1
|
Jaksa-Czotter N, Nagyné Galbács Z, Jahan A, Demián E, Várallyay É. Viromes of Plants Determined by High-Throughput Sequencing of Virus-Derived siRNAs. Methods Mol Biol 2024; 2732:179-198. [PMID: 38060126 DOI: 10.1007/978-1-0716-3515-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Plants growing in open airfields can be infected by several viruses even as a multiple infection. Virus infection in crops can lead to a serious damage to the harvest. In addition, virus presence in grapevine, fruit trees, and tuberous vegetables, propagated vegetatively affects the phytosanitary status of the propagation material (both the rootstock and the variety) having profound effect on the lifetime and health of the new plantations. The fast evolution of sequencing techniques provides a new opportunity for metagenomics-based viral diagnostics. Small interfering (si) RNAs produced by the RNA silencing-based host immune system during viral infection can be sequenced by high-throughput techniques and analyzed for the presence of viruses, revealing the presence of all known viral pathogens in the sample and therefore opening new avenues in virus diagnostics. This method is based on Illumina sequencing and bioinformatics analysis of virus-derived siRNAs in the host. Here we describe a protocol for this challenging technique step by step with notes, to ensure success for every user.
Collapse
Affiliation(s)
- Nikoletta Jaksa-Czotter
- Genomics Research Group, Department of Plant Pathology, Institute of Plant Protection, MATE, Gödöllő, Hungary
| | - Zsuzsanna Nagyné Galbács
- Genomics Research Group, Department of Plant Pathology, Institute of Plant Protection, MATE, Gödöllő, Hungary
| | - Almash Jahan
- Genomics Research Group, Department of Plant Pathology, Institute of Plant Protection, MATE, Gödöllő, Hungary
| | - Emese Demián
- Genomics Research Group, Department of Plant Pathology, Institute of Plant Protection, MATE, Gödöllő, Hungary
| | - Éva Várallyay
- Genomics Research Group, Department of Plant Pathology, Institute of Plant Protection, MATE, Gödöllő, Hungary.
| |
Collapse
|
2
|
Liu J, Yue J, Wang H, Xie L, Zhao Y, Zhao M, Zhou H. Strategies for Engineering Virus Resistance in Potato. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091736. [PMID: 37176794 PMCID: PMC10180755 DOI: 10.3390/plants12091736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023]
Abstract
Potato (Solanum tuberosum L.) is an important vegetable crop that plays a pivotal role in the world, especially given its potential to feed the world population and to act as the major staple food in many developing countries. Every year, significant crop loss is caused by viral diseases due to a lack of effective agrochemical treatments, since only transmission by insect vectors can be combated with the use of insecticides, and this has been an important factor hindering potato production. With the rapid development of molecular biology and plant genetic engineering technology, transgenic approaches and non-transgenic techniques (RNA interference and CRISPR-cas9) have been effectively employed to improve potato protection against devastating viruses. Moreover, the availability of viral sequences, potato genome sequences, and host immune mechanisms has remarkably facilitated potato genetic engineering. In this study, we summarize the progress of antiviral strategies applied in potato through engineering either virus-derived or plant-derived genes. These recent molecular insights into engineering approaches provide the necessary framework to develop viral resistance in potato in order to provide durable and broad-spectrum protection against important viral diseases of solanaceous crops.
Collapse
Affiliation(s)
- Jiecai Liu
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jianying Yue
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Haijuan Wang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lingtai Xie
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yuanzheng Zhao
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China
| | - Mingmin Zhao
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Hongyou Zhou
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
3
|
Wang S, Ruan S, Zhang M, Nie J, Nzabanita C, Guo L. Interference of Small RNAs in Fusarium graminearum through FgGMTV1 Infection. J Fungi (Basel) 2022; 8:jof8121237. [PMID: 36547570 PMCID: PMC9781238 DOI: 10.3390/jof8121237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/06/2022] [Accepted: 11/11/2022] [Indexed: 11/24/2022] Open
Abstract
Small RNA (sRNA) plays a central role in RNA silencing in fungi. The genome of Fusarium graminearum gemytripvirus 1 (FgGMTV1) is comprised of three DNA segments: DNA-A, DNA-B, and DNA-C. DNA-A and DNA-B are associated with fungal growth and virulence reduction. To elucidate the role of RNA silencing during the interactions of fungi and viruses, the sRNA profiles of F. graminearum in association with FgGMTV1 were established, using an FgGMTV1-free library (S-S), a library for infection with the DNA-A and DNA-B segments (S-AB), and a library for infection with the DNA-A, DNA-B, and DNA-C segments (S-ABC). A large amount of virus-derived sRNA (vsiRNA) was detected in the S-AB and S-ABC libraries, accounting for 9.9% and 13.8% of the total sRNA, respectively, indicating that FgGMTV1 triggers host RNA silencing. The total numbers of sRNA reads differed among the three libraries, suggesting that FgGMTV1 infection interferes with host RNA silencing. In addition, the relative proportions of the different sRNA lengths were altered in the S-AB and S-ABC libraries. The genome distribution patterns of the mapping of vsiRNA to DNA-A and DNA-B in the S-AB and S-ABC libraries were also different. These results suggest the influence of DNA-C on host RNA silencing. Transcripts targeted by vsiRNAs were enriched in pathways that included flavin adenine dinucleotide binding, protein folding, and filamentous growth.
Collapse
Affiliation(s)
- Shuangchao Wang
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193 Beijing, China
| | - Shaojian Ruan
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193 Beijing, China
| | - Mingming Zhang
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - Jianhua Nie
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193 Beijing, China
| | - Clement Nzabanita
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193 Beijing, China
| | - Lihua Guo
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193 Beijing, China
- Correspondence: ; Tel.: +86-01082105928
| |
Collapse
|
4
|
Gao X, Jia ZQ, Tao HZ, Xu Y, Li YZ, Liu YT. Use of deep sequencing to profile small RNAs derived from tomato spotted wilt orthotospovirus and hippeastrum chlorotic ringspot orthotospovirus in infected Capsicum annuum. Virus Res 2021; 309:198648. [PMID: 34910964 DOI: 10.1016/j.virusres.2021.198648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 10/19/2022]
Abstract
Virus-derived small RNAs are one of the key factors of RNA silencing in plant defence against viruses. We obtained virus-derived small interfering RNA profiles from Tomato spotted wilt orthotospovirus and Hippeastrum chlorotic ringspot orthotospovirus infected Capsicum annuum XX19 and XY11 by deep sequencing one day after inoculation. The vsiRNAs data were mapped to the TSWV and HCRV genomes, and the results showed that the vsiRNAs measured 19-24 nucleotides in length. Most of the vsiRNAs were mapped to the S segment of the viral genome. For XX19 and XY11 infected with HCRV, the distribution range of vsiRNAs in S RNA was 52.06-55.20%, while for XX19 and XY11 infected with TSWV, the distribution range of vsiRNAs in S RNA was 87.76-89.07%. The first base at the 5' end of the siRNA from TSWV and HCRV was primarily biased towards A, U, or C. Compared with mock-inoculated XX19 and XY11, the expression level of CaRDR1 was upregulated in TSWV- and HCRV-inoculated XX19 and XY11. CaAGO2 and CaAGO5 were upregulated in XY11 against HCRV infection, and CaRDR2 was downregulated in TSWV-infected XY11 and XX19. The profile of HCRV and TSWV vsiRNA verified in this study could be useful for selecting key vsiRNA such as those in disease-resistant varieties by artificially synthesizing amiRNA.
Collapse
Affiliation(s)
- Xue Gao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Zhi-Qiang Jia
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Hong-Zheng Tao
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China; School of Life Science and Technology, Honghe University, Mengzi, 661199, China
| | - Ye Xu
- College of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yong-Zhong Li
- College of Tobacco Science, Yunnan Agricultural University, Kunming 650201, China.
| | - Ya-Ting Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
5
|
Velasco L, Padilla CV. High-Throughput Sequencing of Small RNAs for the Sanitary Certification of Viruses in Grapevine. FRONTIERS IN PLANT SCIENCE 2021; 12:682879. [PMID: 34367209 PMCID: PMC8336637 DOI: 10.3389/fpls.2021.682879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Biological indexing is the method generally recognized for the certification of propagative grapevines in many countries, and it is mandatory in the European Union. It consists of the evaluation of the plant material after grafting on indicators that are inspected for symptom development. This is a lengthy process that requires well-trained workers, testing field, etc. Alternative diagnostic methods such as serology and RT-qPCR have been discarded for certification because of their intrinsic drawbacks. In turn, high-throughput sequencing (HTS) of plant RNA has been proposed as a plausible alternative to bioassay, but before it is accepted, different aspects of this process must be evaluated. We have compared the HTS of small RNAs with bioassays and other diagnostic methods from a set of 40 grapevine plants submitted for certification. The results allowed the authors the identification of numerous grapevine viruses in the samples, as well as different variants. Besides, relationships between symptom expression and viromes were investigated, in particular leafroll-associated viruses. We compared HTS results using analytical and bioinformatics approaches in order to define minimum acceptable quality standards for certification schemes, resulting in a pipeline proposal. Finally, the comparison between HTS and bioassay resulted favorable for the former in terms of reliability, cost, and timing.
Collapse
Affiliation(s)
- Leonardo Velasco
- Instituto Andaluz de Investigación y Formación Agraria, Málaga, Spain
| | - Carlos V. Padilla
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, Murcia, Spain
| |
Collapse
|
6
|
Shidore T, Zuverza-Mena N, da Silva W. Small RNA profiling analysis of two recombinant strains of potato virus Y in infected tobacco plants. Virus Res 2020; 288:198125. [PMID: 32835742 DOI: 10.1016/j.virusres.2020.198125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 01/15/2023]
Abstract
Plant viral infections lead to accumulation of virus-derived small interfering RNAs (vsiRNAs) as a result of host defense mechanisms. High-throughput sequencing technology enables vsiRNA profiling analyses from virus infected plants, which provide important insights into virus-host interactions. Potato virus Y (PVY) is a detrimental plant pathogen that can infect a variety of solanaceous crops, e.g., potato, tobacco, tomato, and pepper. We analyzed and characterized vsiRNAs derived from Nicotiana tabacum cv. Samsun infected with two recombinant PVY strains, N-Wi and NTN. We observed that the average percentage of vsiRNAs derived from plants infected with N-Wi was higher than from plants infected with NTN, indicating that N-Wi invokes a stronger host response than NTN in tobacco. The size distribution pattern and polarity of vsiRNAs were similar between both virus strains with the 21 and 22 nucleotide (nt) vsiRNA classes as most predominant and the sense/antisense vsiRNAs ratio nearly equal in the 20-24 nt class. However, the percentage of sense vsiRNAs was significantly higher in the 25-26 nt long vsiRNAs. Distinct vsiRNA hotspots, identifying highly abundant reads of different unique vsiRNA sequences, were observed in both viral genomes. Previous studies found an A or U bias at the 5' terminal nucleotide position of 21 nt vsiRNAs; in contrast, our analysis revealed a C and U nucleotide bias. This study provides insights that will help further elucidate differential processing of vsiRNAs in plant antiviral defense.
Collapse
Affiliation(s)
- Teja Shidore
- Department of Plant Pathology and Ecology, Connecticut Agricultural Experiment Station, New Haven, CT 06511, United States.
| | - Nubia Zuverza-Mena
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven CT 06511, United States
| | - Washington da Silva
- Department of Plant Pathology and Ecology, Connecticut Agricultural Experiment Station, New Haven, CT 06511, United States.
| |
Collapse
|
7
|
Sidharthan VK, Sevanthi AM, Jaiswal S, Baranwal VK. Robust Virome Profiling and Whole Genome Reconstruction of Viruses and Viroids Enabled by Use of Available mRNA and sRNA-Seq Datasets in Grapevine ( Vitis vinifera L.). Front Microbiol 2020; 11:1232. [PMID: 32582126 PMCID: PMC7289960 DOI: 10.3389/fmicb.2020.01232] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/14/2020] [Indexed: 12/19/2022] Open
Abstract
Next-generation sequencing (NGS) based virome analyses of mRNA and sRNA have recently become a routine approach for reliable detection of plant viruses and viroids. In the present study we identified the viral/viroidal spectrum of several Indian grapevine cultivars and reconstructed their whole genomes using the publically available mRNAome and sRNAome datasets. Twenty three viruses and viroids (including two variants of grapevine leafroll associated virus 4) were identified from two tissues (fruit peels and young leaves) of three cultivars among which nine unique grapevine viruses and viroids were identified for the first time in India. Irrespective of the assemblers and tissues used, the mRNA based approach identified more acellular pathogens than the sRNA based approach across cultivars. Further, the mRNAome was on par with the whole transcriptome in viral identification. Through de novo assembly of transcriptomes followed by mapping against reference genome, we reconstructed 19 complete/near complete genomes of identified viruses and viroids. The reconstructed viral genomes included four larger RNA genomes (>13 kb), a DNA genome (RG grapevine geminivirus A), a divergent genome (RG grapevine virus B) and a genome for which no reference is available (RG grapevine virus L). A large number of SNPs detected in this study ascertained the quasispecies nature of viruses. Detection of three recombination events and phylogenetic analyses using reconstructed genomes suggested the possible introduction of viruses and viroids into India from several continents through the planting material. The whole genome sequences generated in this study can serve as a resource for reliable indexing of grapevine viruses and viroids in quarantine stations and certification programs.
