1
|
Chen YF, Wang SH, Jan JS. Peptide-Based Nanoparticles Suppress Hepatic Inflammation via Blockage of Human Antigen R. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406963. [PMID: 39344590 DOI: 10.1002/smll.202406963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Indexed: 10/01/2024]
Abstract
Human antigen R (HuR), which is a mRNA-binding protein that stabilizes and regulates mRNA translation, is found to have increased expression in inflammation, cancer and other diseases, making HuR to be a promising drug target. This study reports a peptide-based nanoparticle (NP) system exhibits potent anti-inflammatory activity to ameliorate acute liver injury via the ability of peptides to inhibit the mRNA binding site of HuR and block downstream signaling. Molecular modeling provided structural evidence indicating that the peptides interact with the RNA-binding site of HuR, mainly via hydrogen-bonding and hydrophobic interactions. These peptide-based NPs can act as nanocarriers to deliver peptides into cells to compete with the mRNA binding site of HuR, evidenced by the reduction of antibody recognition to the native protein and the exhibition of anti-inflammatory activity against activated macrophage cells, with no adverse effect in vitro and in vivo. In LPS/D-GalN-induced hepatic sepsis with high dosage of LPS/GalN, administration of the NPs significantly attenuated necrosis and HuR expression, resulting in the significant improvement of animal survival rate, suggesting their therapeutic potential for hepatic inflammation and a broad range of HuR-overexpressed diseases.
Collapse
Affiliation(s)
- Yu-Fon Chen
- Master Program in Biomedicine, National Taitung University, Taitung, 95092, Taiwan
- Department of Chemical engineering, National Cheng Kung University, Tainan, 70701, Taiwan
| | - Sheng-Hung Wang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan
| | - Jeng-Shiung Jan
- Department of Chemical engineering, National Cheng Kung University, Tainan, 70701, Taiwan
| |
Collapse
|
2
|
Iamborwornkun N, Kitkumthorn N, Stevenson A, Kirk A, Graham SV, Chuen-im T. Identifying regulatory elements and their RNA-binding proteins in the 3' untranslated regions of papillomavirus late mRNAs. Biomed Rep 2024; 21:125. [PMID: 39006509 PMCID: PMC11240274 DOI: 10.3892/br.2024.1813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/23/2024] [Indexed: 07/16/2024] Open
Abstract
Human papillomaviruses (HPVs) infect cutaneous and mucosal epithelia to cause benign (warts) and malignant lesions (e.g. cervical cancer). Bovine papillomaviruses (BPVs) infect fibroblasts to cause fibropapillomas but can also infect cutaneous epithelial cells. For HPV-1, -16, -31 and BPV-1, cis-acting RNA elements in the late 3' untranslated region (3'UTR) control expression of virus proteins by binding host cell proteins. The present study compared the effects on gene expression of the cis-acting elements of seven PV late 3'UTRs (HPV-6b, -11, -16, -31 and BPV-1, -3 and -4) representing a range of different genera and species and pathological properties. pSV-beta-galactosidase reporter plasmids containing the late 3'UTRs from seven PVs were transiently transfected into cervical adenocarcinoma HeLa cells, and reporter gene expression quantified by reverse transcription-quantitative PCR and a beta-galactosidase assay. All elements inhibited gene expression in keratinocytes. Cancer-related types HPV-16 and -31, had the greatest inhibitory activity whereas the lowest inhibition was found in the non-cancer related types, BPV-3 and HPV-11. Using RBPmap version 1.1, bioinformatics predictions of factors binding the elements identified proteins which function mainly in mRNA splicing. Markedly, in terms of protein binding motifs, BPV late 3'UTR elements were similar to those of HPV-1a but not to other HPVs. Using HPV-1a as a model and siRNA depletion, the bioinformatics predictions were tested and it was found that PABPC4 was responsible for some of the 3'UTR repressive activity. The data revealed candidate proteins that could control PV late gene expression.
