internal Medicine, College of Medicine, Yonsei University, Seoul 03722, Korea; (H.W.L.); (J.S.L.)
- Institute of Gastroenterology, College of Medicine, Yonsei University, Seoul 03722, Korea
- Yonsei Liver Center, Severance Hospital, Seoul 03722, Korea
| | - Sang Hoon Ahn
- Department of Internal Medicine, College of Medicine, Yonsei University, Seoul 03722, Korea; (H.W.L.); (J.S.L.)
- Institute of Gastroenterology, College of Medicine, Yonsei University, Seoul 03722, Korea
- Yonsei Liver Center, Severance Hospital, Seoul 03722, Korea
- Correspondence: ; Tel.: +82-2-2228-1936; Fax: +82-2-393-6884
| |
Collapse
|
3
|
Quinet J, Jamard C, Burtin M, Lemasson M, Guerret S, Sureau C, Vaillant A, Cova L. Nucleic acid polymer REP 2139 and nucleos(T)ide analogues act synergistically against chronic hepadnaviral infection in vivo in Pekin ducks. Hepatology 2018; 67:2127-2140. [PMID: 29251788 PMCID: PMC6001552 DOI: 10.1002/hep.29737] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/24/2017] [Accepted: 12/12/2017] [Indexed: 12/18/2022]
Abstract
Nucleic acid polymer (NAP) REP 2139 treatment was shown to block the release of viral surface antigen in duck HBV (DHBV)-infected ducks and in patients with chronic HBV or HBV/hepatitis D virus infection. In this preclinical study, a combination therapy consisting of REP 2139 with tenofovir disoproxil fumarate (TDF) and entecavir (ETV) was evaluated in vivo in the chronic DHBV infection model. DHBV-infected duck groups were treated as follows: normal saline (control); REP 2139 TDF; REP 2139 + TDF; and REP 2139 + TDF + ETV. After 4 weeks of treatment, all animals were followed for 8 weeks. Serum DHBsAg and anti-DHBsAg antibodies were monitored by enzyme-linked immunosorbent assay and viremia by qPCR. Total viral DNA and covalently closed circular DNA (cccDNA) were quantified in autopsy liver samples by qPCR. Intrahepatic DHBsAg was assessed at the end of follow-up by immunohistochemistry. On-treatment reduction of serum DHBsAg and viremia was more rapid when REP 2139 was combined with TDF or TDF and ETV, and, in contrast to TDF monotherapy, no viral rebound was observed after treatment cessation. Importantly, combination therapy resulted in a significant decrease in intrahepatic viral DNA (>3 log) and cccDNA (>2 log), which were tightly correlated with the clearance of DHBsAg in the liver. CONCLUSION Synergistic antiviral effects were observed when REP 2139 was combined with TDF or TDF + ETV leading to control of infection in blood and liver, associated with intrahepatic viral surface antigen elimination that persisted after treatment withdrawal. Our findings suggest the potential of developing such combination therapy for treatment of chronically infected patients in the absence of pegylated interferon. (Hepatology 2018;67:2127-2140).