Collapse
Affiliation(s)
- V Kavi Sidharthan
- Division of Plant Pathology, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi, India
| | - Amitha Mithra Sevanthi
- Indian Council of Agricultural Research-National Institute for Plant Biotechnology, New Delhi, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, Indian Council of Agricultural Research-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - V K Baranwal
- Division of Plant Pathology, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
8
|
Tseng KC, Chiang-Hsieh YF, Pai H, Wu NY, Zheng HQ, Chow CN, Lee TY, Chang SB, Lin NS, Chang WC. sRIS: A Small RNA Illustration System for Plant Next-Generation Sequencing Data Analysis. PLANT & CELL PHYSIOLOGY 2020; 61:1204-1212. [PMID: 32181856 DOI: 10.1093/pcp/pcaa034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/08/2020] [Indexed: 06/10/2023]
Abstract
Small RNA (sRNA), such as microRNA (miRNA) and short interfering RNA, are well-known to control gene expression based on degradation of target mRNA in plants. A considerable amount of research has applied next-generation sequencing (NGS) to reveal the regulatory pathways of plant sRNAs. Consequently, numerous bioinformatics tools have been developed for the purpose of analyzing sRNA NGS data. However, most methods focus on the study of sRNA expression profiles or novel miRNAs predictions. The analysis of sRNA target genes is usually not integrated into their pipelines. As a result, there is still no means available for identifying the interaction mechanisms between host and virus or the synergistic effects between two viruses. For the present study, a comprehensive system, called the Small RNA Illustration System (sRIS), has been developed. This system contains two main components. The first is for sRNA overview analysis and can be used not only to identify miRNA but also to investigate virus-derived small interfering RNA. The second component is for sRNA target prediction, and it employs both bioinformatics calculations and degradome sequencing data to enhance the accuracy of target prediction. In addition, this system has been designed so that figures and tables for the outputs of each analysis can be easily retrieved and accessed, making it easier for users to quickly identify and quantify their results. sRIS is available at http://sris.itps.ncku.edu.tw/.
Collapse
Affiliation(s)
- Kuan-Chieh Tseng
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Yi-Fan Chiang-Hsieh
- College of Biosciences and Biotechnology, Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan 701, Taiwan
| | - Hsuan Pai
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Nai-Yun Wu
- College of Biosciences and Biotechnology, Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan 701, Taiwan
| | - Han-Qin Zheng
- College of Biosciences and Biotechnology, Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan 701, Taiwan
| | - Chi-Nga Chow
- College of Biosciences and Biotechnology, NCKU-AS Graduate Program in Translational Agricultural Sciences, National Cheng Kung University, Tainan 70101, Taiwan
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China
| | - Tzong-Yi Lee
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China
| | - Song-Bin Chang
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Na-Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Wen-Chi Chang
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
- College of Biosciences and Biotechnology, Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan 701, Taiwan
- College of Biosciences and Biotechnology, NCKU-AS Graduate Program in Translational Agricultural Sciences, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
9
|
Xiao H, Li C, Al Rwahnih M, Dolja V, Meng B. Metagenomic Analysis of Riesling Grapevine Reveals a Complex Virome Including Two New and Divergent Variants of Grapevine leafroll-associated virus 3. PLANT DISEASE 2019; 103:1275-1285. [PMID: 30932733 DOI: 10.1094/pdis-09-18-1503-re] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The virome of a major white wine grape of cultivar Riesling showing decline and leafroll disease symptoms was analyzed through high-throughput sequencing (HTS) using total RNAs as templates and the Illumina HiSeq 2500 platform. Analysis of HTS data revealed the presence of five viruses and three viroids in the infected vine. These viruses are Grapevine leafroll-associated virus 1 (GLRaV-1) and GLRaV-3 (genus Ampelovirus, family Closteroviridae) and three viruses of the family Betaflexiviridae (namely, Grapevine virus A [GVA], Grapevine virus B, and Grapevine rupestris stem pitting-associated virus [GRSPaV]). We also show that multiple distinct strains of three viruses (GLRaV-3, GVA, and GRSPaV) were present in this diseased grapevine. The complete genomes of two novel and highly divergent isolates of GLRaV-3 were determined using the draft genomes derived from HTS data and two independent rapid amplification of cDNA ends (RACE) strategies to obtain sequences at both the 5' and the 3' termini of the viral genomes. Questionable genome regions of both isolates were also verified through cloning of reverse transcription polymerase chain reaction products and Sanger sequencing. These two isolates are vastly divergent from all other isolates of GLRaV-3 whose genome sequences are available in GenBank. Isolate ON8415A has up to 76% nucleotide sequence identities to other isolates representing existing variant groups. We also revealed high degrees of variation in both length and sequence in the terminal untranslated regions (UTRs) of GLRaV-3 variants. The 5'-UTR of most GLRaV-3 isolates whose complete genomes have been sequenced contain tandem repeats of 65 nucleotides, a highly unusual feature rarely observed in (+)single-stranded RNA viruses. Mechanisms for the biogenesis of these tandem repeats and their function in virus replication and pathogenesis require investigation. Findings of this research add to the genetic diversity, evolutionary biology, and diagnostics of GLRaV-3 that afflicts the global grape wine industry.
Collapse
Affiliation(s)
- Huogen Xiao
- 1 Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Caihong Li
- 1 Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Maher Al Rwahnih
- 2 Department of Plant Pathology, University of California, Davis, CA 95616, U.S.A.; and
| | - Valerian Dolja
- 3 Department of Botany and Plant Pathology, Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331, U.S.A
| | - Baozhong Meng
- 1 Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
10
|
Zhang F, Yang Z, Hong N, Wang G, Wang A, Wang L. Identification and characterization of water chestnut Soymovirus-1 (WCSV-1), a novel Soymovirus in water chestnuts (Eleocharis dulcis). BMC PLANT BIOLOGY 2019; 19:159. [PMID: 31023231 PMCID: PMC6482551 DOI: 10.1186/s12870-019-1761-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 04/05/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND A disease of unknown etiology in water chestnut plants (Eleocharis dulcis) was reported in China between 2012 and 2014. High throughput sequencing of small RNA (sRNA) combined with bioinformatics, and molecular identification based on PCR detection with virus-specific primers and DNA sequencing is a desirable approach to identify an unknown infectious agent. In this study, we employed this approach to identify viral sequences in water chestnut plants and to explore the molecular interaction of the identified viral pathogen and its natural plant host. RESULTS Based on high throughput sequencing of virus-derived small RNAs (vsRNA), we identified the sequence a new-to-science double-strand DNA virus isolated from water chestnut cv. 'Tuanfeng' samples, a widely grown cultivar in Hubei province, China, and analyzed its genomic organization. The complete genomic sequence is 7535 base-pairs in length, and shares 42-52% nucleotide sequence identity with viruses in the Caulimoviridae family. The virus contains nine predicated open reading frames (ORFs) encoding nine hypothetical proteins, with conserved domains characteristic of caulimoviruses. Phylogenetic analyses at the nucleotide and amino acid levels indicated that the virus belongs to the genus Soymovirus. The virus is tentatively named Water chestnut soymovirus-1 (WCSV-1). Phylogenetic analysis of the putative viral polymerase protein suggested that WCSV-1 is distinct to other well established species in the Soymovirus genus. This conclusion was supported by phylogenetic analyses of the amino acid sequences encoded by ORFs I, IV, VI, or VII. The sRNA bioinformatics showed that the majority of the vsRNAs are 22-nt in length with a preference for U at the 5'-terminal nucleotide. The vsRNAs are unevenly distributed over both strands of the entire WCSV-1 circular genome, and are clustered into small defined regions. In addition, we detected WCSV-1 in asymptomatic and symptomatic water chestnut samples collected from different regions of China by using PCR. RNA-seq assays further confirmed the presence of WCSV-1-derived viral RNA in infected plants. CONCLUSIONS This is the first discovery of a dsDNA virus in the genus Soymovirus infecting water chestnuts. Data presented also add new information towards a better understanding of the co-evolutionary mechanisms between the virus and its natural plant host.
Collapse
Affiliation(s)
- Fangpeng Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei People’s Republic of China
- Lab of Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei People’s Republic of China
| | - Zuokun Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei People’s Republic of China
- Lab of Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei People’s Republic of China
| | - Ni Hong
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei People’s Republic of China
- Lab of Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei People’s Republic of China
| | - Guoping Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei People’s Republic of China
- Lab of Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei People’s Republic of China
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3 Canada
| | - Liping Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei People’s Republic of China
- Lab of Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei People’s Republic of China
| |
Collapse
|
11
|
Eichmeier A, Kominkova M, Pecenka J, Kominek P. High-throughput small RNA sequencing for evaluation of grapevine sanitation efficacy. J Virol Methods 2019; 267:66-70. [PMID: 30851291 DOI: 10.1016/j.jviromet.2019.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 01/21/2019] [Accepted: 03/05/2019] [Indexed: 11/16/2022]
Abstract
This study describes the application of high-throughput sequencing of small RNA analysis of the efficacy of using Ribavirin to eliminate Grapevine leafroll-associated virus 1, Grapevine fleck virus and Grapevine rupestris stem pitting-associated virus from Vitis vinifera cv. Riesling. The original plant used for sanitation by Ribavirin treatment was one naturally infected with all the viruses mentioned above as confirmed by RT-PCR. A tissue cultures of the plant were established and plantlets obtained were sanitized using Ribavirin. Three years after sanitation, a small RNA sequencing method for virus detection, targeting 21, 22 and 24 nt-long viral small RNAs (vsRNAs), was used to analyze both the mother plant and the sanitized plants. The results showed that the mother plant was infected by the three mentioned viruses and additionally by two viroids - Hop stunt viroid and Grapevine yellow speckle viroid 1. After Ribavirin treatment, the plants contained only the two viroids, with the complete elimination of all the viruses previously present.
Collapse
Affiliation(s)
- Ales Eichmeier
- Mendeleum - Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Valticka 334, Lednice, 691 44, Czech Republic.
| | - Marcela Kominkova
- Crop Research Institute, Drnovska 507, Praha 6, Ruzyne, 161 06, Czech Republic
| | - Jakub Pecenka
- Mendeleum - Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Valticka 334, Lednice, 691 44, Czech Republic
| | - Petr Kominek
- Crop Research Institute, Drnovska 507, Praha 6, Ruzyne, 161 06, Czech Republic
| |
Collapse
|
12
|
Pooggin MM. Small RNA-Omics for Plant Virus Identification, Virome Reconstruction, and Antiviral Defense Characterization. Front Microbiol 2018; 9:2779. [PMID: 30524398 PMCID: PMC6256188 DOI: 10.3389/fmicb.2018.02779] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/30/2018] [Indexed: 11/13/2022] Open
Abstract
RNA interference (RNAi)-based antiviral defense generates small interfering RNAs that represent the entire genome sequences of both RNA and DNA viruses as well as viroids and viral satellites. Therefore, deep sequencing and bioinformatics analysis of small RNA population (small RNA-ome) allows not only for universal virus detection and genome reconstruction but also for complete virome reconstruction in mixed infections. Viral infections (like other stress factors) can also perturb the RNAi and gene silencing pathways regulating endogenous gene expression and repressing transposons and host genome-integrated endogenous viral elements which can potentially be released from the genome and contribute to disease. This review describes the application of small RNA-omics for virus detection, virome reconstruction and antiviral defense characterization in cultivated and non-cultivated plants. Reviewing available evidence from a large and ever growing number of studies of naturally or experimentally infected hosts revealed that all families of land plant viruses, their satellites and viroids spawn characteristic small RNAs which can be assembled into contigs of sufficient length for virus, satellite or viroid identification and for exhaustive reconstruction of complex viromes. Moreover, the small RNA size, polarity and hotspot profiles reflect virome interactions with the plant RNAi machinery and allow to distinguish between silent endogenous viral elements and their replicating episomal counterparts. Models for the biogenesis and functions of small interfering RNAs derived from all types of RNA and DNA viruses, satellites and viroids as well as endogenous viral elements are presented and discussed.
