1
|
Do H, Li ZR, Tripathi PK, Mitra S, Guerra S, Dash A, Weerasekera D, Makthal N, Shams S, Aggarwal S, Singh BB, Gu D, Du Y, Olsen RJ, LaRock C, Zhang W, Kumaraswami M. Engineered probiotic overcomes pathogen defences using signal interference and antibiotic production to treat infection in mice. Nat Microbiol 2024; 9:502-513. [PMID: 38228859 PMCID: PMC10847043 DOI: 10.1038/s41564-023-01583-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 12/11/2023] [Indexed: 01/18/2024]
Abstract
Probiotic supplements are suggested to promote human health by preventing pathogen colonization. However, the mechanistic bases for their efficacy in vivo are largely uncharacterized. Here using metabolomics and bacterial genetics, we show that the human oral probiotic Streptococcus salivarius K12 (SAL) produces salivabactin, an antibiotic that effectively inhibits pathogenic Streptococcus pyogenes (GAS) in vitro and in mice. However, prophylactic dosing with SAL enhanced GAS colonization in mice and ex vivo in human saliva. We showed that, on co-colonization, GAS responds to a SAL intercellular peptide signal that controls SAL salivabactin production. GAS produces a secreted protease, SpeB, that targets SAL-derived salivaricins and enhances GAS survival. Using this knowledge, we re-engineered probiotic SAL to prevent signal eavesdropping by GAS and potentiate SAL antimicrobials. This engineered probiotic demonstrated superior efficacy in preventing GAS colonization in vivo. Our findings show that knowledge of interspecies interactions can identify antibiotic- and probiotic-based strategies to combat infection.
Collapse
Affiliation(s)
- Hackwon Do
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
- Research unit of cryogenic novel material, Korea Polar Research Institute, Incheon, South Korea
| | - Zhong-Rui Li
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Praveen Kumar Tripathi
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Sonali Mitra
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Stephanie Guerra
- Department of Microbiology and Immunology, Emory School of Medicine, Atlanta, GA, USA
| | - Ananya Dash
- Department of Microbiology and Immunology, Emory School of Medicine, Atlanta, GA, USA
| | - Dulanthi Weerasekera
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Nishanth Makthal
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Syed Shams
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Shifu Aggarwal
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Bharat Bhushan Singh
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Di Gu
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Yongle Du
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Randall J Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | - Christopher LaRock
- Department of Microbiology and Immunology, Emory School of Medicine, Atlanta, GA, USA
- Department of Medicine, Division of Infectious Diseases, Emory School of Medicine, Atlanta, GA, USA
- Emory Antibiotic Resistance Center, Emory School of Medicine, Atlanta, GA, USA
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | - Muthiah Kumaraswami
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, USA.
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
2
|
Xu H, Cai L, Hufnagel S, Cui Z. Intranasal vaccine: Factors to consider in research and development. Int J Pharm 2021; 609:121180. [PMID: 34637935 DOI: 10.1016/j.ijpharm.2021.121180] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 01/01/2023]
Abstract
Most existing vaccines for human use are administered by needle-based injection. Administering vaccines needle-free intranasally has numerous advantages over by needle-based injection, but there are only a few intranasal vaccines that are currently approved for human use, and all of them are live attenuated influenza virus vaccines. Clearly, there are immunological as well as non-immunological challenges that prevent vaccine developers from choosing the intranasal route of administration. We reviewed current approved intranasal vaccines and pipelines and described the target of intranasal vaccines, i.e. nose and lymphoid tissues in the nasal cavity. We then analyzed factors unique to intranasal vaccines that need to be considered when researching and developing new intranasal vaccines. We concluded that while the choice of vaccine formulations, mucoadhesives, mucosal and epithelial permeation enhancers, and ligands that target M-cells are important, safe and effective intranasal mucosal vaccine adjuvants are needed to successfully develop an intranasal vaccine that is not based on live-attenuated viruses or bacteria. Moreover, more effective intranasal vaccine application devices that can efficiently target a vaccine to lymphoid tissues in the nasal cavity as well as preclinical animal models that can better predict intranasal vaccine performance in clinical trials are needed to increase the success rate of intranasal vaccines in clinical trials.