Collapse
Affiliation(s)
- Nuttawan Iamborwornkun
- Department of Microbiology, Faculty of Science, Silpakorn University, Sanam Chandra Palace Campus, Nakhon Pathom 73000, Thailand
| | - Nakarin Kitkumthorn
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand
| | - Andrew Stevenson
- MRC-University of Glasgow Centre for Virus Research, School of Infection and Immunity, College of Medical Veterinary and Life Sciences University of Glasgow, Glasgow, G61 1QH, UK
| | - Anna Kirk
- MRC-University of Glasgow Centre for Virus Research, School of Infection and Immunity, College of Medical Veterinary and Life Sciences University of Glasgow, Glasgow, G61 1QH, UK
| | - Sheila V. Graham
- MRC-University of Glasgow Centre for Virus Research, School of Infection and Immunity, College of Medical Veterinary and Life Sciences University of Glasgow, Glasgow, G61 1QH, UK
| | - Thanaporn Chuen-im
- Department of Microbiology, Faculty of Science, Silpakorn University, Sanam Chandra Palace Campus, Nakhon Pathom 73000, Thailand
| |
Collapse
|
3
|
Graham SV. HPV and RNA Binding Proteins: What We Know and What Remains to Be Discovered. Viruses 2024; 16:783. [PMID: 38793664 PMCID: PMC11126060 DOI: 10.3390/v16050783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/08/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Papillomavirus gene regulation is largely post-transcriptional due to overlapping open reading frames and the use of alternative polyadenylation and alternative splicing to produce the full suite of viral mRNAs. These processes are controlled by a wide range of cellular RNA binding proteins (RPBs), including constitutive splicing factors and cleavage and polyadenylation machinery, but also factors that regulate these processes, for example, SR and hnRNP proteins. Like cellular RNAs, papillomavirus RNAs have been shown to bind many such proteins. The life cycle of papillomaviruses is intimately linked to differentiation of the epithelial tissues the virus infects. For example, viral late mRNAs and proteins are expressed only in the most differentiated epithelial layers to avoid recognition by the host immune response. Papillomavirus genome replication is linked to the DNA damage response and viral chromatin conformation, processes which also link to RNA processing. Challenges with respect to elucidating how RBPs regulate the viral life cycle include consideration of the orchestrated spatial aspect of viral gene expression in an infected epithelium and the epigenetic nature of the viral episomal genome. This review discusses RBPs that control viral gene expression, and how the connectivity of various nuclear processes might contribute to viral mRNA production.
Collapse
Affiliation(s)
- Sheila V Graham
- MRC-University of Glasgow Centre for Virus Research, School of Infection and Immunity, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
4
|
Kirk A, Graham SV. The human papillomavirus late life cycle and links to keratinocyte differentiation. J Med Virol 2024; 96:e29461. [PMID: 38345171 DOI: 10.1002/jmv.29461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/21/2023] [Accepted: 01/25/2024] [Indexed: 02/15/2024]
Abstract
Regulation of human papillomavirus (HPV) gene expression is tightly linked to differentiation of the keratinocytes the virus infects. HPV late gene expression is confined to the cells in the upper layers of the epithelium where the virus capsid proteins are synthesized. As these proteins are highly immunogenic, and the upper epithelium is an immune-privileged site, this spatial restriction aids immune evasion. Many decades of work have contributed to the current understanding of how this restriction occurs at a molecular level. This review will examine what is known about late gene expression in HPV-infected lesions and will dissect the intricacies of late gene regulation. Future directions for novel antiviral approaches will be highlighted.
Collapse
Affiliation(s)
- Anna Kirk
- Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Sheila V Graham
- Centre for Virus Research, University of Glasgow, Glasgow, UK
| |
Collapse
|
5
|
Kajitani N, Schwartz S. The role of RNA-binding proteins in the processing of mRNAs produced by carcinogenic papillomaviruses. Semin Cancer Biol 2022; 86:482-496. [PMID: 35181475 DOI: 10.1016/j.semcancer.2022.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/08/2023]
Abstract
Human papillomaviruses (HPV) are epitheliotropic DNA tumor viruses that are prevalent in the human population. A subset of the HPVs termed high-risk HPVs (HR-HPVs) are causative agents of anogenital cancers and head-and-neck cancers. Cancer is the result of persistent high-risk HPV infections that have not been cleared by the immune system of the host. These infections are characterized by dysregulated HPV gene expression, in particular constitutive high expression of the HPV E6 and E7 oncogenes and absence of the highly immunogenic viral L1 and L2 capsid proteins. HPVs make extensive use of alternative mRNA splicing to express its genes and are therefore highly dependent on cellular RNA-binding proteins for proper gene expression. Levels of RNA-binding proteins are altered in HPV-containing premalignant cervical lesions and in cervical cancer. Here we review our current knowledge of RNA-binding proteins that control HPV gene expression. We focus on RNA-binding proteins that control expression of the E6 and E7 oncogenes since they initiate and drive development of cancer and on the immunogenic L1 and L2 proteins as there silencing may contribute to immune evasion during carcinogenesis. Furthermore, cellular RNA-binding proteins are essential for HPV gene expression and as such may be targets for therapy to HPV infections and HPV-driven cancers.