Collapse
Affiliation(s)
- Mikhail M. Pooggin
- Institut National de la Recherche Agronomique, UMR BGPI, Montpellier, France
| |
Collapse
|
13
|
Chiumenti M, Catacchio CR, Miozzi L, Pirovano W, Ventura M, Pantaleo V. A Short Indel-Lacking-Resistance Gene Triggers Silencing of the Photosynthetic Machinery Components Through TYLCSV-Associated Endogenous siRNAs in Tomato. FRONTIERS IN PLANT SCIENCE 2018; 9:1470. [PMID: 30364213 PMCID: PMC6193080 DOI: 10.3389/fpls.2018.01470] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/19/2018] [Indexed: 05/27/2023]
Abstract
Plant viruses modify gene expression in infected tissues by altering the micro (mi)RNA-mediated regulation of genes. Among conserved miRNA targets there are transcripts coding for transcription factors, RNA silencing core, and disease-resistance proteins. Paralogs in these gene families are widely present in plant genomes and are known to respond differently to miRNA-mediated regulation during plant virus infections. Using genome-wide approaches applied to Solanum lycopersicum infected by a nuclear-replicating virus, we highlighted miRNA-mediated cleavage events that could not be revealed in virus-free systems. Among them we confirmed miR6024 targeting and cleavage of RX-coiled-coil (RX-CC), nucleotide binding site (NBS), leucine-rich (LRR) mRNA. Cleavage of paralogs was associated with short indels close to the target sites, indicating a general functional significance of indels in fine-tuning gene expression in plant-virus interaction. miR6024-mediated cleavage, uniquely in virus-infected tissues, triggers the production of several 21-22 nt secondary siRNAs. These secondary siRNAs, rather than being involved in the cascade regulation of other NBS-LRR paralogs, explained cleavages of several mRNAs annotated as defence-related proteins and components of the photosynthetic machinery. Outputs of these data explain part of the phenotype plasticity in plants, including the appearance of yellowing symptoms in the viral pathosystem.
Collapse
Affiliation(s)
- Michela Chiumenti
- Institute for Sustainable Plant Protection of the National Research Council, Research Unit of Bari, Bari, Italy
| | | | - Laura Miozzi
- Institute for Sustainable Plant Protection of the National Research Council, Research Unit of Turin, Turin, Italy
| | | | - Mario Ventura
- Dipartimento di Biologia, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Vitantonio Pantaleo
- Institute for Sustainable Plant Protection of the National Research Council, Research Unit of Bari, Bari, Italy
| |
Collapse
|
14
|
Qiao W, Zarzyńska‐Nowak A, Nerva L, Kuo Y, Falk BW. Accumulation of 24 nucleotide transgene-derived siRNAs is associated with crinivirus immunity in transgenic plants. MOLECULAR PLANT PATHOLOGY 2018; 19:2236-2247. [PMID: 29704454 PMCID: PMC6638120 DOI: 10.1111/mpp.12695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
RNA silencing is a conserved antiviral defence mechanism that has been used to develop robust resistance against plant virus infections. Previous efforts have been made to develop RNA silencing-mediated resistance to criniviruses, yet none have given immunity. In this study, transgenic Nicotiana benthamiana plants harbouring a hairpin construct of the Lettuce infectious yellows virus (LIYV) RNA-dependent RNA polymerase (RdRp) sequence exhibited immunity to systemic LIYV infection. Deep sequencing analysis was performed to characterize virus-derived small interfering RNAs (vsiRNAs) generated on systemic LIYV infection in non-transgenic N. benthamiana plants as well as transgene-derived siRNAs (t-siRNAs) derived from the immune-transgenic plants before and after LIYV inoculation. Interestingly, a similar sequence distribution pattern was obtained with t-siRNAs and vsiRNAs mapped to the transgene region in both immune and susceptible plants, except for a significant increase in t-siRNAs of 24 nucleotides in length, which was consistent with small RNA northern blot results that showed the abundance of t-siRNAs of 21, 22 and 24 nucleotides in length. The accumulated 24-nucleotide sequences have not yet been reported in transgenic plants partially resistant to criniviruses, and thus may indicate their correlation with crinivirus immunity. To further test this hypothesis, we developed transgenic melon (Cucumis melo) plants immune to systemic infection of another crinivirus, Cucurbit yellow stunting disorder virus (CYSDV). As predicted, the accumulation of 24-nucleotide t-siRNAs was detected in transgenic melon plants by northern blot. Together with our findings and previous studies on crinivirus resistance, we propose that the accumulation of 24-nucleotide t-siRNAs is associated with crinivirus immunity in transgenic plants.
Collapse
Affiliation(s)
- Wenjie Qiao
- Department of Plant PathologyUniversity of CaliforniaDavisCAUSA, 95616
| | - Aleksandra Zarzyńska‐Nowak
- Department of Virology and BacteriologyInstitute of Plant Protection‐National Research InstitutePoznańPoland, 60‐318
| | - Luca Nerva
- Council for Agricultural Research and Economics – Research Centre for Viticulture and EnologyConegliano (TV)Italy, 00198
- Institute for Sustainable Plant ProtectionTorinoItaly, 10135
| | - Yen‐Wen Kuo
- Department of Plant PathologyUniversity of CaliforniaDavisCAUSA, 95616
| | - Bryce W. Falk
- Department of Plant PathologyUniversity of CaliforniaDavisCAUSA, 95616
| |
Collapse
|
15
|
Ruiz L, Simón A, García C, Velasco L, Janssen D. First natural crossover recombination between two distinct species of the family Closteroviridae leads to the emergence of a new disease. PLoS One 2018; 13:e0198228. [PMID: 30212464 PMCID: PMC6136708 DOI: 10.1371/journal.pone.0198228] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 09/01/2018] [Indexed: 11/21/2022] Open
Abstract
Lettuce chlorosis virus-SP (LCV-SP) (family Closteroviridae, genus Crinivirus), is a new strain of LCV which is able to infect green bean plants but not lettuce. In the present study, high-throughput and Sanger sequencing of RNA was used to obtain the LCV-SP full-length sequence. The LCV-SP genome comprises 8825 nt and 8672 nt long RNA1 and RNA2 respectively. RNA1 of LCV-SP contains four ORFs, the proteins encoded by the ORF1a and ORF1b are closely related to LCV RNA1 from California (FJ380118) whereas the 3´ end encodes proteins which share high amino acid sequence identity with RNA1 of Bean yellow disorder virus (BnYDV; EU191904). The genomic sequence of RNA2 consists of 8 ORFs, instead of 10 ORFs contained in LCV-California isolate. The distribution of vsiRNA (virus-derived small interfering RNA) along the LCV-SP genome suggested the presence of subgenomic RNAs corresponding with HSP70, P6.4 and P60. Results of the analysis using RDP4 and Simplot programs are the proof of the evidence that LCV-SP is the first recombinant of the family Closteroviridae by crossover recombination of intact ORFs, being the LCV RNA1 (FJ380118) and BnYDV RNA1 (EU191904) the origin of the new LCV strain. Genetic diversity values of virus isolates in the recombinant region obtained after sampling LCV-SP infected green bean between 2011 and 2017 might suggest that the recombinant virus event occurred in the area before this period. The presence of LCV-SP shows the role of recombination as a driving force of evolution within the genus Crinivirus, a globally distributed, emergent genus.
Collapse
Affiliation(s)
- Leticia Ruiz
- IFAPA Centro La Mojonera, IFAPA, La Mojonera, Almería, Spain
| | - Almudena Simón
- IFAPA Centro La Mojonera, IFAPA, La Mojonera, Almería, Spain
| | - Carmen García
- IFAPA Centro La Mojonera, IFAPA, La Mojonera, Almería, Spain
| | | | - Dirk Janssen
- IFAPA Centro La Mojonera, IFAPA, La Mojonera, Almería, Spain
| |
Collapse
|
16
|
Baráth D, Jaksa-Czotter N, Molnár J, Varga T, Balássy J, Szabó LK, Kirilla Z, Tusnády GE, Preininger É, Várallyay É. Small RNA NGS Revealed the Presence of Cherry Virus A and Little Cherry Virus 1 on Apricots in Hungary. Viruses 2018; 10:E318. [PMID: 29891760 PMCID: PMC6024520 DOI: 10.3390/v10060318] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/08/2018] [Accepted: 06/09/2018] [Indexed: 12/14/2022] Open
Abstract
Fruit trees, such as apricot trees, are constantly exposed to the attack of viruses. As they are propagated in a vegetative way, this risk is present not only in the field, where they remain for decades, but also during their propagation. Metagenomic diagnostic methods, based on next generation sequencing (NGS), offer unique possibilities to reveal all the present pathogens in the investigated sample. Using NGS of small RNAs, a special field of these techniques, we tested leaf samples of different varieties of apricot originating from an isolator house or open field stock nursery. As a result, we identified Cherry virus A (CVA) and little cherry virus 1 (LChV-1) for the first time in Hungary. The NGS results were validated by RT-PCR and also by Northern blot in the case of CVA. Cloned and Sanger sequenced viral-specific PCR products enabled us to investigate their phylogenetic relationships. However, since these pathogens have not been described in our country before, their role in symptom development and modification during co-infection with other viruses requires further investigation.
Collapse
Affiliation(s)
- Dániel Baráth
- Agricultural Biotechnology Institute, NARIC, 2100 Gödöllő, Hungary.
| | | | - János Molnár
- Department of Biotechnology, Nanophagetherapy Center, Enviroinvest Corporation, 7632 Pécs, Hungary.
| | - Tünde Varga
- Agricultural Biotechnology Institute, NARIC, 2100 Gödöllő, Hungary.
| | - Júlia Balássy
- Agricultural Biotechnology Institute, NARIC, 2100 Gödöllő, Hungary.
| | | | - Zoltán Kirilla
- Fruitculture Research Institute, NARIC, 1223 Budapest, Hungary.
| | - Gábor E Tusnády
- Institute of Enzymology, Research Center of Natural Sciences, HAS, 1117 Budapest, Hungary.
| | - Éva Preininger
- Fruitculture Research Institute, NARIC, 1223 Budapest, Hungary.
| | - Éva Várallyay
- Agricultural Biotechnology Institute, NARIC, 2100 Gödöllő, Hungary.
| |
Collapse
|
17
|
Use of siRNAs for Diagnosis of Viruses Associated to Woody Plants in Nurseries and Stock Collections. Methods Mol Biol 2018; 1746:115-130. [PMID: 29492890 DOI: 10.1007/978-1-4939-7683-6_9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Woody perennial plants like grapevine and fruit trees can be infected by several viruses even as multiple infections. Since they are propagated vegetatively, the phytosanitary status of the propagation material (both the rootstock and the variety) can have a profound effect on the lifetime and health of the new plantations. The fast evolution of sequencing techniques provides a new opportunity for metagenomics-based viral diagnostics. Viral derived small RNAs produced by the host immune system during viral infection can be sequenced by next-generation techniques and analyzed for the presence of viruses, revealing the presence of all known viral pathogens in the sample. This method is based on Illumina sequencing of short RNAs and bioinformatics analysis of virus-derived small RNAs in the host. Here we describe a protocol for this challenging technique step by step with notes, in order to ensure success for every user.
Collapse
|
18
|
Application of next generation sequencing toward sensitive detection of enteric viruses isolated from celery samples as an example of produce. Int J Food Microbiol 2017; 261:73-81. [PMID: 28992517 DOI: 10.1016/j.ijfoodmicro.2017.07.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/15/2017] [Accepted: 07/30/2017] [Indexed: 02/06/2023]
Abstract
Next generation sequencing (NGS) holds promise as a single application for both detection and sequence identification of foodborne viruses; however, technical challenges remain due to anticipated low quantities of virus in contaminated food. In this study, with a focus on data analysis using several bioinformatics tools, we applied NGS toward amplification-independent detection and identification of norovirus at low copy (<103 copies) or within multiple strains from produce. Celery samples were inoculated with human norovirus (stool suspension) either as a single norovirus strain, a mixture of strains (GII.4 and GII.6), or a mixture of different species (hepatitis A virus and norovirus). Viral RNA isolation and recovery was confirmed by RT-qPCR, and optimized for library generation and sequencing without amplification using the Illumina MiSeq platform. Extracts containing either a single virus or a two-virus mixture were analyzed using two different analytic approaches to achieve virus detection and identification. First an overall assessment of viral genome coverage for samples varying in copy numbers (1.1×103 to 1.7×107) and genomic content (single or multiple strains in various ratios) was completed by reference-guided mapping. Not unexpectedly, this targeted approach to identification was successful in correctly mapping reads, thus identifying each virus contained in the inoculums even at low copy (estimated at 12 copies). For the second (metagenomic) approach, samples were treated as "unknowns" for data analyses using (i) a sequence-based alignment with a local database, (ii) an "in-house" k-mer tool, (iii) a commercially available metagenomics bioinformatic analysis platform cosmosID, and (iv) an open-source program Kraken. Of the four metagenomics tools applied in this study, only the local database alignment and in-house k-mer tool were successful in detecting norovirus (as well as HAV) at low copy (down to <103 copies) and within a mixture of virus strains or species. The results of this investigation provide support for continued investigation into the development and integration of these analytical tools for identification and detection of foodborne viruses.
