1
|
Greber UF, Suomalainen M. Adenovirus entry: Stability, uncoating, and nuclear import. Mol Microbiol 2022; 118:309-320. [PMID: 35434852 PMCID: PMC9790413 DOI: 10.1111/mmi.14909] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 12/30/2022]
Abstract
Adenoviruses (AdVs) are widespread in vertebrates. They infect the respiratory and gastrointestinal tracts, the eyes, heart, liver, and kidney, and are lethal to immunosuppressed people. Mastadenoviruses infecting mammals comprise several hundred different types, and many specifically infect humans. Human adenoviruses are the most widely used vectors in clinical applications, including cancer treatment and COVID-19 vaccination. AdV vectors are physically and genetically stable and generally safe in humans. The particles have an icosahedral coat and a nucleoprotein core with a DNA genome. We describe the concept of AdV cell entry and highlight recent advances in cytoplasmic transport, uncoating, and nuclear import of the viral DNA. We highlight a recently discovered "linchpin" function of the virion protein V ensuring cytoplasmic particle stability, which is relaxed at the nuclear pore complex by cues from the E3 ubiquitin ligase Mind bomb 1 (MIB1) and the proteasome triggering disruption. Capsid disruption by kinesin motor proteins and microtubules exposes the linchpin and renders protein V a target for MIB1 ubiquitination, which dissociates V from viral DNA and enhances DNA nuclear import. These advances uncover mechanisms controlling capsid stability and premature uncoating and provide insight into nuclear transport of nucleic acids.
Collapse
Affiliation(s)
- Urs F. Greber
- Department of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
| | - Maarit Suomalainen
- Department of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
| |
Collapse
|
2
|
Aydin M, Schellhorn S, Wirth S, Zhang W, Ehrhardt A. Human Species D Adenoviruses Isolated from Diarrheal Feces Show Low Infection Rates in Primary Nasal Epithelial Cells. CHILDREN (BASEL, SWITZERLAND) 2021; 8:563. [PMID: 34208817 PMCID: PMC8307086 DOI: 10.3390/children8070563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 01/20/2023]
Abstract
The importance of adenovirus (Ad) research is significantly increasing with respect to virotherapy for vaccine development, tumor, and gene therapy. Due to the different species and subtypes of this virus, the characterization of the biological significance of especially rare Ad is necessary. Previously, rare Ad types 70, 73, and 74 were originally isolated from fecal samples of immunocompromised patients and they represent recombinants of other Ad types. Here we investigated transduction experiments of these reporter gene tagged Ad types in primary cells exemplified by subject-derived primary nasal epithelial cells (NAEPCs). To analyze the transduction rates, we performed flow cytometry, quantitative polymerase chain reaction (PCR), and cytokine analyses 25 h post-infection. We found that, in contrast to Ad type 5 (as a positive control), the transduction rates of NAEPCs with Ad types 70, 73, and 74 were interestingly low. The major Ad receptor (coxsackievirus-adenovirus receptor and CD46) expression levels showed no significant change after infection with Ad types 70, 73 and 74. Moreover, Interleukin 6 (IL-6) was not released after in vitro Ad transduction. Due to the high risk of developing life-threatening complications in immunocompromised patients by these human species D Ads, even more attention needs to be investigated into the development of diagnostic and therapeutic concepts to prevent and treat those opportunistic infections in susceptible patients.
Collapse
Affiliation(s)
- Malik Aydin
- Laboratory of Experimental Pediatric Pneumology and Allergology, Center for Biomedical Education and Research, School of Life Sciences (ZBAF), Faculty of Health, Witten/Herdecke University, 58455 Witten, Germany
- Center for Child and Adolescent Medicine, Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany;
| | - Sebastian Schellhorn
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58455 Witten, Germany; (S.S.); (W.Z.); (A.E.)
| | - Stefan Wirth
- Center for Child and Adolescent Medicine, Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany;
| | - Wenli Zhang
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58455 Witten, Germany; (S.S.); (W.Z.); (A.E.)
| | - Anja Ehrhardt
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58455 Witten, Germany; (S.S.); (W.Z.); (A.E.)