Collapse
Affiliation(s)
- Jonathan Quinet
- Institut National de Santé et Recherche Médicale (INSERM) U1052LyonFrance
| | - Catherine Jamard
- Institut National de Santé et Recherche Médicale (INSERM) U1052LyonFrance
| | - Madeleine Burtin
- Institut National de Santé et Recherche Médicale (INSERM) U1052LyonFrance
| | | | | | - Camille Sureau
- Institut National de la Transfusion Sanguine (INTS)ParisFrance
| | | | - Lucyna Cova
- Institut National de Santé et Recherche Médicale (INSERM) U1052LyonFrance
| |
Collapse
|
4
|
Schöneweis K, Motter N, Roppert PL, Lu M, Wang B, Roehl I, Glebe D, Yang D, Morrey JD, Roggendorf M, Vaillant A. Activity of nucleic acid polymers in rodent models of HBV infection. Antiviral Res 2017; 149:26-33. [PMID: 29126900 DOI: 10.1016/j.antiviral.2017.10.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/19/2017] [Accepted: 10/27/2017] [Indexed: 12/18/2022]
Abstract
Nucleic acid polymers (NAPs) block the release of HBsAg from infected hepatocytes. These compounds have been previously shown to have the unique ability to eliminate serum surface antigen in DHBV-infected Pekin ducks and achieve multilog reduction of HBsAg or HBsAg loss in patients with chronic HBV infection and HBV/HDV coinfection. In ducks and humans, the blockage of HBsAg release by NAPs occurs by the selective targeting of the assembly and/or secretion of subviral particles (SVPs). The clinically active NAP species REP 2055 and REP 2139 were investigated in other relevant animal models of HBV infection including woodchucks chronically infected with WHV, HBV transgenic mice and HBV infected SCID-Hu mice. The liver accumulation of REP 2139 in woodchucks following subcutaneous administration was examined and was found to be similar to that observed in mice and ducks. However, in woodchucks, NAP treatment was associated with only mild (36-79% relative to baseline) reductions in WHsAg (4/10 animals) after 3-5 weeks of treatment without changes in serum WHV DNA. In HBV infected SCID-Hu mice, REP 2055 treatment was not associated with any reduction of HBsAg, HBeAg or HBV DNA in the serum after 28 days of treatment. In HBV transgenic mice, no reductions in serum HBsAg were observed with REP 2139 with up to 12 weeks of treatment. In conclusion, the antiviral effects of NAPs in DHBV infected ducks and patients with chronic HBV infection were weak or absent in woodchuck and mouse models despite similar liver accumulation of NAPs in all these species, suggesting that the mechanisms of SVP assembly and or secretion present in rodent models differs from that in DHBV and chronic HBV infections.
Collapse
Affiliation(s)
- Katrin Schöneweis
- Department of Virology, University of Duisburg-Essen, Essen, Germany
| | - Neil Motter
- Institute for Antiviral Research, Utah State University, Logan, UT, USA
| | - Pia L Roppert
- Institute of Medical Virology, National Reference Centre for Hepatitis B and D Viruses, German Centre for Infection Research (DZIF), Justus Liebig University of Giessen, Giessen, Germany
| | - Mengji Lu
- Department of Virology, University of Duisburg-Essen, Essen, Germany
| | - Baoju Wang
- Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Dieter Glebe
- Institute of Medical Virology, National Reference Centre for Hepatitis B and D Viruses, German Centre for Infection Research (DZIF), Justus Liebig University of Giessen, Giessen, Germany
| | - Dongliang Yang
- Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - John D Morrey
- Institute for Antiviral Research, Utah State University, Logan, UT, USA
| | | | | |
Collapse
|
5
|
Vaillant A. Nucleic acid polymers: Broad spectrum antiviral activity, antiviral mechanisms and optimization for the treatment of hepatitis B and hepatitis D infection. Antiviral Res 2016; 133:32-40. [PMID: 27400989 DOI: 10.1016/j.antiviral.2016.07.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/04/2016] [Accepted: 07/06/2016] [Indexed: 12/18/2022]
Abstract
Antiviral polymers are a well-studied class of broad spectrum viral attachment/entry inhibitors whose activity increases with polymer length and with increased amphipathic (hydrophobic) character. The newest members of this class of compounds are nucleic acid polymers whose activity is derived from the sequence independent properties of phosphorothioated oligonucleotides as amphipathic polymers. Although the antiviral mechanisms and broad spectrum antiviral activity of nucleic acid polymers mirror the functionality of other members of this class, they exert in addition a unique post entry activity in hepatitis B infection which inhibits the release of HBsAg from infected hepatocytes. This review provides a general overview of the antiviral polymer class with a focus on nucleic acid polymers and their development as therapeutic agents for the treatment of hepatitis B/hepatitis D. This article forms part of a symposium in Antiviral Research on ''An unfinished story: from the discovery of the Australia antigen to the development of new curative therapies for hepatitis B.''.