Collapse
Affiliation(s)
- Naoko Kajitani
- Department of Medical Biochemistry and Microbiology (IMBIM), Uppsala University, BMC-B9, 751 23, Uppsala, Sweden; Department of Laboratory Medicine, Lund University, BMC-B13, 221 84, Lund, Sweden
| | - Stefan Schwartz
- Department of Medical Biochemistry and Microbiology (IMBIM), Uppsala University, BMC-B9, 751 23, Uppsala, Sweden; Department of Laboratory Medicine, Lund University, BMC-B13, 221 84, Lund, Sweden.
| |
Collapse
|
6
|
Role of Human Antigen R (HuR) in the Regulation of Pulmonary ACE2 Expression. Cells 2021; 11:cells11010022. [PMID: 35011584 PMCID: PMC8750694 DOI: 10.3390/cells11010022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022] Open
Abstract
Patients with COPD may be at an increased risk for severe illness from COVID-19 because of ACE2 upregulation, the entry receptor for SARS-CoV-2. Chronic exposure to cigarette smoke, the main risk factor for COPD, increases pulmonary ACE2. How ACE2 expression is controlled is not known but may involve HuR, an RNA binding protein that increases protein expression by stabilizing mRNA. We hypothesized that HuR would increase ACE2 protein expression. We analyzed scRNA-seq data to profile ELAVL1 expression in distinct respiratory cell populations in COVID-19 and COPD patients. HuR expression and cellular localization was evaluated in COPD lung tissue by multiplex immunohistochemistry and in human lung cells by imaging flow cytometry. The regulation of ACE2 expression was evaluated using siRNA-mediated knockdown of HuR. There is a significant positive correlation between ELAVL1 and ACE2 in COPD cells. HuR cytoplasmic localization is higher in smoker and COPD lung tissue; there were also higher levels of cleaved HuR (CP-1). HuR binds to ACE2 mRNA but knockdown of HuR does not change ACE2 protein levels in primary human lung fibroblasts (HLFs). Our work is the first to investigate the association between ACE2 and HuR. Further investigation is needed to understand the mechanistic underpinning behind the regulation of ACE2 expression.
Collapse
|
7
|
Basu S, Mallik S, Hait S, Kundu S. Genome-scale molecular principles of mRNA half-life regulation in yeast. FEBS J 2020; 288:3428-3447. [PMID: 33319437 DOI: 10.1111/febs.15670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/07/2020] [Accepted: 12/11/2020] [Indexed: 12/22/2022]
Abstract
Precise control of protein and messenger RNA (mRNA) degradation is essential for cellular metabolism and homeostasis. Controlled and specific degradation of both molecular species necessitates their engagements with the respective degradation machineries; this engagement involves a disordered/unstructured segment of the substrate traversing the degradation tunnel of the machinery and accessing the catalytic sites. However, while molecular factors influencing protein degradation have been extensively explored on a genome scale, and in multiple organisms, such a comprehensive understanding remains missing for mRNAs. Here, we analyzed multiple genome-scale experimental yeast mRNA half-life data in light of experimentally derived mRNA secondary structures and protein binding data, along with high-resolution X-ray crystallographic structures of the RNase machines. Results unraveled a consistent genome-scale trend that mRNAs comprising longer terminal and/or internal unstructured segments have significantly shorter half-lives; the lengths of the 5'-terminal, 3'-terminal, and internal unstructured segments that affect mRNA half-life are compatible with molecular structures of the 5' exo-, 3' exo-, and endoribonuclease machineries. Sequestration into ribonucleoprotein complexes elongates mRNA half-life, presumably by burying ribonuclease engagement sites under oligomeric interfaces. After gene duplication, differences in terminal unstructured lengths, proportions of internal unstructured segments, and oligomerization modes result in significantly altered half-lives of paralogous mRNAs. Side-by-side comparison of molecular principles underlying controlled protein and mRNA degradation in yeast unravels their remarkable mechanistic similarities and suggests how the intrinsic structural features of the two molecular species, at two different levels of the central dogma, regulate their half-lives on genome scale.