Collapse
|
19
|
Identification of a viroid-like RNA in a lychee Transcriptome Shotgun Assembly. Virus Res 2017; 240:1-7. [DOI: 10.1016/j.virusres.2017.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/03/2017] [Accepted: 07/03/2017] [Indexed: 11/20/2022]
|
20
|
Guo S, Wong SM. Deep sequencing analysis reveals a TMV mutant with a poly(A) tract reduces host defense responses in Nicotiana benthamiana. Virus Res 2017; 239:126-135. [PMID: 28082213 DOI: 10.1016/j.virusres.2017.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/07/2017] [Accepted: 01/08/2017] [Indexed: 12/24/2022]
Abstract
Tobacco mosaic virus (TMV) possesses an upstream pseudoknotted domain (UPD), which is important for replication. After substituting the UPD with an internal poly(A) tract (43 nt), a mutant TMV-43A was constructed. TMV-43A replicated slower than TMV and induced a non-lethal mosaic symptom in Nicotiana benthamiana. In this study, deep sequencing was performed to detect the differences of small RNA profiles between TMV- and TMV-43A-infected N. benthamiana. The results showed that TMV-43A produced lesser amount of virus-derived interfering RNAs (vsiRNAs) than that of TMV. However, the distributions of vsiRNAs generation hotspots between TMV and TMV-43A were similar. Expression of genes related to small RNA biogenesis in TMV-43A-infected N. benthamiana was significantly lower than that of TMV, which leads to generation of lesser vsiRNAs. The expressions of host defense response genes were up-regulated after TMV infection, as compared to TMV-43A-infected plants. Host defense response to TMV-43A infection was lower than that to TMV. The absence of UPD might contribute to the reduced host response to TMV-43A. Our study provides valuable information in the role of the UPD in eliciting host response genes after TMV infection in N. benthamiana. (187 words).
Collapse
Affiliation(s)
- Song Guo
- Department of Biological Sciences, National University of Singapore, Republic of Singapore
| | - Sek-Man Wong
- Department of Biological Sciences, National University of Singapore, Republic of Singapore; Temasek Life Sciences Laboratory, Singapore, Republic of Singapore; National University of Singapore Research Institute in Suzhou, Jiangsu, People's Republic of China.
| |
Collapse
|
21
|
Pérez-Cañamás M, Blanco-Pérez M, Forment J, Hernández C. Nicotiana benthamiana plants asymptomatically infected by Pelargonium line pattern virus show unusually high accumulation of viral small RNAs that is neither associated with DCL induction nor RDR6 activity. Virology 2017; 501:136-146. [PMID: 27915129 DOI: 10.1016/j.virol.2016.11.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/25/2016] [Accepted: 11/26/2016] [Indexed: 01/25/2023]
Abstract
Pelargonium line pattern virus (PLPV, Tombusviridae) normally establishes systemic, low-titered and asymptomatic infections in its hosts. This type of interaction may be largely determined by events related to RNA silencing, a major antiviral mechanism in plants. This mechanism is triggered by double or quasi double-stranded (ds) viral RNAs which are cut by DCL ribonucleases into virus small RNAs (vsRNAs). Such vsRNAs are at the core of the silencing process as they guide sequence-specific RNA degradation Host RNA dependent-RNA polymerases (RDRs), and particularly RDR6, strengthen antiviral silencing by promoting biosynthesis of secondary vsRNAs. To approach PLPV-host relationship, here we have characterized the vsRNAs that accumulate in PLPV-infected Nicotiana benthamiana. Such accumulation was found unprecedented high despite DCLs were not induced in infected tissue and neither vsRNA generation nor PLPV infection was apparently affected by RDR6 impairment. From the obtained data, triggers and host factors likely involved in anti-PLPV silencing are proposed.
Collapse
Affiliation(s)
- Miryam Pérez-Cañamás
- Instituto de Biología Molecular y Celular de Plantas (IBMCP, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Ciudad Politécnica de la Innovación, Ed. 8E. Camino de Vera s/n, 46022 Valencia, Spain
| | - Marta Blanco-Pérez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Ciudad Politécnica de la Innovación, Ed. 8E. Camino de Vera s/n, 46022 Valencia, Spain
| | - Javier Forment
- Instituto de Biología Molecular y Celular de Plantas (IBMCP, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Ciudad Politécnica de la Innovación, Ed. 8E. Camino de Vera s/n, 46022 Valencia, Spain
| | - Carmen Hernández
- Instituto de Biología Molecular y Celular de Plantas (IBMCP, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Ciudad Politécnica de la Innovación, Ed. 8E. Camino de Vera s/n, 46022 Valencia, Spain.
| |
Collapse
|
22
|
Differential expression of miRNAs and associated gene targets in grapevine leafroll-associated virus 3-infected plants. Arch Virol 2016; 162:987-996. [PMID: 28025711 DOI: 10.1007/s00705-016-3197-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
Abstract
MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs (sRNA) that play an essential role in the regulation of target mRNAs expressed during plant development and in response to stress. MicroRNA expression profiling has helped to identify miRNAs that regulate a range of processes, including the plant's defence response to pathogens. In this study, differential miRNA expression in own-rooted Vitis vinifera cv. Cabernet Sauvignon plants infected with grapevine leafroll-associated virus 3 was investigated with microarrays and next-generation sequencing (NGS) of sRNA and mRNA. These high-throughput approaches identified several differentially expressed miRNAs. Four miRNAs, identified by both approaches, were validated by stemloop RT-PCRs. Three of the predicted targets of the differentially expressed miRNAs were also differentially expressed in the transcriptome data of infected plants, and were validated by RT-qPCR. Identification of these miRNAs and their targets can lead to a better understanding of host-pathogen interactions involved in grapevine leafroll disease and the identification of possible targets for virus resistance.
Collapse
|
23
|
Eichmeier A, Komínková M, Komínek P, Baránek M. Comprehensive Virus Detection Using Next Generation Sequencing in Grapevine Vascular Tissues of Plants Obtained from the Wine Regions of Bohemia and Moravia (Czech Republic). PLoS One 2016; 11:e0167966. [PMID: 27959951 PMCID: PMC5154529 DOI: 10.1371/journal.pone.0167966] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/23/2016] [Indexed: 01/31/2023] Open
Abstract
Comprehensive next generation sequencing virus detection was used to detect the whole spectrum of viruses and viroids in selected grapevines from the Czech Republic. The novel NGS approach was based on sequencing libraries of small RNA isolated from grapevine vascular tissues. Eight previously partially-characterized grapevines of diverse varieties were selected and subjected to analysis: Chardonnay, Laurot, Guzal Kara, and rootstock Kober 125AA from the Moravia wine-producing region; plus Müller-Thurgau and Pinot Noir from the Bohemia wine-producing region, both in the Czech Republic. Using next generation sequencing of small RNA, the presence of 8 viruses and 2 viroids were detected in a set of eight grapevines; therefore, confirming the high effectiveness of the technique in plant virology and producing results supporting previous data on multiple infected grapevines in Czech vineyards. Among the pathogens detected, the Grapevine rupestris vein feathering virus and Grapevine yellow speckle viroid 1 were recorded in the Czech Republic for the first time.
Collapse
Affiliation(s)
- Aleš Eichmeier
- Mendeleum - Department of Genetics, Faculty of Horticulture, Mendel University in Brno, Lednice, Czech Republic
| | | | | | - Miroslav Baránek
- Mendeleum - Department of Genetics, Faculty of Horticulture, Mendel University in Brno, Lednice, Czech Republic
| |
Collapse
|
24
|
Mascia T, Gallitelli D. Synergies and antagonisms in virus interactions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 252:176-192. [PMID: 27717453 DOI: 10.1016/j.plantsci.2016.07.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/22/2016] [Accepted: 07/27/2016] [Indexed: 05/25/2023]
Abstract
Metagenomic surveys and data from next generation sequencing revealed that mixed infections among plant viruses are probably a rule rather than an exception in natural pathosystems. The documented cases may range from synergism to antagonism, which may depend from the spatiotemporal order of arrival of the viruses on the host and upon the host itself. In synergistic interactions, the measurable differences in replication, phenotypic and cytopathological changes, cellular tropism, within host movement, and transmission rate of one of the two viruses or both are increased. Conversely, a decrease in replication, or inhibition of one or more of the above functions by one virus against the other, leads to an antagonistic interaction. Viruses may interact directly and by transcomplementation of defective functions or indirectly, through responses mediated by the host like the defense mechanism based on RNA silencing. Outcomes of these interactions can be applied to the risk assessment of transgenic crops expressing viral proteins, or cross-protected crops for the identification of potential hazards. Prior to experimental evidence, mathematical models may help in forecasting challenges deriving from the great variety of pathways of synergistic and antagonistic interactions. Actually, it seems that such predictions do not receive sufficient credit in the framework of agriculture.
Collapse
Affiliation(s)
- Tiziana Mascia
- Dipartimento di Scienze del Suolo della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; Istituto del CNR per la Protezione sostenibile delle Piante, Unità Operativa di Supporto di Bari, Via Amendola 165/A, 70126 Bari, Italy
| | - Donato Gallitelli
- Dipartimento di Scienze del Suolo della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; Istituto del CNR per la Protezione sostenibile delle Piante, Unità Operativa di Supporto di Bari, Via Amendola 165/A, 70126 Bari, Italy.
| |
Collapse
|
25
|
Lin W, Yan W, Yang W, Yu C, Chen H, Zhang W, Wu Z, Yang L, Xie L. Characterisation of siRNAs derived from new isolates of bamboo mosaic virus and their associated satellites in infected ma bamboo (Dendrocalamus latiflorus). Arch Virol 2016; 162:505-510. [PMID: 27743256 DOI: 10.1007/s00705-016-3092-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 09/26/2016] [Indexed: 12/24/2022]
Abstract
We characterised the virus-derived small interfering RNAs (vsiRNA) of bamboo mosaic virus (Ba-vsiRNAs) and its associated satellite RNA (satRNA)-derived siRNAs (satsiRNAs) in a bamboo plant (Dendrocalamus latiflorus) by deep sequencing. Ba-vsiRNAs and satsiRNAs of 21-22 nt in length, with both (+) and (-) polarity, predominated. The 5'-terminal base of Ba-vsiRNA was biased towards A, whereas a bias towards C/U was observed in sense satsiRNAs, and towards A in antisense satsiRNAs. A large set of bamboo genes were identified as potential targets of Ba-vsiRNAs and satsiRNAs, revealing RNA silencing-based virus-host interactions in plants. Moreover, we isolated and characterised new isolates of bamboo mosaic virus (BaMV; 6,350 nt) and BaMV-associated satRNA (satBaMV; 834 nt), designated BaMV-MAZSL1 and satBaMV-MAZSL1, respectively.
Collapse
Affiliation(s)
- Wenwu Lin
- Fujian Key Lab of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenkai Yan
- Fujian Key Lab of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenting Yang
- Fujian Key Lab of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chaowei Yu
- Fujian Key Lab of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huihuang Chen
- Fujian Key Lab of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wen Zhang
- Fujian Key Lab of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zujian Wu
- Fujian Key Lab of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liang Yang
- Fujian Key Lab of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Lianhui Xie
- Fujian Key Lab of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
26
|
Yang Z, Leonard SR, Mammel MK, Elkins CA, Kulka M. Towards next-generation sequencing analytics for foodborne RNA viruses: Examining the effect of RNA input quantity and viral RNA purity. J Virol Methods 2016; 236:221-230. [DOI: 10.1016/j.jviromet.2016.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/28/2016] [Accepted: 07/15/2016] [Indexed: 11/15/2022]
|
27
|
Hadidi A, Flores R, Candresse T, Barba M. Next-Generation Sequencing and Genome Editing in Plant Virology. Front Microbiol 2016; 7:1325. [PMID: 27617007 PMCID: PMC4999435 DOI: 10.3389/fmicb.2016.01325] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/11/2016] [Indexed: 01/18/2023] Open
Abstract
Next-generation sequencing (NGS) has been applied to plant virology since 2009. NGS provides highly efficient, rapid, low cost DNA, or RNA high-throughput sequencing of the genomes of plant viruses and viroids and of the specific small RNAs generated during the infection process. These small RNAs, which cover frequently the whole genome of the infectious agent, are 21-24 nt long and are known as vsRNAs for viruses and vd-sRNAs for viroids. NGS has been used in a number of studies in plant virology including, but not limited to, discovery of novel viruses and viroids as well as detection and identification of those pathogens already known, analysis of genome diversity and evolution, and study of pathogen epidemiology. The genome engineering editing method, clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system has been successfully used recently to engineer resistance to DNA geminiviruses (family, Geminiviridae) by targeting different viral genome sequences in infected Nicotiana benthamiana or Arabidopsis plants. The DNA viruses targeted include tomato yellow leaf curl virus and merremia mosaic virus (begomovirus); beet curly top virus and beet severe curly top virus (curtovirus); and bean yellow dwarf virus (mastrevirus). The technique has also been used against the RNA viruses zucchini yellow mosaic virus, papaya ringspot virus and turnip mosaic virus (potyvirus) and cucumber vein yellowing virus (ipomovirus, family, Potyviridae) by targeting the translation initiation genes eIF4E in cucumber or Arabidopsis plants. From these recent advances of major importance, it is expected that NGS and CRISPR-Cas technologies will play a significant role in the very near future in advancing the field of plant virology and connecting it with other related fields of biology.