Collapse
Affiliation(s)
- Andrew Vaillant
- Replicor Inc., 6100 Royalmount Avenue, Montreal, Quebec, H4P 2R2, Canada.
| |
Collapse
|
6
|
Safety and Efficacy of Nucleic Acid Polymers in Monotherapy and Combined with Immunotherapy in Treatment-Naive Bangladeshi Patients with HBeAg+ Chronic Hepatitis B Infection. PLoS One 2016; 11:e0156667. [PMID: 27257978 PMCID: PMC4892580 DOI: 10.1371/journal.pone.0156667] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/16/2016] [Indexed: 02/07/2023] Open
Abstract
Previous in vivo studies have suggested that nucleic acid polymers (NAPs) may reduce circulating levels of HBsAg in the blood by blocking its release from infected hepatocytes and that this effect may have clinical benefit. NAP treatment, was evaluated in two clinical studies in patients with HBeAg positive chronic HBV infection. The REP 101 study examined REP 2055 monotherapy in 8 patients and the REP 102 study examined REP 2139-Ca, in monotherapy in 12 patients, 9 of which transitioned to short term combined treatment with pegylated interferon alpha 2a or thymosin alpha 1. In both studies NAP monotherapy was accompanied by 2–7 log reductions of serum HBsAg, 3–9 log reductions in serum HBV DNA and the appearance of serum anti-HBsAg antibodies (10–1712 mIU / ml). Eight of the 9 patients transitioning to combined treatment with immunotherapy (pegylated interferon or thymosin alpha 1) in the REP 102 study experienced HBsAg loss and all 9 patients experienced substantial increases in serum anti-HBsAg antibody titers before withdrawal of therapy. For 52 weeks after removal of REP 2055 therapy, rebound of serum viremia (HBV DNA > 1000 copies / ml, HBsAg > 1IU / ml) was not observed in 3 / 8 patients. Suppression of serum virema was further maintained for 290 and 231 weeks in 2 of these patients. After withdrawal of all therapy in the 9 patients that transitioned to combination therapy in the REP 102 study, 8 patients achieved HBV DNA < 116 copies / ml after treatment withdrawal. Viral rebound occurred over a period of 12 to 123 weeks in 7 patients but was still absent in two patients at 135 and 137 weeks of follow-up. Administration tolerability issues observed with REP 2055 were rare with REP 2139-Ca but REP 2139-Ca therapy was accompanied by hair loss, dysphagia and dysgeusia which were considered related to heavy metal exposure endemic at the trial site. These preliminary studies suggest that NAP can elicit important antiviral responses during treatment which may improve the effect of immunotherapy. NAPs may be a potentially useful component of future combination therapies for the treatment of chronic hepatitis B. Trial Registration: ClinicalTrials.gov NCT02646163 and NCT02646189
Collapse
|
7
|
Noordeen F, Scougall CA, Grosse A, Qiao Q, Ajilian BB, Reaiche-Miller G, Finnie J, Werner M, Broering R, Schlaak JF, Vaillant A, Jilbert AR. Therapeutic Antiviral Effect of the Nucleic Acid Polymer REP 2055 against Persistent Duck Hepatitis B Virus Infection. PLoS One 2015; 10:e0140909. [PMID: 26560490 PMCID: PMC4641618 DOI: 10.1371/journal.pone.0140909] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/01/2015] [Indexed: 12/18/2022] Open
Abstract