Collapse
Affiliation(s)
- Haiyue Xu
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States
| | - Lucy Cai
- University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Stephanie Hufnagel
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States
| | - Zhengrong Cui
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States.
| |
Collapse
|
3
|
Gogos A, Federle MJ. Modeling Streptococcus pyogenes Pharyngeal Colonization in the Mouse. Front Cell Infect Microbiol 2019; 9:137. [PMID: 31119108 PMCID: PMC6507483 DOI: 10.3389/fcimb.2019.00137] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022] Open
Abstract
Streptococcus pyogenes, or Group A Streptococcus (GAS), is a human-restricted pathogen most commonly found in the posterior oropharynx of the human host. The bacterium is responsible for 600 million annual cases of pharyngitis globally and has been found to asymptomatically colonize the pharynxes of 4-30% of the population. As such, many studies have utilized animals as models in order to decipher bacterial and host elements that contribute to the bacterial-pharyngeal interaction and determine differences between acute infection and asymptomatic colonization. The aim of this review is to first describe both bacterial and host factors that are important for the pharyngeal persistence of GAS in humans, then to detail the bacterial and host factors that are important for colonization in murine model, and finally to compare the two in order to evaluate the strength of murine pharyngeal colonization as a model for the human-GAS pharyngeal interaction.
Collapse
Affiliation(s)
- Artemis Gogos
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, United States
| | - Michael J. Federle
- Department of Medicinal Chemistry and Pharmacognosy, Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
4
|
Di Mario G, Soprana E, Gubinelli F, Panigada M, Facchini M, Fabiani C, Garulli B, Basileo M, Cassone A, Siccardi A, Donatelli I, Castrucci MR. Immunogenicity of modified vaccinia virus Ankara expressing the hemagglutinin stalk domain of pandemic (H1N1) 2009 influenza virus. Pathog Glob Health 2017; 111:69-75. [PMID: 28081672 PMCID: PMC5375617 DOI: 10.1080/20477724.2016.1275464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
BACKGROUND Vaccination offers protection against influenza, although current vaccines need to be reformulated each year. The development of a broadly protective influenza vaccine would guarantee the induction of heterosubtypic immunity also against emerging influenza viruses of a novel subtype. Vaccine candidates based on the stalk region of the hemagglutinin (HA) have the potential to induce broad and persistent protection against diverse influenza A viruses. METHODS Modified vaccinia virus Ankara (MVA) expressing a headless HA (hlHA) of A/California/4/09 (CA/09) virus was used as a vaccine to immunize C57BL/6 mice. Specific antibody and cell-mediated immune responses were determined, and challenge experiments were performed by infecting vaccinated mice with CA/09 virus. RESULTS Immunization of mice with CA/09-derived hlHA, vectored by MVA, was able to elicit influenza-specific broad cross-reactive antibodies and cell-mediated immune responses, but failed to induce neutralizing antibodies and did not protect mice against virus challenge. CONCLUSION Although highly immunogenic, our vaccine was unable to induce a protective immunity against influenza. A misfolded and unstable conformation of the hlHA molecule may have affected its capacity of inducing neutralizing antiviral, conformational antibodies. Design of stable hlHA-based immunogens and their delivery by recombinant MVA-based vectors has the potential of improving this promising approach for a universal influenza vaccine.
Collapse
Affiliation(s)
- Giuseppina Di Mario
- a Department of Infectious Diseases , Istituto Superiore di Sanità , Rome , Italy
| | - Elisa Soprana
- b Molecular Immunology Unit , San Raffaele Research Institute , Milan , Italy
| | - Francesco Gubinelli
- b Molecular Immunology Unit , San Raffaele Research Institute , Milan , Italy
| | - Maddalena Panigada
- b Molecular Immunology Unit , San Raffaele Research Institute , Milan , Italy
| | - Marzia Facchini
- a Department of Infectious Diseases , Istituto Superiore di Sanità , Rome , Italy
| | - Concetta Fabiani
- a Department of Infectious Diseases , Istituto Superiore di Sanità , Rome , Italy
| | - Bruno Garulli
- c Department of Biology and Biotechnology "Charles Darwin" , Sapienza University of Rome , Rome , Italy
| | - Michela Basileo
- d Polo d'Innovazione della Genomica, Genetica e Biologia , University of Perugia , Perugia , Italy
| | - Antonio Cassone
- d Polo d'Innovazione della Genomica, Genetica e Biologia , University of Perugia , Perugia , Italy
| | - Antonio Siccardi
- b Molecular Immunology Unit , San Raffaele Research Institute , Milan , Italy
| | - Isabella Donatelli
- a Department of Infectious Diseases , Istituto Superiore di Sanità , Rome , Italy
| | - Maria R Castrucci