Collapse
Affiliation(s)
- Sudipto Basu
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India.,Center of Excellence in Systems Biology and Biomedical Engineering (TEQIP Phase-III), University of Calcutta, Kolkata, India
| | - Saurav Mallik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Suman Hait
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India
| | - Sudip Kundu
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India.,Center of Excellence in Systems Biology and Biomedical Engineering (TEQIP Phase-III), University of Calcutta, Kolkata, India
| |
Collapse
|
8
|
Kajitani N, Schwartz S. Role of Viral Ribonucleoproteins in Human Papillomavirus Type 16 Gene Expression. Viruses 2020; 12:E1110. [PMID: 33007936 PMCID: PMC7600041 DOI: 10.3390/v12101110] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 02/06/2023] Open
Abstract
Human papillomaviruses (HPVs) depend on the cellular RNA-processing machineries including alternative RNA splicing and polyadenylation to coordinate HPV gene expression. HPV RNA processing is controlled by cis-regulatory RNA elements and trans-regulatory factors since the HPV splice sites are suboptimal. The definition of HPV exons and introns may differ between individual HPV mRNA species and is complicated by the fact that many HPV protein-coding sequences overlap. The formation of HPV ribonucleoproteins consisting of HPV pre-mRNAs and multiple cellular RNA-binding proteins may result in the different outcomes of HPV gene expression, which contributes to the HPV life cycle progression and HPV-associated cancer development. In this review, we summarize the regulation of HPV16 gene expression at the level of RNA processing with focus on the interactions between HPV16 pre-mRNAs and cellular RNA-binding factors.
Collapse
Affiliation(s)
- Naoko Kajitani
- Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden;
| | | |
Collapse
|
9
|
Gales JP, Kubina J, Geldreich A, Dimitrova M. Strength in Diversity: Nuclear Export of Viral RNAs. Viruses 2020; 12:E1014. [PMID: 32932882 PMCID: PMC7551171 DOI: 10.3390/v12091014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
The nuclear export of cellular mRNAs is a complex process that requires the orchestrated participation of many proteins that are recruited during the early steps of mRNA synthesis and processing. This strategy allows the cell to guarantee the conformity of the messengers accessing the cytoplasm and the translation machinery. Most transcripts are exported by the exportin dimer Nuclear RNA export factor 1 (NXF1)-NTF2-related export protein 1 (NXT1) and the transcription-export complex 1 (TREX1). Some mRNAs that do not possess all the common messenger characteristics use either variants of the NXF1-NXT1 pathway or CRM1, a different exportin. Viruses whose mRNAs are synthesized in the nucleus (retroviruses, the vast majority of DNA viruses, and influenza viruses) exploit both these cellular export pathways. Viral mRNAs hijack the cellular export machinery via complex secondary structures recognized by cellular export factors and/or viral adapter proteins. This way, the viral transcripts succeed in escaping the host surveillance system and are efficiently exported for translation, allowing the infectious cycle to proceed. This review gives an overview of the cellular mRNA nuclear export mechanisms and presents detailed insights into the most important strategies that viruses use to export the different forms of their RNAs from the nucleus to the cytoplasm.
Collapse
Affiliation(s)
- Jón Pol Gales
- Institut de Biologie Moléculaire des Plantes, The French National Center for Scientific Research (CNRS) UPR2357, Université de Strasbourg, F-67084 Strasbourg, France; (J.P.G.); (J.K.); (A.G.)
| | - Julie Kubina
- Institut de Biologie Moléculaire des Plantes, The French National Center for Scientific Research (CNRS) UPR2357, Université de Strasbourg, F-67084 Strasbourg, France; (J.P.G.); (J.K.); (A.G.)