| |
Collapse
|
3
|
Lasswitz L, Chandra N, Arnberg N, Gerold G. Glycomics and Proteomics Approaches to Investigate Early Adenovirus-Host Cell Interactions. J Mol Biol 2018; 430:1863-1882. [PMID: 29746851 PMCID: PMC7094377 DOI: 10.1016/j.jmb.2018.04.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/24/2018] [Accepted: 04/30/2018] [Indexed: 12/14/2022]
Abstract
Adenoviruses as most viruses rely on glycan and protein interactions to attach to and enter susceptible host cells. The Adenoviridae family comprises more than 80 human types and they differ in their attachment factor and receptor usage, which likely contributes to the diverse tropism of the different types. In the past years, methods to systematically identify glycan and protein interactions have advanced. In particular sensitivity, speed and coverage of mass spectrometric analyses allow for high-throughput identification of glycans and peptides separated by liquid chromatography. Also, developments in glycan microarray technologies have led to targeted, high-throughput screening and identification of glycan-based receptors. The mapping of cell surface interactions of the diverse adenovirus types has implications for cell, tissue, and species tropism as well as drug development. Here we review known adenovirus interactions with glycan- and protein-based receptors, as well as glycomics and proteomics strategies to identify yet elusive virus receptors and attachment factors. We finally discuss challenges, bottlenecks, and future research directions in the field of non-enveloped virus entry into host cells.
Collapse
Affiliation(s)
- Lisa Lasswitz
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany
| | - Naresh Chandra
- Department of Clinical Microbiology, Virology, Umeå University, SE-90185 Umeå, Sweden; Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-90185 Umea, Sweden
| | - Niklas Arnberg
- Department of Clinical Microbiology, Virology, Umeå University, SE-90185 Umeå, Sweden; Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-90185 Umea, Sweden.
| | - Gisa Gerold
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany; Department of Clinical Microbiology, Virology, Umeå University, SE-90185 Umeå, Sweden; Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, SE-90185 Umea, Sweden.
| |
Collapse
|
4
|
Sweigard JH, Matsumoto H, Smith KE, Kim LA, Paschalis EI, Okonuki Y, Castillejos A, Kataoka K, Hasegawa E, Yanai R, Husain D, Lambris JD, Vavvas D, Miller JW, Connor KM. Inhibition of the alternative complement pathway preserves photoreceptors after retinal injury. Sci Transl Med 2016. [PMID: 26203084 DOI: 10.1126/scitranslmed.aab1482] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Degeneration of photoreceptors is a primary cause of vision loss worldwide, making the underlying mechanisms surrounding photoreceptor cell death critical to developing new treatment strategies. Retinal detachment, characterized by the separation of photoreceptors from the underlying retinal pigment epithelium, is a sight-threatening event that can happen in a number of retinal diseases. The detached photoreceptors undergo apoptosis and programmed necrosis. Given that photoreceptors are nondividing cells, their loss leads to irreversible visual impairment even after successful retinal reattachment surgery. To better understand the underlying disease mechanisms, we analyzed innate immune system regulators in the vitreous of human patients with retinal detachment and correlated the results with findings in a mouse model of retinal detachment. We identified the alternative complement pathway as promoting early photoreceptor cell death during retinal detachment. Photoreceptors down-regulate membrane-bound inhibitors of complement, allowing for selective targeting by the alternative complement pathway. When photoreceptors in the detached retina were removed from the primary source of oxygen and nutrients (choroidal vascular bed), the retina became hypoxic, leading to an up-regulation of complement factor B, a key mediator of the alternative pathway. Inhibition of the alternative complement pathway in knockout mice or through pharmacological means ameliorated photoreceptor cell death during retinal detachment. Our current study begins to outline the mechanism by which the alternative complement pathway facilitates photoreceptor cell death in the damaged retina.