Collapse
Affiliation(s)
- Ahmed Hadidi
- United States Department of Agriculture – Agricultural Research ServiceBeltsville, MD, USA
| | - Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia–Consejo Superior de Investigaciones CientíficasValencia, Spain
| | - Thierry Candresse
- UMR 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Université de BordeauxBordeaux, France
| | - Marina Barba
- Consiglio per la Ricerca in Agricoltura e l’analisi dell’Economia Agraria, Centro di Ricerca per la Patologia VegetaleRome, Italy
| |
Collapse
|
28
|
Zhang J, Borth WB, Lin B, Dey KK, Melzer MJ, Shen H, Pu X, Sun D, Hu JS. Deep sequencing of banana bract mosaic virus from flowering ginger (Alpinia purpurata) and development of an immunocapture RT-LAMP detection assay. Arch Virol 2016; 161:1783-95. [PMID: 27038825 DOI: 10.1007/s00705-016-2830-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 03/14/2016] [Indexed: 10/22/2022]
Abstract
Banana bract mosaic virus (BBrMV) has never been reported in banana plants in Hawaii. In 2010, however, it was detected in a new host, flowering ginger (Alpinia purpurata). In this study, we characterize the A. purpurata isolate and study its spread in flowering ginger in Hawaii. A laboratory study demonstrated that BBrMV could be transmitted from flowering ginger to its natural host, banana, therefore raising a serious concern about the potential risk to the rapidly growing banana industry of Hawaii. To quickly monitor this virus in the field, we developed a robust immunocapture reverse transcription loop-mediated isothermal amplification (IC-RT-LAMP) assay. Deep sequencing of the BBrMV isolate from A. purpurata revealed a single-stranded RNA virus with a genome of 9,713 nt potentially encoding a polyprotein of 3,124 aa, and another predicted protein, PIPO, in the +2 reading-frame shift. Most of the functional motifs in the Hawaiian isolate were conserved among the genomes of isolates from one found in the Philippines and India. However, the A. purpurata isolate had an amino acid deletion in the Pl protein that was most similar to the Philippine isolate. Phylogenetic analysis of an eastern Pacific subpopulation that included A. purpurata was closest in genetic distance to a Southeast Asian subpopulation, suggesting frequent gene flow and supporting the hypothesis that the A. purpurata isolate arrived in Hawaii from Southeast Asia.
Collapse
Affiliation(s)
- Jingxin Zhang
- Department of Plant and Environmental Protection Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii, Honolulu, HI, USA
- Key Laboratory of New Technique for Plant Protection in Guangdong, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Wayne B Borth
- Department of Plant and Environmental Protection Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii, Honolulu, HI, USA
| | - Birun Lin
- Key Laboratory of New Technique for Plant Protection in Guangdong, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Kishore K Dey
- Department of Plant and Environmental Protection Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii, Honolulu, HI, USA
| | - Michael J Melzer
- Department of Plant and Environmental Protection Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii, Honolulu, HI, USA
| | - Huifang Shen
- Key Laboratory of New Technique for Plant Protection in Guangdong, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiaoming Pu
- Key Laboratory of New Technique for Plant Protection in Guangdong, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Dayuan Sun
- Key Laboratory of New Technique for Plant Protection in Guangdong, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - John S Hu
- Department of Plant and Environmental Protection Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii, Honolulu, HI, USA.
| |
Collapse
|
29
|
Generation of a high resolution map of sRNAs from Fusarium graminearum and analysis of responses to viral infection. Sci Rep 2016; 6:26151. [PMID: 27189438 PMCID: PMC4870495 DOI: 10.1038/srep26151] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/28/2016] [Indexed: 01/18/2023] Open
Abstract
Previously, we characterized F. graminearum hypovirus 1 (FgHV1) and F. graminearum hypovirus 2 (FgHV2), which are the only two hypoviruses in F. graminearum that are closely related to Cryphonectria hypovirus 1 (CHV1) and Cryphonectria hypovirus 2 (CHV2) in the Hypoviridae family. In this study, we preliminarily elucidated the RNA silencing mechanism of the F. graminearum/hypovirus system from a small RNA (sRNA) perspective by using HiSeq deep sequencing. The length distributions of F. graminearum sRNA were altered by hypoviral infection. Potential microRNA-like (milRNA) candidates were differentially expressed between the hypovirus-free and hypovirus-infected library types. Extensive virus-derived small interfering RNAs (vsiRNAs) were also principally defined. The 1,831,081 and 3,254,758 total reads generated from the FgHV1 and FgHV2 genomes in F. graminearum yielded the first high-resolution sRNA maps of fungal viruses. In addition, extensive bioinformatics searches identified a large number of transcripts that are potentially targeted by vsiRNAs, several of which were effectively down-regulated. In particular, the RNA silencing-related genes FgDicer1 and FgRdRp5 were predicted targets of FgHV1- and FgHV2-derived siRNAs, possibly revealing a novel anti-RNA silencing strategy employed by mycoviruses.
Collapse
|
30
|
Garcia-Ruiz H, Ruiz MTG, Peralta SMG, Gabriel CBM, El-Mounadi K. Mechanisms, applications, and perspectives of antiviral RNA silencing in plants. ACTA ACUST UNITED AC 2016; 34. [PMID: 28890589 DOI: 10.18781/r.mex.fit.1606-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Viral diseases of plants cause important economic losses due to reduction in crop quality and quantity to the point of threatening food security in some countries. Given the reduced availability of natural sources, genetic resistance to viruses has been successfully engineered for some plant-virus combinations. A sound understanding of the basic mechanisms governing plant-virus interactions, including antiviral RNA silencing, is the foundation to design better management strategies and biotechnological approaches to engineer and implement antiviral resistance in plants. In this review, we present current molecular models to explain antiviral RNA silencing and its application in basic plant research, biotechnology and genetic engineering.
Collapse
Affiliation(s)
- Hernan Garcia-Ruiz
- Department of Plant Pathology, Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583 USA
| | | | | | | | - Kautar El-Mounadi
- Department of Biology, Kuztown University of Pennsylvania, Kuztown, PA 19530 USA
| |
Collapse
|
31
|
Chen S, Jiang G, Wu J, Liu Y, Qian Y, Zhou X. Characterization of a Novel Polerovirus Infecting Maize in China. Viruses 2016; 8:E120. [PMID: 27136578 PMCID: PMC4885075 DOI: 10.3390/v8050120] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/20/2016] [Accepted: 04/22/2016] [Indexed: 12/17/2022] Open
Abstract
A novel virus, tentatively named Maize Yellow Mosaic Virus (MaYMV), was identified from the field-grown maize plants showing yellow mosaic symptoms on the leaves collected from the Yunnan Province of China by the deep sequencing of small RNAs. The complete 5642 nucleotide (nt)-long genome of the MaYMV shared the highest nucleotide sequence identity (73%) to Maize Yellow Dwarf Virus-RMV. Sequence comparisons and phylogenetic analyses suggested that MaYMV represents a new member of the genus Polerovirus in the family Luteoviridae. Furthermore, the P0 protein encoded by MaYMV was demonstrated to inhibit both local and systemic RNA silencing by co-infiltration assays using transgenic Nicotiana benthamiana line 16c carrying the GFP reporter gene, which further supported the identification of a new polerovirus. The biologically-active cDNA clone of MaYMV was generated by inserting the full-length cDNA of MaYMV into the binary vector pCB301. RT-PCR and Northern blot analyses showed that this clone was systemically infectious upon agro-inoculation into N. benthamiana. Subsequently, 13 different isolates of MaYMV from field-grown maize plants in different geographical locations of Yunnan and Guizhou provinces of China were sequenced. Analyses of their molecular variation indicate that the 3' half of P3-P5 read-through protein coding region was the most variable, whereas the coat protein- (CP-) and movement protein- (MP-)coding regions were the most conserved.
Collapse
Affiliation(s)
- Sha Chen
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Guangzhuang Jiang
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Jianxiang Wu
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Yong Liu
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha 410125, China.
| | - Yajuan Qian
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Xueping Zhou
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
32
|
Niu J, Smagghe G, De Coninck DIM, Van Nieuwerburgh F, Deforce D, Meeus I. In vivo study of Dicer-2-mediated immune response of the small interfering RNA pathway upon systemic infections of virulent and avirulent viruses in Bombus terrestris. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 70:127-137. [PMID: 26711439 DOI: 10.1016/j.ibmb.2015.12.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/15/2015] [Accepted: 12/15/2015] [Indexed: 06/05/2023]
Abstract
Recent studies suggest a potent role of the small interfering RNA (siRNA) pathway in the control of bee viruses and its usefulness to tackle these viral diseases. However, the involvement of the siRNA pathway in the defense against different bee viruses is still poorly understood. Therefore, in this report, we comprehensively analyzed the response of the siRNA pathway in bumblebees of Bombus terrestris to systemic infections of the virulent Israeli acute paralysis virus (IAPV) and the avirulent slow bee paralysis virus (SBPV). Our results showed that IAPV and SBPV infections induced the expression of Dicer-2. IAPV infections also triggered the production of predominantly 22 nt-long virus-derived siRNAs (vsiRNAs). Intriguingly, these 22 nt-long vsiRNAs showed a high proportion of antigenomic IAPV sequences. Conversely, these predominantly 22 nt-long vsiRNAs of SBPV were not detected in SBPV infected bees. Furthermore, an "RNAi-of-RNAi" experiment on Dicer-2 did not result in altered genome copy numbers of IAPV (n = 17-18) and also not of SBPV (n = 11-12). Based on these results, we can speculate about the importance of the siRNA pathway in bumblebees for the antiviral response. During infection of IAPV, this pathway is probably recruited but it might be insufficient to control viral infection in our experimental setup. The host can control SBPV infection, but aside from the induction of Dicer-2 expression, no further evidence of the antiviral activity of the siRNA pathway was observed. This report may also enhance the current understanding of the siRNA pathway in the innate immunity of non-model insects upon different viral infections.
Collapse
Affiliation(s)
- Jinzhi Niu
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Dieter I M De Coninck
- Laboratory for Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory for Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Dieter Deforce
- Laboratory for Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Ivan Meeus
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| |
Collapse
|
33
|
Ogwok E, Ilyas M, Alicai T, Rey MEC, Taylor NJ. Comparative analysis of virus-derived small RNAs within cassava (Manihot esculenta Crantz) infected with cassava brown streak viruses. Virus Res 2016; 215:1-11. [PMID: 26811902 PMCID: PMC4796025 DOI: 10.1016/j.virusres.2016.01.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/18/2016] [Accepted: 01/21/2016] [Indexed: 01/02/2023]
Abstract
The 21-nt virus-derived small RNAs were predominant, followed by the 22-nt class. Susceptible cassava genotypes accumulated higher CBSV- than UCBSV-derived small RNA. Tolerant cassava genotype accumulated high CBSV- and low UCBSV-derived small RNAs. AGO2, DCL2 and DCL4 were differentially regulated in CBSV/UCBSV-infected plants. CBSV and UCBSV interact differently in the same host genetic background
Infection of plant cells by viral pathogens triggers RNA silencing, an innate antiviral defense mechanism. In response to infection, small RNAs (sRNAs) are produced that associate with Argonaute (AGO)-containing silencing complexes which act to inactivate viral genomes by posttranscriptional gene silencing (PTGS). Deep sequencing was used to compare virus-derived small RNAs (vsRNAs) in cassava genotypes NASE 3, TME 204 and 60444 infected with the positive sense single-stranded RNA (+ssRNA) viruses cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV), the causal agents of cassava brown streak disease (CBSD). An abundance of 21–24 nt vsRNAs was detected and mapped, covering the entire CBSV and UCBSV genomes. The 21 nt vsRNAs were most predominant, followed by the 22 nt class with a slight bias toward sense compared to antisense polarity, and a bias for adenine and uracil bases present at the 5′-terminus. Distribution and frequency of vsRNAs differed between cassava genotypes and viral genomes. In susceptible genotypes TME 204 and 60444, CBSV-derived sRNAs were seen in greater abundance than UCBSV-derived sRNAs. NASE 3, known to be resistant to UCBSV, accumulated negligible UCBSV-derived sRNAs but high populations of CBSV-derived sRNAs. Transcript levels of cassava homologues of AGO2, DCL2 and DCL4, which are central to the gene-silencing complex, were found to be differentially regulated in CBSV- and UCBSV-infected plants across genotypes, suggesting these proteins play a role in antiviral defense. Irrespective of genotype or viral pathogen, maximum populations of vsRNAs mapped to the cytoplasmic inclusion, P1 and P3 protein-encoding regions. Our results indicate disparity between CBSV and UCBSV host-virus interaction mechanisms, and provide insight into the role of virus-induced gene silencing as a mechanism of resistance to CBSD.