- SVQV UMR-A 1131, INRAE, Université de Strasbourg, F-68000 Colmar, France
| | - Angèle Geldreich
- Institut de Biologie Moléculaire des Plantes, The French National Center for Scientific Research (CNRS) UPR2357, Université de Strasbourg, F-67084 Strasbourg, France; (J.P.G.); (J.K.); (A.G.)
| | - Maria Dimitrova
- Institut de Biologie Moléculaire des Plantes, The French National Center for Scientific Research (CNRS) UPR2357, Université de Strasbourg, F-67084 Strasbourg, France; (J.P.G.); (J.K.); (A.G.)
| |
Collapse
|
10
|
Nilsson K, Wu C, Schwartz S. Role of the DNA Damage Response in Human Papillomavirus RNA Splicing and Polyadenylation. Int J Mol Sci 2018; 19:E1735. [PMID: 29895741 PMCID: PMC6032147 DOI: 10.3390/ijms19061735] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 05/29/2018] [Accepted: 06/08/2018] [Indexed: 12/16/2022] Open
Abstract
Human papillomaviruses (HPVs) have evolved to use the DNA repair machinery to replicate its DNA genome in differentiated cells. HPV activates the DNA damage response (DDR) in infected cells. Cellular DDR factors are recruited to the HPV DNA genome and position the cellular DNA polymerase on the HPV DNA and progeny genomes are synthesized. Following HPV DNA replication, HPV late gene expression is activated. Recent research has shown that the DDR factors also interact with RNA binding proteins and affects RNA processing. DDR factors activated by DNA damage and that associate with HPV DNA can recruit splicing factors and RNA binding proteins to the HPV DNA and induce HPV late gene expression. This induction is the result of altered alternative polyadenylation and splicing of HPV messenger RNA (mRNA). HPV uses the DDR machinery to replicate its DNA genome and to activate HPV late gene expression at the level of RNA processing.
Collapse
Affiliation(s)
- Kersti Nilsson
- Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden.
| | - Chengjun Wu
- Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden.
| | - Stefan Schwartz
- Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden.
| |
Collapse
|
11
|
Adenosine causes read-through into the late region of the HPV16 genome in a guanosine-dependent manner. Virology 2018; 521:1-19. [PMID: 29864673 DOI: 10.1016/j.virol.2018.05.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 11/21/2022]
Abstract
Adenosine plays an important role in cell death and differentiation as well as in tumorigenesis and the intra- and extra-cellular levels range from nanomolar to millimolar levels under various physiological or pathophysiological conditions. Here we report that adenosine can activate HPV16 late gene expression in a dose- and time-dependent manner, but only in the presence of guanosine. This activation occurred within hours after addition of the nucleosides and was primarily dependent on the ENT1 nucleoside transporter protein. Induction of HPV16 late gene expression was mainly the result of increased read-through at the early HPV16 polyadenylation signal into the late region of the HPV16 genome, thereby producing HPV16 late L2 mRNAs. The effect of guanosine and adenosine on HPV16 late gene expression was mediated by the increased binding to HPV16 mRNAs and nuclear export of the cellular HuR protein. Our results demonstrate that nucleosides can affect HPV16 gene expression.
Collapse
|
12
|
Graham SV. Keratinocyte Differentiation-Dependent Human Papillomavirus Gene Regulation. Viruses 2017; 9:E245. [PMID: 28867768 PMCID: PMC5618011 DOI: 10.3390/v9090245] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 12/29/2022] Open
Abstract
Human papillomaviruses (HPVs) cause diseases ranging from benign warts to invasive cancers. HPVs infect epithelial cells and their replication cycle is tightly linked with the differentiation process of the infected keratinocyte. The normal replication cycle involves an early and a late phase. The early phase encompasses viral entry and initial genome replication, stimulation of cell division and inhibition of apoptosis in the infected cell. Late events in the HPV life cycle include viral genome amplification, virion formation, and release into the environment from the surface of the epithelium. The main proteins required at the late stage of infection for viral genome amplification include E1, E2, E4 and E5. The late proteins L1 and L2 are structural proteins that form the viral capsid. Regulation of these late events involves both cellular and viral proteins. The late viral mRNAs are expressed from a specific late promoter but final late mRNA levels in the infected cell are controlled by splicing, polyadenylation, nuclear export and RNA stability. Viral late protein expression is also controlled at the level of translation. This review will discuss current knowledge of how HPV late gene expression is regulated.