Collapse
Affiliation(s)
- J Harry Sweigard
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Hidetaka Matsumoto
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Kaylee E Smith
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Leo A Kim
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Eleftherios I Paschalis
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Yoko Okonuki
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Alexandra Castillejos
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Keiko Kataoka
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Eiichi Hasegawa
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Ryoji Yanai
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Deeba Husain
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Demetrios Vavvas
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Joan W Miller
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Kip M Connor
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA.
| |
Collapse
|
5
|
Electrostatic Interactions between Complement Regulator CD46(SCR1-2) and Adenovirus Ad11/Ad21 Fiber Protein Knob. Mol Biol Int 2015; 2015:967465. [PMID: 26357573 PMCID: PMC4556874 DOI: 10.1155/2015/967465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/12/2015] [Accepted: 07/16/2015] [Indexed: 11/24/2022] Open
Abstract
Adenoviruses bind to a variety of human cells to cause infection. Both the B2 adenovirus 11 and B1 adenovirus 21 use protein knobs to bind to complement regulator CD46(SCR1-2) in order to gain entry into host cells. In each complex, the two proteins are highly negatively charged but bind to each other at an interface with oppositely charged surface patches. We computationally generated single-alanine mutants of charged residues in the complexes CD46(SCR1-2)-Ad11k and CD46(SCR1-2)-Ad21k. We used electrostatic clustering and Poisson-Boltzmann free energy calculations to propose a hypothesis on the role of electrostatics in association. Our results delineate specific interfacial electrostatic interactions that are critical for association in both CD46(SCR1-2)-Ad11k and CD46(SCR1-2)-Ad21k. These results will serve as a predictive tool in the selection of mutants with desired binding affinity in experimental mutagenesis studies. This study will also serve as a foundation for the design of inhibitors to treat adenovirus infections.
Collapse
|
6
|
Chen RF, Lee CY. Adenoviruses types, cell receptors and local innate cytokines in adenovirus infection. Int Rev Immunol 2013; 33:45-53. [PMID: 24127823 DOI: 10.3109/08830185.2013.823420] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Adenovirus is a common infectious pathogen in both children and adults. It is a significant cause of morbidity in immunocompetent people living in crowded living conditions and of mortality in immunocompromised hosts. It has more recently become a popular vehicle for gene therapy applications. The host response to wild-type infection and gene therapy vector exposure involves both virus entry receptor and the innate immune systems. Cell-mediated recognition of viruses via capsid components has received significant attention, principally thought to be regulated by the coxsackievirus-adenovirus receptor (CAR), CD46, integrins and heparin sulfate-containing proteoglycans. Antiviral innate immune responses are initiated by the infected cell, which activates the interferon response to block viral replication, while simultaneously releasing chemokines to attract neutrophils and NK cells. This review discusses the innate immune response primarily during wild-type adenovirus infection because this serves as the basis for understanding the response during both natural infection and exposure to adenovirus vectors.
Collapse
Affiliation(s)
- Rong-Fu Chen
- 1Department of Medical Research and Development, Show Chwan Health Care System, Changhua, Taiwan
| | | |
Collapse
|
7
|
Li X, Mao Q, Wang D, Xia H. A novel Ad5/11 chimeric oncolytic adenovirus for improved glioma therapy. Int J Oncol 2012; 41:2159-65. [PMID: 23117867 DOI: 10.3892/ijo.2012.1674] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 08/24/2012] [Indexed: 11/05/2022] Open
Abstract
Effective therapies are needed for malignant glioma patients because of the poor prognosis. Gene therapy combined with virotherapy could be the strategy of choice. In this study, we constructed a modified conditionally replicating adenoviral vector CRAd5/11-Sp-eGFP. The novel vector has the following features: i) the transduction efficiency of CRAd5 was increased using a chimeric fiber 5/11 consisting of an Ad5 tail and an Ad11 shaft and knob; ii) the tumor-specific replication of the vector was improved by utilizing the human survivin promoter to control E1 expression and a poly-A signal inserted right after the inverted terminal repeat (ITR) to stop the non-specific transcriptional activity of the ITR; iii) an expression cassette was inserted into the region between the fiber and E4 region for expressing eGFP. In vitro assays demonstrated that the novel vector could efficiently replicate and kill human glioma cells. Furthermore, CRAd5/11‑Sp-eGFP exhibited significantly increased antitumor effects compared with the control adenoviruses in a xenograft model of glioma. Our results indicate that CRAd5/11-Sp-eGFP represents a promising candidate drug in the treatment of malignant gliomas.