Previous studies have demonstrated that nucleic acid polymers (NAPs) have both entry and post-entry inhibitory activity against duck hepatitis B virus (DHBV) infection. The inhibitory activity exhibited by NAPs prevented DHBV infection of primary duck hepatocytes in vitro and protected ducks from DHBV infection in vivo and did not result from direct activation of the immune response. In the current study treatment of primary human hepatocytes with NAP REP 2055 did not induce expression of the TNF, IL6, IL10, IFNA4 or IFNB1 genes, confirming the lack of direct immunostimulation by REP 2055. Ducks with persistent DHBV infection were treated with NAP 2055 to determine if the post-entry inhibitory activity exhibited by NAPs could provide a therapeutic effect against established DHBV infection in vivo. In all REP 2055-treated ducks, 28 days of treatment lead to initial rapid reductions in serum DHBsAg and DHBV DNA and increases in anti-DHBs antibodies. After treatment, 6/11 ducks experienced a sustained virologic response: DHBsAg and DHBV DNA remained at low or undetectable levels in the serum and no DHBsAg or DHBV core antigen positive hepatocytes and only trace amounts of DHBV total and covalently closed circular DNA (cccDNA) were detected in the liver at 9 or 16 weeks of follow-up. In the remaining 5/11 REP 2055-treated ducks, all markers of DHBV infection rapidly rebounded after treatment withdrawal: At 9 and 16 weeks of follow-up, levels of DHBsAg and DHBcAg and DHBV total and cccDNA in the liver had rebounded and matched levels observed in the control ducks treated with normal saline which remained persistently infected with DHBV. These data demonstrate that treatment with the NAP REP 2055 can lead to sustained control of persistent DHBV infection. These effects may be related to the unique ability of REP 2055 to block release of DHBsAg from infected hepatocytes.
Collapse
Affiliation(s)
- Faseeha Noordeen
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Department of Microbiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Catherine A. Scougall
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Arend Grosse
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Qiao Qiao
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Behzad B. Ajilian
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Georget Reaiche-Miller
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - John Finnie
- SA Pathology, Hanson Institute, Centre For Neurological Diseases, Adelaide, SA, Australia
| | - Melanie Werner
- Department of Gastroenterology and Hepatology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Ruth Broering
- Department of Gastroenterology and Hepatology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Joerg F. Schlaak
- Department of Gastroenterology and Hepatology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | | | - Allison R. Jilbert
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- * E-mail: (AJ); (AV)
| |
Collapse
|
8
|
Maenz C, Loscher C, Iwanski A, Bruns M. Inhibition of duck hepatitis B virus infection of liver cells by combined treatment with viral e antigen and carbohydrates. J Gen Virol 2009; 89:3016-3026. [PMID: 19008388 DOI: 10.1099/vir.0.2008/003541-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The e antigen (eAg) of duck hepatitis B virus (DHBV) is a glycosylated secretory protein with a currently unknown function. We concentrated this antigen from the supernatants of persistently infected primary duck liver cell cultures by ammonium sulphate precipitation, adsorption chromatography over concanavalin A Sepharose, preparative isoelectric focusing and molecular sieve chromatography. The combined treatment of duck liver cells with DHBV eAg (DHBe) concentrate and alpha-methyl-d-mannopyranoside strongly inhibited DHBV replication at de novo infection. When DHBe was added to non-infected primary duck liver cells, it was found to be associated with liver sinusoidal endothelial cells. This binding could be inhibited by the addition of alpha-methyl-d-mannopyranoside and other sugar molecules. The inhibitory effect of DHBe on infection could play a role in maintaining viral persistence.