- a Department of Infectious Diseases , Istituto Superiore di Sanità , Rome , Italy
| |
Collapse
|
5
|
Di Mario G, Garulli B, Sciaraffia E, Facchini M, Donatelli I, Castrucci MR. A heat-inactivated H7N3 vaccine induces cross-reactive cellular immunity in HLA-A2.1 transgenic mice. Virol J 2016; 13:56. [PMID: 27036323 PMCID: PMC4815128 DOI: 10.1186/s12985-016-0513-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/23/2016] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Cross-reactive immunity against heterologous strains of influenza virus has the potential to provide partial protection in individuals that lack the proper neutralizing antibodies. In particular, the boosting of memory CD8+ T cell responses to conserved viral proteins can attenuate disease severity caused by influenza virus antigenic variants or pandemic strains. However, little is yet known about which of these conserved internal antigens would better induce and/or recall memory CD8+ T cells after in vivo administration of an inactivated whole virus vaccine. METHODS We explored the CD8 + T cell responses to selected epitopes of the internal proteins of an H7N3 influenza virus that were cross-reactive with A/PR/8/34 virus in HLA-A2.1 transgenic (AAD) mice. RESULTS CD8+ T cells against dominant and subdominant epitopes were detected upon infection of mice with live H7N3 virus, whereas immunization with non-replicating virus elicited CD8+ T cell responses against mostly immunodominant epitopes, which were rapidly recalled following infection with A/PR/8/34 virus. These vaccine-induced T cell responses were able to reduce the lung viral load in mice challenged intranasally with the heterologous influenza virus. CONCLUSIONS A single immunization with non-replicating influenza virus vaccines may be able to elicit or recall cross-reactive CD8+ T cell responses to conserved immunodominant epitopes and, to some extent, counteract an infection by heterologous virus.
Collapse
Affiliation(s)
- Giuseppina Di Mario
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Bruno Garulli
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185, Rome, Italy
| | - Ester Sciaraffia
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Marzia Facchini
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Isabella Donatelli
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Maria R Castrucci
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy.
| |
Collapse
|
6
|
Tan HX, Gilbertson BP, Jegaskanda S, Alcantara S, Amarasena T, Stambas J, McAuley JL, Kent SJ, De Rose R. Recombinant influenza virus expressing HIV-1 p24 capsid protein induces mucosal HIV-specific CD8 T-cell responses. Vaccine 2016; 34:1172-9. [PMID: 26826545 DOI: 10.1016/j.vaccine.2016.01.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/24/2015] [Accepted: 01/17/2016] [Indexed: 10/22/2022]
Abstract
Influenza viruses are promising mucosal vaccine vectors for HIV but their use has been limited by difficulties in engineering the expression of large amounts of foreign protein. We developed recombinant influenza viruses incorporating the HIV-1 p24 gag capsid into the NS-segment of PR8 (H1N1) and X31 (H3N2) influenza viruses with the use of multiple 2A ribosomal skip sequences. Despite the insertion of a sizable HIV-1 gene into the influenza genome, recombinant viruses were readily rescued to high titers. Intracellular expression of p24 capsid was confirmed by in vitro infection assays. The recombinant influenza viruses were subsequently tested as mucosal vaccines in BALB/c mice. Recombinant viruses were attenuated and safe in immunized mice. Systemic and mucosal HIV-specific CD8 T-cell responses were elicited in mice that were immunized via intranasal route with a prime-boost regimen. Isolated HIV-specific CD8 T-cells displayed polyfunctional cytokine and degranulation profiles. Mice boosted via intravaginal route induced recall responses from the distal lung mucosa and developed heightened HIV-specific CD8 T-cell responses in the vaginal mucosa. These findings demonstrate the potential utility of recombinant influenza viruses as vaccines for mucosal immunity against HIV-1 infection.
Collapse
Affiliation(s)
- Hyon-Xhi Tan
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| | - Brad P Gilbertson
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| | - Sinthujan Jegaskanda
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia; Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, MD 20892, United States
| | - Sheilajen Alcantara
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| | - Thakshila Amarasena
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| | - John Stambas
- School of Medicine, Deakin University, Geelong, Victoria, Australia; CSIRO Animal Health Laboratories, Geelong, Victoria, Australia
| | - Julie L McAuley
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia; Melbourne Sexual Health Centre, Alfred Hospital, Monash University Central Clinical School, Victoria, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Victoria, Australia.