Collapse
Affiliation(s)
- Emmanuel Ogwok
- National Crops Resources Research Institute, Namulonge, P.O Box 7084, Kampala, Uganda; Institute for International Crop Improvement, Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, P.O Wits 2050, Johannesburg, South Africa
| | - Muhammad Ilyas
- Institute for International Crop Improvement, Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Titus Alicai
- National Crops Resources Research Institute, Namulonge, P.O Box 7084, Kampala, Uganda
| | - Marie E C Rey
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, P.O Wits 2050, Johannesburg, South Africa
| | - Nigel J Taylor
- Institute for International Crop Improvement, Donald Danforth Plant Science Center, St. Louis, MO 63132, USA.
| |
Collapse
|
34
|
Xiao H, Kim WS, Meng B. A highly effective and versatile technology for the isolation of RNAs from grapevines and other woody perennials for use in virus diagnostics. Virol J 2015; 12:171. [PMID: 26482551 PMCID: PMC4615883 DOI: 10.1186/s12985-015-0376-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/05/2015] [Indexed: 10/31/2022] Open
Abstract
BACKGROUND Isolation of pure RNA from woody perennials, especially fruit crops such as grapevine rich in complex secondary metabolites, has remained very challenging. Lack of effective RNA isolation technology has resulted in difficulties in viral diagnosis and discovery as well as studies on many biological processes of these highly important woody plants. It is imperative to develop and refine methodologies with which large amounts of pure nucleic acids can be readily isolated from woody perennials. METHODS We compared five commonly used RNA isolation kits in isolating total RNA from twelve species of woody perennials. We made modifications to select RNA isolation systems to simplify and improve their efficiency in RNA isolation. The yield and quality of isolated RNAs were assessed via gel electrophoresis and spectrophotometric measurement. We also performed RT-PCR and RT-qPCR to detect several major viruses from grapevines. RESULTS Two of the kits were shown to be the best in both the yield and quality of the isolated RNA from all twelve woody species. Using disposable extraction bags for tissue homogenization not only improved the yield without affecting quality, but also made the RNA isolation technology simpler, less costly, and suitable for adoption by many potential users with facility limitations. This system was successfully applied to a wide range of woody plants, including fruit crops, ornamentals and timber trees. Inclusion of polyvinylpyrrolidone in the extraction buffer drastically improved the performance of the system in isolating total RNA from old grapevine leaves collected later in the season. This modification made our system highly effective in isolating quality RNA from grapevine leaves throughout the entire growing season. We further demonstrated that the resulting nucleic acid preparations are suitable for detection of several major grapevine viruses with RNA or DNA genomes using PCR, RT-PCR and qPCR as well as for assays on plant microRNAs. CONCLUSIONS This improved RNA isolation system would have wide applications in viral diagnostics and discovery, studies on gene expression and regulation, transcriptomics, and small RNA biology in grapevines. We believe this system will also be useful in diverse applications pertaining to research on many other woody perennials and recalcitrant plant species.
Collapse
Affiliation(s)
- Huogen Xiao
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| | - Won-Sik Kim
- Norgen BioTek, Thorald, ON, L2V 4Y6, Canada.
| | - Baozhong Meng
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
35
|
Margaria P, Miozzi L, Rosa C, Axtell MJ, Pappu HR, Turina M. Small RNA profiles of wild-type and silencing suppressor-deficient tomato spotted wilt virus infected Nicotiana benthamiana. Virus Res 2015; 208:30-8. [PMID: 26047586 DOI: 10.1016/j.virusres.2015.05.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/25/2015] [Accepted: 05/25/2015] [Indexed: 01/01/2023]
Abstract
Tospoviruses are plant-infecting viruses belonging to the family Bunyaviridae. We used a collection of wild-type, phylogenetically distinct tomato spotted wilt virus isolates and related silencing-suppressor defective mutants to study the effects on the small RNA (sRNA) accumulation during infection of Nicotiana benthamiana. Our data showed that absence of a functional silencing suppressor determined a marked increase of the total amount of viral sRNAs (vsRNAs), and specifically of the 21 nt class. We observed a common under-representation of vsRNAs mapping to the intergenic region of S and M genomic segments, and preferential mapping of the reads against the viral sense open reading frames, with the exception of the NSs gene. The NSs-mutant strains showed enrichment of NSm-derived vsRNA compared to the expected amount based on gene size. Analysis of 5' terminal nucleotide preference evidenced a significant enrichment in U for the 21 nt- and in A for 24 nt-long endogenous sRNAs in all the samples. Hotspot analysis revealed a common abundant accumulation of reads at the 5' end of the L segment, mostly in the antiviral sense, for the NSs-defective isolates, suggesting that absence of the silencing suppressor can influence preferential targeting of the viral genome.
Collapse
Affiliation(s)
- Paolo Margaria
- Istituto per la Protezione Sostenibile delle Piante, CNR, Strada delle Cacce 73, 10135 Torino, Italy; Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, USA
| | - Laura Miozzi
- Istituto per la Protezione Sostenibile delle Piante, CNR, Strada delle Cacce 73, 10135 Torino, Italy
| | - Cristina Rosa
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, USA
| | - Michael J Axtell
- Department of Biology, and The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Hanu R Pappu
- Department of Plant Pathology, Washington State University, PO Box 646430, Pullman, WA 99164, USA
| | - Massimo Turina
- Istituto per la Protezione Sostenibile delle Piante, CNR, Strada delle Cacce 73, 10135 Torino, Italy.
| |
Collapse
|
36
|
Bag S, Al Rwahnih M, Li A, Gonzalez A, Rowhani A, Uyemoto JK, Sudarshana MR. Detection of a New Luteovirus in Imported Nectarine Trees: A Case Study to Propose Adoption of Metagenomics in Post-Entry Quarantine. PHYTOPATHOLOGY 2015; 105:840-846. [PMID: 25775105 DOI: 10.1094/phyto-09-14-0262-r] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In spring 2013, 5-year-old nectarine (Prunus persica) trees, grafted on peach rootstock Nemaguard, were found stunted in a propagation block in California. These trees had been propagated from budwood of three nectarine cultivars imported from France and cleared through the post-entry quarantine procedure. Examination of the canopy failed to reveal any obvious symptoms. However, examination of the trunks, after stripping the bark, revealed extensive pitting on the woody cylinder. To investigate the etiological agent, double-stranded RNA was extracted from bark scrapings from the scion and rootstock portions, and a cDNA library was prepared and sequenced using the Illumina platform. BLAST analysis of the contigs generated by the de novo assembly of sequence reads indicated the presence of a novel luteovirus. Complete sequence of the viral genome was determined by sequencing of three overlapping cDNA clones generated by reverse transcription-polymerase chain reaction (RT-PCR) and by rapid amplification of the 5'- and 3'-termini. The virus genome was comprised of 4,991 nucleotides with a gene organization similar to members of the genus Luteovirus (family Luteoviridae). The presence of the virus, tentatively named Nectarine stem pitting-associated virus, was confirmed in symptomatic trees by RT-PCR. Discovery of a new virus in nectarine trees after post-entry quarantine indicates the importance of including (i) metagenomic analysis by next-generation sequencing approach as an essential tool to assess the plant health status, and (ii) examination of the woody cylinders as part of the indexing process.
Collapse
Affiliation(s)
- Sudeep Bag
- First, second, and fifth authors: Department of Plant Pathology, University of California, One Shields Avenue, Davis 95616; and third, fourth, sixth, and seventh authors: U.S. Department of Agriculture, Agricultural Research Service, Department of Plant Pathology, University of California, One Shields Avenue, Davis 95616
| | - Maher Al Rwahnih
- First, second, and fifth authors: Department of Plant Pathology, University of California, One Shields Avenue, Davis 95616; and third, fourth, sixth, and seventh authors: U.S. Department of Agriculture, Agricultural Research Service, Department of Plant Pathology, University of California, One Shields Avenue, Davis 95616
| | - Ashley Li
- First, second, and fifth authors: Department of Plant Pathology, University of California, One Shields Avenue, Davis 95616; and third, fourth, sixth, and seventh authors: U.S. Department of Agriculture, Agricultural Research Service, Department of Plant Pathology, University of California, One Shields Avenue, Davis 95616
| | - Asaul Gonzalez
- First, second, and fifth authors: Department of Plant Pathology, University of California, One Shields Avenue, Davis 95616; and third, fourth, sixth, and seventh authors: U.S. Department of Agriculture, Agricultural Research Service, Department of Plant Pathology, University of California, One Shields Avenue, Davis 95616
| | - Adib Rowhani
- First, second, and fifth authors: Department of Plant Pathology, University of California, One Shields Avenue, Davis 95616; and third, fourth, sixth, and seventh authors: U.S. Department of Agriculture, Agricultural Research Service, Department of Plant Pathology, University of California, One Shields Avenue, Davis 95616
| | - Jerry K Uyemoto
- First, second, and fifth authors: Department of Plant Pathology, University of California, One Shields Avenue, Davis 95616; and third, fourth, sixth, and seventh authors: U.S. Department of Agriculture, Agricultural Research Service, Department of Plant Pathology, University of California, One Shields Avenue, Davis 95616
| | - Mysore R Sudarshana
- First, second, and fifth authors: Department of Plant Pathology, University of California, One Shields Avenue, Davis 95616; and third, fourth, sixth, and seventh authors: U.S. Department of Agriculture, Agricultural Research Service, Department of Plant Pathology, University of California, One Shields Avenue, Davis 95616
| |
Collapse
|
37
|
Glasa M, Predajňa L, Šoltys K, Sabanadzovic S, Olmos A. Detection and molecular characterisation of Grapevine Syrah virus-1 isolates from Central Europe. Virus Genes 2015; 51:112-21. [PMID: 25940164 DOI: 10.1007/s11262-015-1201-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/15/2015] [Indexed: 10/23/2022]
Abstract
Grapevine Syrah virus-1 (GSyV-1) was identified by small-RNA deep sequencing in Slovak grapevine co-infected by several other viruses. The RT-PCR assays developed in this work substantially improved the virus detection and allowed the identification of GSyV-1 in tested grapevine samples from Slovakia and the Czech Republic at an unexpectedly high rate (ca. 30 %). Subsequently, complete genome sequences of 3 GSyV-1 isolates (2 Slovak and 1 Czech) were determined by Sanger sequencing, showing a typical marafivirus genome organization. Analyses of complete genome sequences showed a higher intra-group diversity among these 3 central European GSyV-1 isolates (differences reaching 7.1 % at the nucleotide level) in comparison to 3 previously characterized North American isolates (only 1.2 % intra-group divergence). A substantially higher divergence among central European isolates and their clustering into two major phylogenetic groups was further confirmed by the partial genome analysis of additional 26 isolates. The CP-centered study did not support the geography-based clustering among central European and American isolates. Nevertheless, the sequence data of the highly variable 5'-proximal portion of the genome obtained for few additional isolates from Slovakia and Czech Republic showed the presence of both, "European-" and "north American-like", GSyV-1 isolates in the analyzed grapevine samples.
Collapse
Affiliation(s)
- Miroslav Glasa
- Department of Plant Virology, Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, 84505, Bratislava, Slovakia,
| | | | | | | | | |
Collapse
|
38
|
Saldarelli P, Giampetruzzi A, Morelli M, Malossini U, Pirolo C, Bianchedi P, Gualandri V. Genetic Variability of Grapevine Pinot gris virus and Its Association with Grapevine Leaf Mottling and Deformation. PHYTOPATHOLOGY 2015; 105:555-563. [PMID: 25423070 DOI: 10.1094/phyto-09-14-0241-r] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The role of Grapevine Pinot gris virus (GPGV) in the etiology of grapevine leaf mottling and deformation was investigated by biological and molecular assays. A survey on different cultivars from the Trentino Region in Italy showed a widespread distribution of GPGV, which was associated with symptomatic (79%) but also with symptomless (21%) vines. Symptomatic and GPGV-infected 'Pinot gris' vines induced symptoms on grafted vines of healthy Pinot gris or 'Traminer', whereas GPGV-infected but symptomless vines did not. High-throughput sequencing of small RNA (sRNA) populations of two infected Pinot gris accessions confirmed the existence of nearly overlapping viromes in vines with or without symptoms but phylogenetic analyses of the genomes of seven GPGV isolates from Italy and the Czech and Slovak Republics clearly differentiated those infecting symptomatic vines. The involvement of Grapevine rupestris vein feathering virus (GRVFV) in the disease, which was only infecting the symptomatic vine, was ruled out by reverse-transcription polymerase chain reaction studies. Maximum likelihood and Bayesian phylogenetic analysis of two GPGV genomic regions, encompassing part of the movement protein (MP) and coat protein gene sequences and the RNA-dependent RNA polymerase domain of the replicase gene, showed that isolates from symptomatic vines form a lineage distinct from that of symptomless vines. Moreover, the presence or lack of the MP stop codon identified in viral isolates from symptomatic or symptomless vines, respectively, is likely responsible for an MP six amino acids longer in symptomless isolates.