Collapse
Affiliation(s)
- Claudia Maenz
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, 20251 Hamburg, Germany
| | - Christine Loscher
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, 20251 Hamburg, Germany
| | - Alicja Iwanski
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, 20251 Hamburg, Germany
| | - Michael Bruns
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, 20251 Hamburg, Germany
| |
Collapse
|
9
|
Chojnacki J, Grgacic EVL. Enveloped viral fusion: insights into the fusion of hepatitis B viruses. Future Virol 2008. [DOI: 10.2217/17460794.3.6.543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Viral fusion, the mechanism by which viruses gain entry into the host cell, is a key step in the replication cycle and an important new target in antiviral therapy and vaccine strategies owing to the conservation of the envelope domains involved and their resistance to immune pressure. The fusion domains of HIV-1 have been studied intensively resulting in the potent antiviral agent T20 and the identification of broadly neutralizing antibody epitopes for vaccine development. Another chronic disease-causing virus, HBV, requires the identification of new antiviral agents to deal with the disease burden of 350 million chronically-infected individuals worldwide, 20% of whom will develop liver cancer. The aim of this review is to bring together basic knowledge on the envelope signatures, mechanisms and strategies for the study of viral fusion and how that knowledge has been applied to the study of hepadnaviral fusion.
Collapse
Affiliation(s)
- Jakub Chojnacki
- Abteilung Virologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Elizabeth VL Grgacic
- Macfarlane Burnet Institute for Medical Research & Public Health, 85 Commercial Road, Melbourne, 3004, Australia
| |
Collapse
|
10
|
Abstract
Hepatitis B viruses are small enveloped DNA viruses referred to as Hepadnaviridae that cause transient or persistent (chronic) infections of the liver. This family is divided into two genera, orthohepadnavirus and avihepadnavirus, which infect mammals or birds as natural hosts, respectively. They possess a narrow host range determined by the initial steps of viral attachment and entry. Hepatitis B virus is the focus of biomedical research owing to its medical significance. Approximately 2 billion people have serological evidence of hepatitis B, and of these approximately 350 million people have chronic infections (World Health Organisation, Fact Sheet WHO/204, October 2000). Depending on viral and host factors, the outcomes of infection with hepatitis B virus vary between acute hepatitis, mild or severe chronic hepatitis or cirrhosis. Chronic infections are associated with an increased risk for the development of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Hans-Jürgen Netter
- Monash University, Department of Microbiology, Clayton Campus, Victoria 3800, Australia
| | - Shau-Feng Chang
- Industrial Technology Research Institute, Biomedical Engineering Laboratories, 300 Hsinchu, Taiwan
| | - Michael Bruns
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, 20251 Hamburg, Germany
| |
Collapse
|
11
|
Maenz C, Chang SF, Iwanski A, Bruns M. Entry of duck hepatitis B virus into primary duck liver and kidney cells after discovery of a fusogenic region within the large surface protein. J Virol 2007; 81:5014-23. [PMID: 17360753 PMCID: PMC1900202 DOI: 10.1128/jvi.02290-06] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hepatitis B viruses exhibit a narrow host range specificity that is believed to be mediated by a domain of the large surface protein, designated L. For duck hepatitis B virus, it has been shown that the pre-S domain of L binds to carboxypeptidase D, a cellular receptor present in many species on a wide variety of cell types. Nonetheless, only hepatocytes become infected. It has remained vague which viral features determine host range specificity and organotropicity. By using chymotrypsin to treat duck hepatitis B virus, we addressed the question of whether a putative fusogenic region within the amino-terminal end of the small surface protein may participate in viral entry and possibly constitute one of the determinants of the host range of the virus. Addition of the enzyme to virions resulted in increased infectivity. Remarkably, even remnants of enzyme-treated subviral particles proved to be inhibitory to infection. A noninfectious deletion mutant devoid of the binding region for carboxypeptidase D could be rendered infectious for primary duck hepatocytes by treatment with chymotrypsin. Although because of the protease treatment mutant and wild-type viruses may have become infectious in an unspecific and receptor-independent manner, their host range specificity was not affected, as shown by the inability of the virus to replicate in different hepatoma cell lines, as well as primary chicken hepatocytes. Instead, the organotropicity of the virus could be reduced, which was demonstrated by infection of primary duck kidney cells.
Collapse
Affiliation(s)
- Claudia Maenz
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, Martinistrasse 52, D-20251 Hamburg, Germany
| | | | | | | |
Collapse
|