Collapse
Affiliation(s)
- Sheila V Graham
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK.
| |
Collapse
|
13
|
The human papillomavirus replication cycle, and its links to cancer progression: a comprehensive review. Clin Sci (Lond) 2017; 131:2201-2221. [DOI: 10.1042/cs20160786] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/26/2017] [Accepted: 07/03/2017] [Indexed: 12/21/2022]
Abstract
HPVs (human papillomaviruses) infect epithelial cells and their replication cycle is intimately linked to epithelial differentiation. There are over 200 different HPV genotypes identified to date and each displays a strict tissue specificity for infection. HPV infection can result in a range of benign lesions, for example verrucas on the feet, common warts on the hands, or genital warts. HPV infects dividing basal epithelial cells where its dsDNA episomal genome enters the nuclei. Upon basal cell division, an infected daughter cell begins the process of keratinocyte differentiation that triggers a tightly orchestrated pattern of viral gene expression to accomplish a productive infection. A subset of mucosal-infective HPVs, the so-called ‘high risk’ (HR) HPVs, cause cervical disease, categorized as low or high grade. Most individuals will experience transient HR-HPV infection during their lifetime but these infections will not progress to clinically significant cervical disease or cancer because the immune system eventually recognizes and clears the virus. Cancer progression is due to persistent infection with an HR-HPV. HR-HPV infection is the cause of >99.7% cervical cancers in women, and a subset of oropharyngeal cancers, predominantly in men. HPV16 (HR-HPV genotype 16) is the most prevalent worldwide and the major cause of HPV-associated cancers. At the molecular level, cancer progression is due to increased expression of the viral oncoproteins E6 and E7, which activate the cell cycle, inhibit apoptosis, and allow accumulation of DNA damage. This review aims to describe the productive life cycle of HPV and discuss the roles of the viral proteins in HPV replication. Routes to viral persistence and cancer progression are also discussed.
Collapse
|
14
|
Splicing and Polyadenylation of Human Papillomavirus Type 16 mRNAs. Int J Mol Sci 2017; 18:ijms18020366. [PMID: 28208770 PMCID: PMC5343901 DOI: 10.3390/ijms18020366] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 01/29/2017] [Accepted: 02/03/2017] [Indexed: 12/24/2022] Open
Abstract
The human papillomavirus type 16 (HPV16) life cycle can be divided into an early stage in which the HPV16 genomic DNA is replicated, and a late stage in which the HPV16 structural proteins are synthesized and virions are produced. A strong coupling between the viral life cycle and the differentiation state of the infected cell is highly characteristic of all HPVs. The switch from the HPV16 early gene expression program to the late requires a promoter switch, a polyadenylation signal switch and a shift in alternative splicing. A number of cis-acting RNA elements on the HPV16 mRNAs and cellular and viral factors interacting with these elements are involved in the control of HPV16 gene expression. This review summarizes our knowledge of HPV16 cis-acting RNA elements and cellular and viral trans-acting factors that regulate HPV16 gene expression at the level of splicing and polyadenylation.