Collapse
Affiliation(s)
- P Saldarelli
- First, second, third, and fifth authors: CNR Istituto per la Protezione Sostenibile delle Piante, UOS-Bari, and Dipartimento di Scienze del Suolo della Pianta e degli Alimenti, Università degli Studi di Bari via Amendola 165/A, 70126, Bari, Italy; and fourth, sixth, and seventh authors: FEM-IASMA, Centre for Technology Transfer, via E. Mach 1, 38010, San Michele all'Adige (Trento), Italy
| | | | | | | | | | | | | |
Collapse
|
39
|
Maliogka VI, Olmos A, Pappi PG, Lotos L, Efthimiou K, Grammatikaki G, Candresse T, Katis NI, Avgelis AD. A novel grapevine badnavirus is associated with the Roditis leaf discoloration disease. Virus Res 2015; 203:47-55. [PMID: 25791736 DOI: 10.1016/j.virusres.2015.03.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 03/04/2015] [Accepted: 03/08/2015] [Indexed: 01/15/2023]
Abstract
Roditis leaf discoloration (RLD), a graft-transmissible disease of grapevine, was first reported in Greece in the 1980s. Even though various native grapevine viruses were identified in the affected vines, the etiology of the disease remained unknown. In the present study, we used an NGS platform for sequencing siRNAs from a twenty-year old Roditis vine showing typical RLD symptoms. Analysis of the NGS data revealed the presence of various known grapevine viruses and viroids as well as a hitherto uncharacterized DNA virus. The circular genome of the new virus was fully reassembled. It is 6988 nts long and includes 4 open reading frames (ORFs). ORF1, ORF2 and ORF4 code for proteins with unknown functions while ORF3 encodes a polyprotein with motifs related to the replication, encapsidation and movement of the virus. Phylogenetic analysis classified the novel virus within the genus Badnavirus, with closest relationship to Fig badnavirus 1. Further studies showed that the new badnavirus is closely related with the RLD disease and the provisional name grapevine Roditis leaf discoloration-associated virus (GRLDaV) is proposed. Our findings extend the number of DNA viruses identified in grapevine, further drawing attention to the potential importance of this virus group on grapevine pathology.
Collapse
Affiliation(s)
- Varvara I Maliogka
- Lab of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124 Thessaloniki, Greece.
| | - Antonio Olmos
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Plant Protection and Biotechnology Center, 46113 Moncada, Valencia, Spain
| | - Polyxeni G Pappi
- Lab of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124 Thessaloniki, Greece
| | - Leonidas Lotos
- Lab of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124 Thessaloniki, Greece
| | - Konstantinos Efthimiou
- Lab of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124 Thessaloniki, Greece
| | - Garyfalia Grammatikaki
- Faculty of Agriculture & Food Technology, Technological Education Institute of Crete, 71 004 Heraklion, Crete, Greece
| | - Thierry Candresse
- UMR 1332 Biologie du Fruit et Pathologie, INRA, CS20032, F-33882 Villenave d'Ornon cedex, France; UMR 1332 Biologie du Fruit et Pathologie, Université de Bordeaux, CS20032, F-33882 Villenave d'Ornon cedex, France
| | - Nikolaos I Katis
- Lab of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124 Thessaloniki, Greece
| | - Apostolos D Avgelis
- Institute of Viticulture of Heraklion, Hellenic Agricultural Organization-Demeter, 71 307 Heraklion, Crete, Greece
| |
Collapse
|
40
|
Lin YT, Wang YP, Wang FD, Fung CP. Community-onset Klebsiella pneumoniae pneumonia in Taiwan: clinical features of the disease and associated microbiological characteristics of isolates from pneumonia and nasopharynx. Front Microbiol 2015. [PMID: 25741336 PMCID: PMC5808220 DOI: 10.3389/fmicb.2018.00122] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
As virus diseases cannot be controlled by traditional plant protection methods, the risk of their spread have to be minimized on vegetatively propagated plants, such as grapevine. Metagenomic approaches used for virus diagnostics offer a unique opportunity to reveal the presence of all viral pathogens in the investigated plant, which is why their application can reduce the risk of using infected material for a new plantation. Here we used a special branch, deep sequencing of virus-derived small RNAs, of this high-throughput method for virus diagnostics, and determined viromes of vineyards in Hungary. With NGS of virus-derived small RNAs we could detect not only the viruses tested routinely, but also new ones, which had never been described in Hungary before. Virus presence did not correlate with the age of the plantation, moreover phylogenetic analysis of the identified virus isolates suggests that infections are mostly caused by the use of infected propagating material. Our results, validated by other molecular methods, raised further questions to be answered before this method can be introduced as a routine, reliable test for grapevine virus diagnostics.
Collapse
Affiliation(s)
- Yi-Tsung Lin
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital Taipei, Taiwan ; School of Medicine, National Yang-Ming University Taipei, Taiwan
| | - Yu-Ping Wang
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital Taipei, Taiwan
| | - Fu-Der Wang
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital Taipei, Taiwan ; School of Medicine, National Yang-Ming University Taipei, Taiwan
| | - Chang-Phone Fung
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital Taipei, Taiwan ; School of Medicine, National Yang-Ming University Taipei, Taiwan
| |
Collapse
|
41
|
Herranz MC, Navarro JA, Sommen E, Pallas V. Comparative analysis among the small RNA populations of source, sink and conductive tissues in two different plant-virus pathosystems. BMC Genomics 2015; 16:117. [PMID: 25765188 PMCID: PMC4345012 DOI: 10.1186/s12864-015-1327-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 02/06/2015] [Indexed: 01/29/2024] Open
Abstract
Background In plants, RNA silencing plays a fundamental role as defence mechanism against viruses. During last years deep-sequencing technology has allowed to analyze the sRNA profile of a large variety of virus-infected tissues. Nevertheless, the majority of these studies have been restricted to a unique tissue and no comparative analysis between phloem and source/sink tissues has been conducted. In the present work, we compared the sRNA populations of source, sink and conductive (phloem) tissues in two different plant virus pathosystems. We chose two cucurbit species infected with two viruses very different in genome organization and replication strategy; Melon necrotic spot virus (MNSV) and Prunus necrotic ringspot virus (PNRSV). Results Our findings showed, in both systems, an increase of the 21-nt total sRNAs together with a decrease of those with a size of 24-nt in all the infected tissues, except for the phloem where the ratio of 21/24-nt sRNA species remained constant. Comparing the vsRNAs, both PNRSV- and MNSV-infected plants share the same vsRNA size distribution in all the analyzed tissues. Similar accumulation levels of sense and antisense vsRNAs were observed in both systems except for roots that showed a prevalence of (+) vsRNAs in both pathosystems. Additionally, the presence of overrepresented discrete sites along the viral genome, hot spots, were identified and validated by stem-loop RT-PCR. Despite that in PNRSV-infected plants the presence of vsRNAs was scarce both viruses modulated the host sRNA profile. Conclusions We compare for the first time the sRNA profile of four different tissues, including source, sink and conductive (phloem) tissues, in two plant-virus pathosystems. Our results indicate that antiviral silencing machinery in melon and cucumber acts mainly through DCL4. Upon infection, the total sRNA pattern in phloem remains unchanged in contrast to the rest of the analyzed tissues indicating a certain tissue-tropism to this polulation. Independently of the accumulation level of the vsRNAs both viruses were able to modulate the host sRNA pattern. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1327-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mari Carmen Herranz
- Instituto de Biología Celular y Molecular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Campus UPV, CPI 8E, Avda. Ingeniero Fausto Elio s/n, Valencia, 46022, Spain.
| | - Jose Antonio Navarro
- Instituto de Biología Celular y Molecular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Campus UPV, CPI 8E, Avda. Ingeniero Fausto Elio s/n, Valencia, 46022, Spain.
| | - Evelien Sommen
- Instituto de Biología Celular y Molecular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Campus UPV, CPI 8E, Avda. Ingeniero Fausto Elio s/n, Valencia, 46022, Spain.
| | - Vicente Pallas
- Instituto de Biología Celular y Molecular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Campus UPV, CPI 8E, Avda. Ingeniero Fausto Elio s/n, Valencia, 46022, Spain.
| |
Collapse
|
42
|
Czotter N, Molnar J, Szabó E, Demian E, Kontra L, Baksa I, Szittya G, Kocsis L, Deak T, Bisztray G, Tusnady GE, Burgyan J, Varallyay E. Community-onset Klebsiella pneumoniae pneumonia in Taiwan: clinical features of the disease and associated microbiological characteristics of isolates from pneumonia and nasopharynx. Front Microbiol 2015; 9:122. [PMID: 25741336 PMCID: PMC5808220 DOI: 10.3389/fmicb.2015.00122] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 01/30/2015] [Indexed: 12/31/2022] Open
Abstract
Klebsiella pneumoniae is an important cause of community-onset pneumonia in Asian countries and South Africa. We investigated the clinical characteristics of K. pneumoniae causing community-onset pneumonia, and the associated microbiological features between K. pneumoniae isolates from pneumonia and those from the nasopharynx in Taiwan. This study was conducted at the Taipei Veterans General Hospital during July, 2012 to February, 2014. The clinical characteristics in patients with community-onset K. pneumoniae pneumonia were analyzed. K. pneumoniae isolates from the nasopharynx of adults attending otorhinolaryngology outpatient clinics were collected to compare their microbiological features with those from pneumonia. Capsular genotypes, antimicrobial susceptibility, and multilocus sequence type (MLST) were determined among these strains. Ninety-one patients with community-onset K. pneumoniae pneumonia were enrolled. We found a high mortality (29.7%) among these patients. Capsular types K1, K2, K5, K20, K54, and K57 accounted for ∼70% of the K. pneumoniae isolates causing pneumonia, and ∼70% of all the K. pneumoniae strains isolated from the nasopharynx of patients in outpatient clinics. The MLST profiles further demonstrated the genetic relatedness between most pneumonia isolates and those from the nasopharynx. In conclusion, our results show that community-onset pneumonia caused by K. pneumoniae was associated with high mortality and could have a reservoir in the nasopharynx. To tackle this high-mortality disease, the distribution of capsular types in the nasopharynx might have implications for future vaccine development.
Collapse
Affiliation(s)
- Nikoletta Czotter
- National Agricultural Research and Innovation Center, Agricultural Biotechnology Institute, Gödöllo, Hungary
| | - Janos Molnar
- Research Center of Natural Sciences, Institute of Enzymology, HAS, Budapest, Hungary
- Department of Biotechnology, Nanophage-therapy Center, Enviroinvest Corporation, Pécs, Hungary
| | - Emese Szabó
- National Agricultural Research and Innovation Center, Agricultural Biotechnology Institute, Gödöllo, Hungary
| | - Emese Demian
- National Agricultural Research and Innovation Center, Agricultural Biotechnology Institute, Gödöllo, Hungary
| | - Levente Kontra
- National Agricultural Research and Innovation Center, Agricultural Biotechnology Institute, Gödöllo, Hungary
| | - Ivett Baksa
- National Agricultural Research and Innovation Center, Agricultural Biotechnology Institute, Gödöllo, Hungary
| | - Gyorgy Szittya
- National Agricultural Research and Innovation Center, Agricultural Biotechnology Institute, Gödöllo, Hungary
| | - Laszlo Kocsis
- Department of Horticulture, Georgikon Faculty, University of Pannonia, Keszthely, Hungary
| | - Tamas Deak
- Department of Viticulture, Institute of Viticulture and Oenology, Szent-Istvan University, Budapest, Hungary
| | - Gyorgy Bisztray
- Department of Viticulture, Institute of Viticulture and Oenology, Szent-Istvan University, Budapest, Hungary
| | - Gabor E. Tusnady
- Research Center of Natural Sciences, Institute of Enzymology, HAS, Budapest, Hungary
| | - Jozsef Burgyan
- National Agricultural Research and Innovation Center, Agricultural Biotechnology Institute, Gödöllo, Hungary
| | - Eva Varallyay
- National Agricultural Research and Innovation Center, Agricultural Biotechnology Institute, Gödöllo, Hungary
| |
Collapse
|
43
|
Pirovano W, Miozzi L, Boetzer M, Pantaleo V. Bioinformatics approaches for viral metagenomics in plants using short RNAs: model case of study and application to a Cicer arietinum population. Front Microbiol 2015; 5:790. [PMID: 25674078 PMCID: PMC4307218 DOI: 10.3389/fmicb.2014.00790] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 12/22/2014] [Indexed: 12/12/2022] Open
Abstract
Over the past years deep sequencing experiments have opened novel doors to reconstruct viral populations in a high-throughput and cost-effective manner. Currently a substantial number of studies have been performed which employ next generation sequencing techniques to either analyze known viruses by means of a reference-guided approach or to discover novel viruses using a de novo-based strategy. Taking advantage of the well-known Cymbidium ringspot virus we have carried out a comparison of different bioinformatics tools to reconstruct the viral genome based on 21–27 nt short (s)RNA sequencing with the aim to identify the most efficient pipeline. The same approach was applied to a population of plants constituting an ancient variety of Cicer arietinum with red seeds. Among the discovered viruses, we describe the presence of a Tobamovirus referring to the Tomato mottle mosaic virus (NC_022230), which was not yet observed on C. arietinum nor revealed in Europe and a viroid referring to Hop stunt viroid (NC_001351.1) never reported in chickpea. Notably, a reference sequence guided approach appeared the most efficient in such kind of investigation. Instead, the de novo assembly reached a non-appreciable coverage although the most prominent viral species could still be identified. Advantages and limitations of viral metagenomics analysis using sRNAs are discussed.