Collapse
Affiliation(s)
- Xing Li
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, PR China
| | | | | | | |
Collapse
|
8
|
Arnberg N. Adenovirus receptors: implications for targeting of viral vectors. Trends Pharmacol Sci 2012; 33:442-8. [PMID: 22621975 DOI: 10.1016/j.tips.2012.04.005] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/11/2012] [Accepted: 04/18/2012] [Indexed: 12/19/2022]
Abstract
Cancer, cardiovascular disease, and infectious diseases are all global health threats. To combat these diseases with gene therapies, adenovirus-based vectors have been developed. Although certain clinical trials appear successful, there is an obvious need to improve the efficacy of most adenovirus-based vectors. For the most commonly used vector (based on type 5; Ad5), a main problem is its accumulation in the liver, which can be attributed to interactions with specific host factors. The diverse tropism for types other than Ad5 implies that vectors based on alternative types could have advantages. The numerous interactions of different adenoviruses with host molecules - such as the recently identified desmoglein-2 receptor - may cause novel and unexpected obstacles, but also may provide possibilities for vectors based on alternative types. This review provides an update of new and previously known molecules that mediate cellular attachment of human adenoviruses and discusses how these may influence the targeting of adenovirus-based vectors.
Collapse
Affiliation(s)
- Niklas Arnberg
- Division of Virology, Department of Clinical Microbiology, Umeå University, Umeå, Sweden.
| |
Collapse
|
9
|
Li X, Mao Q, Wang D, Zhang W, Xia H. A fiber chimeric CRAd vector Ad5/11-D24 double-armed with TRAIL and arresten for enhanced glioblastoma therapy. Hum Gene Ther 2012; 23:589-96. [PMID: 22136065 DOI: 10.1089/hum.2011.130] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Malignant gliomas remain refractory to treatment despite advances in chemotherapy and surgical techniques. Conditionally replicating adenoviral vector (CRAd) could kill the tumor cells by selectively replicating in neoplastic cells, which represents a novel strategy for tumor therapy. Although CRAd with a 24-bp deletion in CR2 of the E1 region (CRAd5-D24) has been shown to have a better therapeutic effect over the other types of CRAd vectors, the current CRAd5-D24 still has some shortcomings for an efficient therapy of gliomas. In this study, we developed for the first time a novel vector CRAd5/11-D24.TRAIL/arresten by the following strategies: (1) modify CRAd5-D24 with Ad5/11 chimeric fiber to improve its infection efficiency for glioblastoma; and (2) insert two transgene expression cassettes into the E3 region and the region between the fiber and E4, respectively, for an enhanced therapeutic effect. The results indicated that the CRAd5/11-D24.TRAIL/arresten achieved nearly complete inhibition of glioma growth in nude mice possibly by increased antiangiogenesis and enhanced tumor apoptosis. The vector is the first reported E1A D24-deleted, Ad5/11 chimeric, and dual-armed oncolytic virus that shows markedly improved antitumor activities compared with the conventional oncolytic viruses. This novel antitumor agent should be evaluated further in future preclinical and clinical studies.
Collapse
Affiliation(s)
- Xing Li
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Science, Shaanxi Normal University, Xi'an 710062, PR China
| | | | | | | | | |
Collapse
|
10
|
Pyaram K, Yadav VN, Reza MJ, Sahu A. Virus–complement interactions: an assiduous struggle for dominance. Future Virol 2010. [DOI: 10.2217/fvl.10.60] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The complement system is a major component of the innate immune system that recognizes invading pathogens and eliminates them by means of an array of effector mechanisms, in addition to using direct lytic destruction. Viruses, in spite of their small size and simple composition, are also deftly recognized and neutralized by the complement system. In turn, as a result of years of coevolution with the host, viruses have developed multiple mechanisms to evade the host complement. These complex interactions between the complement system and viruses have been an area of focus for over three decades. In this article, we provide a broad overview of the field using key examples and up-to-date information on the complement-evasion strategies of viruses.
Collapse
Affiliation(s)
- Kalyani Pyaram
- National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune 411007, India
| | - Viveka Nand Yadav
- National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune 411007, India
| | - Malik Johid Reza
- National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune 411007, India
| | | |
Collapse
|