Collapse
|
15
|
RNA Binding Proteins that Control Human Papillomavirus Gene Expression. Biomolecules 2015; 5:758-74. [PMID: 25950509 PMCID: PMC4496695 DOI: 10.3390/biom5020758] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/15/2015] [Accepted: 04/21/2015] [Indexed: 12/23/2022] Open
Abstract
The human papillomavirus (HPV) life cycle is strictly linked to the differentiation program of the infected mucosal epithelial cell. In the basal and lower levels of the epithelium, early genes coding for pro-mitotic proteins and viral replication factors are expressed, while terminal cell differentiation is required for activation of late gene expression and production of viral particles at the very top of the epithelium. Such productive infections are normally cleared within 18–24 months. In rare cases, the HPV infection is stuck in the early stage of the infection. Such infections may give rise to cervical lesions that can progress to cancer, primarily cancer of the uterine cervix. Since cancer progression is strictly linked to HPV gene expression, it is of interest to understand how HPV gene expression is regulated. Cis-acting HPV RNA elements and cellular RNA-binding proteins control HPV mRNA splicing and polyadenylation. These interactions are believed to play a particularly important role in the switch from early to late gene expression, thereby contributing to the pathogenesis of HPV. Indeed, it has been shown that the levels of various RNA binding proteins change in response to differentiation and in response to HPV induced cervical lesions and cancer. Here we have compiled published data on RNA binding proteins involved in the regulation of HPV gene expression.
Collapse
|
16
|
Schwartz S. Papillomavirus transcripts and posttranscriptional regulation. Virology 2013; 445:187-96. [PMID: 23706315 DOI: 10.1016/j.virol.2013.04.034] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/26/2013] [Accepted: 04/29/2013] [Indexed: 11/19/2022]
Abstract
Papillomavirus gene expression is strictly linked to the differentiation state of the infected cell and is highly regulated at the level of transcription and RNA processing. All papillomaviruses make extensive use of alternative mRNA polyadenylation and splicing to control gene expression. This chapter contains a compilation of all known alternatively spliced papillomavirus mRNAs and it summarizes our current knowledge of viral RNA elements, and viral and cellular factors that control papillomavirus mRNA processing.
Collapse
Affiliation(s)
- Stefan Schwartz
- Department of Laboratory Medicine, Section of Medical Microbiology, Lund University, BMC-B13, Sölvegatan 19, 223 62 Lund, Sweden.
| |
Collapse
|
17
|
Wang J, Guo Y, Chu H, Guan Y, Bi J, Wang B. Multiple functions of the RNA-binding protein HuR in cancer progression, treatment responses and prognosis. Int J Mol Sci 2013; 14:10015-41. [PMID: 23665903 PMCID: PMC3676826 DOI: 10.3390/ijms140510015] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/22/2013] [Accepted: 04/25/2013] [Indexed: 12/16/2022] Open
Abstract
The human embryonic lethal abnormal vision-like protein, HuR, is a member of the Hu family of RNA-binding proteins. Over the past decade, this ubiquitously expressed protein has been extensively investigated in cancer research because it is involved in the regulation of mRNA stability and translation in many cell types. HuR activity and function is associated with its subcellular distribution, transcriptional regulation, translational and post-translational modifications. HuR regulation of target mRNAs is based on the interaction between the three specific domains of HuR protein and one or several U- or AU-rich elements (AREs) in the untranslated region of target mRNAs. A number of cancer-related transcripts containing AREs, including mRNAs for proto-oncogenes, cytokines, growth factors, and invasion factors, have been characterized as HuR targets. It has been proposed that HuR has a central tumorigenic activity by enabling multiple cancer phenotypes. In this review, we comprehensively survey the existing evidence with regard to the diverse functions of HuR in caner development and progression. The current data also suggest that HuR might be a novel and promising therapeutic target and a marker for treatment response and prognostic evaluation.
Collapse
Affiliation(s)
- Jun Wang
- Department of Oncology, General Hospital, Jinan Command of the People’s Liberation Army, Jinan 250031, China; E-Mails: (H.C.); (Y.G.); (J.B.); (B.W.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-531-5166-5336; Fax: +86-531-5166-6649
| | - Yan Guo
- Department of Outpatient, Military Command of Shandong Province, Jinan 250013, China; E-Mail:
| | - Huili Chu
- Department of Oncology, General Hospital, Jinan Command of the People’s Liberation Army, Jinan 250031, China; E-Mails: (H.C.); (Y.G.); (J.B.); (B.W.)
| | - Yaping Guan
- Department of Oncology, General Hospital, Jinan Command of the People’s Liberation Army, Jinan 250031, China; E-Mails: (H.C.); (Y.G.); (J.B.); (B.W.)