Collapse
Affiliation(s)
- Walter Pirovano
- Genome Analysis and Technology Department, BaseClear B. V. Leiden, Netherlands
| | - Laura Miozzi
- Institute for Sustainable Plant Protection of National Research Council Torino, Italy
| | - Marten Boetzer
- Genome Analysis and Technology Department, BaseClear B. V. Leiden, Netherlands
| | - Vitantonio Pantaleo
- Institute for Sustainable Plant Protection of National Research Council, Bari Research Unit Bari, Italy
| |
Collapse
|
44
|
Marais A, Faure C, Mustafayev E, Barone M, Alioto D, Candresse T. Characterization by Deep Sequencing of Prunus virus T, a Novel Tepovirus Infecting Prunus Species. PHYTOPATHOLOGY 2015; 105:135-140. [PMID: 25054616 DOI: 10.1094/phyto-04-14-0125-r] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Double-stranded RNAs purified from a cherry tree collected in Italy and a plum tree collected in Azerbaijan were submitted to deep sequencing. Contigs showing weak but significant identity with various members of the family Betaflexiviridae were reconstructed. Sequence comparisons led to the conclusion that the viral isolates identified in the analyzed Prunus plants belong to the same viral species. Their genome organization is similar to that of some members of the family Betaflexiviridae, with three overlapping open reading frames (RNA polymerase, movement protein, and capsid protein). Phylogenetic analyses of the deduced encoded proteins showed a clustering with the sole member of the genus Tepovirus, Potato virus T (PVT). Given these results, the name Prunus virus T (PrVT) is proposed for the new virus. It should be considered as a new member of the genus Tepovirus, even if the level of nucleotide identity with PVT is borderline with the genus demarcation criteria for the family Betaflexiviridae. A reverse-transcription polymerase chain reaction detection assay was developed and allowed the identification of two other PrVT isolates and an estimate of 1% prevalence in the large Prunus collection screened. Due to the mixed infection status of all hosts identified to date, it was not possible to correlate the presence of PrVT with specific symptoms.
Collapse
|
45
|
Abstract
Viruses are obligate intracellular entities that infect all forms of life. In plants, invading viral nucleic acids trigger RNA silencing machinery and it results in the accumulation of viral short interfering RNAs (v-siRNAs). The study of v-siRNAs population in biological samples has become a major part of many research projects aiming to identify viruses infecting them, including unknown viruses, even at extremely low titer. Currently, siRNA populations are investigated by high-throughput sequencing approaches, which generate very large data sets. The major difficulty in these studies is to properly analyze such huge amount of data. In this regard, easy-to-use bioinformatics tools to groom and decipher siRNA libraries and to draw out v-siRNAs are needed. Here we describe a workflow, which permit users with little experience in bioinformatics to draw out v-siRNAs from raw data sequences obtained by Illumina technology. Such pipeline has been released in the context of Galaxy, an open source Web-based platform for bioinformatics analyses.
Collapse
Affiliation(s)
- Laura Miozzi
- Institute for Sustainable Plant Protection of CNR, Strada delle Cacce 73, Turin, Italy
| | | |
Collapse
|
46
|
Naidu RA, Maree HJ, Burger JT. Grapevine leafroll disease and associated viruses: a unique pathosystem. ANNUAL REVIEW OF PHYTOPATHOLOGY 2015; 53:613-34. [PMID: 26243729 DOI: 10.1146/annurev-phyto-102313-045946] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Grapevine leafroll is the most complex and intriguing viral disease of grapevine (Vitis spp.). Several monopartite closteroviruses (family Closteroviridae) from grapevines have been molecularly characterized, yet their role in disease etiology is not completely resolved. Hence, these viruses are currently designated under the umbrella term of Grapevine leafroll-associated viruses (GLRaVs). This review examines our current understanding of the genetically divergent GLRaVs and highlights the emerging picture of several unique aspects of the leafroll disease pathosystem. A systems biology approach using contemporary technologies in molecular biology, -omics, and cell biology aids in exploring the comparative molecular biology of GLRaVs and deciphering the complex network of host-virus-vector interactions to bridge the gap between genomics and phenomics of leafroll disease. In addition, grapevine-infecting closteroviruses have a great potential as designer viruses to pursue functional genomics and for the rational design of novel disease intervention strategies in this agriculturally important perennial fruit crop.
Collapse
Affiliation(s)
- Rayapati A Naidu
- Department of Plant Pathology, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, Washington 99350;
| | | | | |
Collapse
|
47
|
Wu Q, Ding SW, Zhang Y, Zhu S. Identification of viruses and viroids by next-generation sequencing and homology-dependent and homology-independent algorithms. ANNUAL REVIEW OF PHYTOPATHOLOGY 2015; 53:425-44. [PMID: 26047558 DOI: 10.1146/annurev-phyto-080614-120030] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A fast, accurate, and full indexing of viruses and viroids in a sample for the inspection and quarantine services and disease management is desirable but was unrealistic until recently. This article reviews the rapid and exciting recent progress in the use of next-generation sequencing (NGS) technologies for the identification of viruses and viroids in plants. A total of four viroids/viroid-like RNAs and 49 new plant RNA and DNA viruses from 18 known or unassigned virus families have been identified from plants since 2009. A comparison of enrichment strategies reveals that full indexing of RNA and DNA viruses as well as viroids in a plant sample at single-nucleotide resolution is made possible by one NGS run of total small RNAs, followed by data mining with homology-dependent and homology-independent computational algorithms. Major challenges in the application of NGS technologies to pathogen discovery are discussed.
Collapse
Affiliation(s)
- Qingfa Wu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026 China;
| | | | | | | |
Collapse
|
48
|
Vainio EJ, Jurvansuu J, Streng J, Rajamäki ML, Hantula J, Valkonen JPT. Diagnosis and discovery of fungal viruses using deep sequencing of small RNAs. J Gen Virol 2014; 96:714-725. [PMID: 25480928 DOI: 10.1099/jgv.0.000003] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Analysis of virus-derived small RNAs with high-throughput sequencing has been successful for detecting novel viruses in plants and invertebrates. However, the applicability of this method has not been demonstrated in fungi, although fungi were among the first organisms reported to utilize RNA silencing. Here, we used virus-infected isolates of the fungal species complex Heterobasidion annosum sensu lato as a model system to test whether mycovirus genome segments can be detected with small RNA deep sequencing. Species of the genus Heterobasidion are some of the most devastating forest pathogens in boreal forests. These fungi cause wood decay and are commonly infected with species of the family Partitiviridae and the unassigned virus species Heterobasidion RNA virus 6. Small RNA deep sequencing allowed the simultaneous detection of all eight double-stranded RNA virus strains known to be present in the tested samples and one putative mitovirus species (family Narnaviridae) with a single-stranded RNA genome, designated here as Heterobasidion mitovirus 1. Prior to this study, no members of the family Narnaviridae had been described as infecting species of Heterobasidion. Quantification of viral double- and single-stranded RNA with quantitative PCR indicated that co-infecting viral species and viruses with segmented genomes can be detected with small RNA deep sequencing despite vast differences in the amount of RNA. This is the first study demonstrating the usefulness of this method for detecting fungal viruses. Moreover, the results suggest that viral genomes are processed into small RNAs by different species of Heterobasidion.
Collapse
Affiliation(s)
- Eeva J Vainio
- Finnish Forest Research Institute, Vantaa Research Unit, Jokiniemenkuja 1, Vantaa, Finland
| | - Jaana Jurvansuu
- Finnish Forest Research Institute, Vantaa Research Unit, Jokiniemenkuja 1, Vantaa, Finland
| | - Janne Streng
- Department of Agricultural Sciences, P.O. Box 27, University of Helsinki, FI-00014 Helsinki, Finland
| | - Minna-Liisa Rajamäki
- Department of Agricultural Sciences, P.O. Box 27, University of Helsinki, FI-00014 Helsinki, Finland
| | - Jarkko Hantula
- Finnish Forest Research Institute, Vantaa Research Unit, Jokiniemenkuja 1, Vantaa, Finland
| | - Jari P T Valkonen
- Department of Agricultural Sciences, P.O. Box 27, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
49
|
Stewart LR, Teplier R, Todd JC, Jones MW, Cassone BJ, Wijeratne S, Wijeratne A, Redinbaugh MG. Viruses in maize and Johnsongrass in southern Ohio. PHYTOPATHOLOGY 2014; 104:1360-9. [PMID: 24918609 DOI: 10.1094/phyto-08-13-0221-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The two major U.S. maize viruses, Maize dwarf mosaic virus (MDMV) and Maize chlorotic dwarf virus (MCDV), emerged in southern Ohio and surrounding regions in the 1960s and caused significant losses. Planting resistant varieties and changing cultural practices has dramatically reduced virus impact in subsequent decades. Current information on the distribution, diversity, and impact of known and potential U.S. maize disease-causing viruses is lacking. To assess the current reservoir of viruses present at the sites of past disease emergence, we used a combination of serological testing and next-generation RNA sequencing approaches. Here, we report enzyme-linked immunosorbent assay and RNA-Seq data from samples collected over 2 years to assess the presence of viruses in cultivated maize and an important weedy reservoir, Johnsongrass (Sorghum halepense). Results revealed a persistent reservoir of MDMV and two strains of MCDV in Ohio Johnsongrass. We identified sequences of several other grass-infecting viruses and confirmed the presence of Wheat mosaic virus in Ohio maize. Together, these results provide important data for managing virus disease in field corn and sweet corn maize crops, and identifying potential future virus threats.
Collapse
|
50
|
Lovato A, Faoro F, Gambino G, Maffi D, Bracale M, Polverari A, Santi L. Construction of a synthetic infectious cDNA clone of Grapevine Algerian latent virus (GALV-Nf) and its biological activity in Nicotiana benthamiana and grapevine plants. Virol J 2014; 11:186. [PMID: 25367743 PMCID: PMC4289286 DOI: 10.1186/1743-422x-11-186] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/08/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Grapevine Algerian latent virus (GALV) is a tombusvirus first isolated in 1989 from an Algerian grapevine (Vitis spp.) plant and more recently from water samples and commercial nipplefruit and statice plants. No further reports of natural GALV infections in grapevine have been published in the last two decades, and artificial inoculations of grapevine plants have not been reported. We developed and tested a synthetic GALV construct for the inoculation of Nicotiana benthamiana plants and different grapevine genotypes to investigate the ability of this virus to infect and spread systemically in different hosts. METHODS We carried out a phylogenetic analysis of all known GALV sequences and an epidemiological survey of grapevine samples to detect the virus. A GALV-Nf clone under the control of the T7 promoter was chemically synthesized based on the full-length sequence of the nipplefruit isolate GALV-Nf, the only available sequence at the time the project was conceived, and the infectious transcripts were tested in N. benthamiana plants. A GALV-Nf-based binary vector was then developed for the agroinoculation of N. benthamiana and grapevine plants. Infections were confirmed by serological and molecular analysis and the resulting ultrastructural changes were investigated in both species. RESULTS Sequence analysis showed that the GALV coat protein is highly conserved among diverse isolates. The first epidemiological survey of cDNAs collected from 152 grapevine plants with virus-like symptoms did not reveal the presence of GALV in any of the samples. The agroinoculation of N. benthamiana and grapevine plants with the GALV-Nf binary vector promoted efficient infections, as revealed by serological and molecular analysis. The GALV-Nf infection of grapevine plants was characterized in more detail by inoculating different cultivars, revealing distinct patterns of symptom development. Ultrastructural changes induced by GALV-Nf in N. benthamiana were similar to those induced by tombusviruses in other hosts, but the cytopathological alterations in grapevine plants were less severe. CONCLUSIONS This is the first report describing the development of a synthetic GALV-Nf cDNA clone, its artificial transmission to grapevine plants and the resulting symptoms and cytopathological alterations.
Collapse
Affiliation(s)
- Arianna Lovato
- />Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Franco Faoro
- />Department of Agricultural and Environmental Sciences (DiSAA), University of Milan, via Celoria 2, 20133 Milan, Italy
- />Institute for Sustainable Plant Protection, National Research Council, Grugliasco Unit, Largo Braccini 2, 10095 Grugliasco (TO), Italy
| | - Giorgio Gambino
- />Institute for Sustainable Plant Protection, National Research Council, Grugliasco Unit, Largo Braccini 2, 10095 Grugliasco (TO), Italy
| | - Dario Maffi
- />Department of Agricultural and Environmental Sciences (DiSAA), University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Marcella Bracale
- />Department of Environment, Health and Safety, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy
| | - Annalisa Polverari
- />Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Luca Santi
- />Department of Science and Technology for Agriculture, Forestry, Nature and Energy (DAFNE), University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy
| |
Collapse
|