| | - Robert De Rose
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| |
Collapse
|
7
|
Induction of antibodies and T cell responses by a recombinant influenza virus carrying an HIV-1 TatΔ51-59 protein in mice. BIOMED RESEARCH INTERNATIONAL 2014; 2014:904038. [PMID: 24949479 PMCID: PMC4053076 DOI: 10.1155/2014/904038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/17/2014] [Accepted: 04/22/2014] [Indexed: 11/17/2022]
Abstract
Recombinant influenza viruses hold promise as vectors for vaccines to prevent transmission of mucosal pathogens. In this study, we generated a recombinant WSN/TatΔ(51-59) virus in which Tat protein lacking residues 51 to 59 of the basic domain was inserted into the N-terminus of the hemagglutinin (HA) of A/WSN/33 virus. The TatΔ(51-59) insertion into the viral HA caused a 2-log reduction in viral titers in cell culture, compared with the parental A/WSN/33 virus, and severely affected virus replication in vivo. Nevertheless, Tat-specific antibodies and T cell responses were elicited upon a single intranasal immunization of BALB/c mice with WSN/TatΔ(51-59) virus. Moreover, Tat-specific immune responses were also detected following vaccine administration via the vaginal route. These data provide further evidence that moderately large HIV antigens can be delivered by chimeric HA constructs and elicit specific immune responses, thus increasing the options for the potential use of recombinant influenza viruses, and their derivatives, for prophylactic and therapeutic vaccines.
Collapse
|
8
|
Enhancement of T cell-mediated immune responses to whole inactivated influenza virus by chloroquine treatment in vivo. Vaccine 2013; 31:1717-24. [PMID: 23380456 DOI: 10.1016/j.vaccine.2013.01.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 12/16/2012] [Accepted: 01/21/2013] [Indexed: 11/21/2022]
Abstract
Current influenza vaccines induce poor cross-reactive CD8+ T cell responses. Cellular immunity is generally specific for epitopes that are remarkably conserved among different subtypes, suggesting that strategies to improve the cross-presentation of viral antigens by dendritic cells (DC) could elicit a broadly protective immune response. Previous studies have shown that limited proteolysis within the endocytic pathway can favorably influence antigen processing and thus immune responses. Herein, we demonstrate that chloroquine improves the cross-presentation of non-replicating influenza virus in vitro and T cell responses in mice following a single administration of inactivated HI-X31 virus. CD8+ T cells were also recruited to lymph nodes draining the site of infection and able to reduce viral load following pulmonary challenge with the heterologous PR8 virus. These findings may have implications for vaccination strategies aimed at improving the cross-presentation capacity of DCs and thus the size of effector and memory CD8+ T cells against influenza vaccines.
Collapse
|
9
|
Trivalent live attenuated influenza-simian immunodeficiency virus vaccines: efficacy and evolution of cytotoxic T lymphocyte escape in macaques. J Virol 2013; 87:4146-60. [PMID: 23345519 DOI: 10.1128/jvi.02645-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There is an urgent need for a human immunodeficiency virus (HIV) vaccine that induces robust mucosal immunity. CD8(+) cytotoxic T lymphocytes (CTLs) apply substantial antiviral pressure, but CTLs to individual epitopes select for immune escape variants in both HIV in humans and SIV in macaques. Inducing multiple simian immunodeficiency virus (SIV)-specific CTLs may assist in controlling viremia. We vaccinated 10 Mane-A1*08401(+) female pigtail macaques with recombinant influenza viruses expressing three Mane-A1*08401-restricted SIV-specific CTL epitopes and subsequently challenged the animals, along with five controls, intravaginally with SIV(mac251). Seroconversion to the influenza virus vector resulted and small, but detectable, SIV-specific CTL responses were induced. There was a boost in CTL responses after challenge but no protection from high-level viremia or CD4 depletion was observed. All three CTL epitopes underwent a coordinated pattern of immune escape during early SIV infection. CTL escape was more rapid in the vaccinees than in the controls at the more dominant CTL epitopes. Although CTL escape can incur a "fitness" cost to the virus, a putative compensatory mutation 20 amino acids upstream from an immunodominant Gag CTL epitope also evolved soon after the primary CTL escape mutation. We conclude that vaccines based only on CTL epitopes will likely be undermined by rapid evolution of both CTL escape and compensatory mutations. More potent and possibly broader immune responses may be required to protect pigtail macaques from SIV.
Collapse
|
10
|
Naz RK. Female genital tract immunity: distinct immunological challenges for vaccine development. J Reprod Immunol 2012; 93:1-8. [DOI: 10.1016/j.jri.2011.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 09/27/2011] [Accepted: 09/30/2011] [Indexed: 10/14/2022]
|