| | - Jingwang Bi
- Department of Oncology, General Hospital, Jinan Command of the People’s Liberation Army, Jinan 250031, China; E-Mails: (H.C.); (Y.G.); (J.B.); (B.W.)
| | - Baocheng Wang
- Department of Oncology, General Hospital, Jinan Command of the People’s Liberation Army, Jinan 250031, China; E-Mails: (H.C.); (Y.G.); (J.B.); (B.W.)
| |
Collapse
|
18
|
Regulation of human papillomavirus gene expression by splicing and polyadenylation. Nat Rev Microbiol 2013; 11:239-51. [DOI: 10.1038/nrmicro2984] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Zhao KN, Chen J. Codon usage roles in human papillomavirus. Rev Med Virol 2011; 21:397-411. [PMID: 22025363 DOI: 10.1002/rmv.707] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 07/07/2011] [Accepted: 07/11/2011] [Indexed: 12/14/2022]
Abstract
Human papillomavirus (HPV) genomes, similar to other virus genomes, frequently have a G + C content significantly different from their host species. The HPV genomes show a strong codon usage bias to 18 codons, with 14 showing T at the third position amongst degenerately encoded amino acids. The codon usage pattern in HPV genome plays an important role, which regulates low or non-translational expression of the viral capsid genes and results in very weak protein expression of oncogenes in a wide range of mammalian cells. Codon modification has been proved to be a powerful technology to overcome the translational blockage and weak expression of both HPV capsid genes and oncogenes in different expression systems. Furthermore, keratinocytes are the host cells of HPV infection; the codon usage in HPV capsid genes matches available aminoacyl-tRNAs in differentiated keratinocytes to modulate their protein expression. HPV DNA vaccines with codon optimization have been shown to have higher immunogenicity and induce both strong cellular and humoral responses in animal models, which may be a promising form of therapeutic HPV vaccines.
Collapse
Affiliation(s)
- Kong-Nan Zhao
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia.
| | | |
Collapse
|
20
|
Dickson AM, Wilusz J. Strategies for viral RNA stability: live long and prosper. Trends Genet 2011; 27:286-93. [PMID: 21640425 PMCID: PMC3123725 DOI: 10.1016/j.tig.2011.04.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 04/21/2011] [Accepted: 04/26/2011] [Indexed: 12/23/2022]
Abstract
Eukaryotic cells have a powerful RNA decay machinery that plays an important and diverse role in regulating both the quantity and the quality of gene expression. Viral RNAs need to successfully navigate around this cellular machinery to initiate and maintain a highly productive infection. Recent work has shown that viruses have developed a variety of strategies to accomplish this, including inherent RNA shields, hijacking host RNA stability factors, incapacitating the host decay machinery and changing the entire landscape of RNA stability in cells using virally encoded nucleases. In addition to maintaining the stability of viral transcripts, these strategies can also contribute to the regulation and complexity of viral gene expression as well as to viral RNA evolution.
Collapse
|
21
|
Graham SV. Human papillomavirus: gene expression, regulation and prospects for novel diagnostic methods and antiviral therapies. Future Microbiol 2011; 5:1493-506. [PMID: 21073310 DOI: 10.2217/fmb.10.107] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human papillomaviruses (HPVs) cause diseases ranging from benign warts to invasive tumors. A subset of these viruses termed 'high risk' infect the cervix where persistent infection can lead to cervical cancer. Although many HPV genomes have been sequenced, knowledge of virus gene expression and its regulation is still incomplete. This is due in part to the lack, until recently, of suitable systems for virus propagation in the laboratory. HPV gene expression is polycistronic initiating from multiple promoters. Gene regulation occurs at transcriptional, but particularly post-transcriptional levels, including RNA processing, nuclear export, mRNA stability and translation. A close association between the virus replication cycle and epithelial differentiation adds a further layer of complexity. Understanding HPV mRNA expression and its regulation in the different diseases associated with infection may lead to development of novel diagnostic approaches and will reveal key viral and cellular targets for development of novel antiviral therapies.
Collapse
Affiliation(s)
- Sheila V Graham
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection Immunity & Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow G12 8TT, Scotland, UK.
| |
Collapse
|