1
|
Zhou Z, Xu J, Li Z, Lv Y, Wu S, Zhang H, Song Y, Ai Y. Viral deubiquitinases and innate antiviral immune response in livestock and poultry. J Vet Med Sci 2021; 84:102-113. [PMID: 34803084 PMCID: PMC8810313 DOI: 10.1292/jvms.21-0199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Among many of the pathogens, virus is the main cause of diseases in livestock and poultry. A host infected with the virus triggers a series of innate and adaptive immunity. The realization of innate immune responses involves the participation of a series of protein molecules in host cells, including receptors, signal molecules and antiviral molecules. Post-translational modification of cellular proteins by ubiquitin regulates numerous cellular processes, including innate immune responses. Ubiquitin-mediated control over these processes can be reversed by cellular or viral deubiquitinases (DUBs). DUBs have now been identified in diverse viral lineages, and their characterization is providing valuable insights into virus biology and the role of the ubiquitin system in host antiviral mechanisms. In this review, we briefly introduce the mechanisms of ubiquitination and deubiquitination, present antiviral innate immune response and its regulation by ubiquitin, and summarize the prevalence of DUBs encoded by viruses (Arteriviridae, Asfarviridae, Nairoviridae, Coronaviridae, Herpesviridae, and Picornaviridae) infecting domestic animals and poultry. It is found that these DUBs suppress the innate immune responses mainly by affecting the production of type I interferon (IFN), which causes immune evasion of the viruses and promotes their replication. These findings have important reference significance for understanding the virulence and immune evasion mechanisms of the relevant viruses, and thus for the development of more effective prevention and treatment measures.
Collapse
Affiliation(s)
- Zhengxuan Zhou
- College of Animal Science, Jilin University.,Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University
| | - Jiacui Xu
- College of Animal Science, Jilin University.,Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University
| | - Zhanjun Li
- College of Animal Science, Jilin University.,Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University
| | - Yan Lv
- College of Animal Science, Jilin University
| | - Shanli Wu
- College of Basic Medical Sciences, Jilin University
| | - Huanmin Zhang
- Avian Disease and Oncology Laboratory, Agriculture Research Service, United States Department of Agriculture
| | - Yu Song
- Key laboratory of Utilization and Conservation for Tropical Marine Bioresources (Hainan Tropical Ocean University), Ministry of Education of the People's Republic of China.,Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources
| | - Yongxing Ai
- College of Animal Science, Jilin University.,Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University
| |
Collapse
|
2
|
Proulx J, Borgmann K, Park IW. Role of Virally-Encoded Deubiquitinating Enzymes in Regulation of the Virus Life Cycle. Int J Mol Sci 2021; 22:ijms22094438. [PMID: 33922750 PMCID: PMC8123002 DOI: 10.3390/ijms22094438] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 01/21/2023] Open
Abstract
The ubiquitin (Ub) proteasome system (UPS) plays a pivotal role in regulation of numerous cellular processes, including innate and adaptive immune responses that are essential for restriction of the virus life cycle in the infected cells. Deubiquitination by the deubiquitinating enzyme, deubiquitinase (DUB), is a reversible molecular process to remove Ub or Ub chains from the target proteins. Deubiquitination is an integral strategy within the UPS in regulating survival and proliferation of the infecting virus and the virus-invaded cells. Many viruses in the infected cells are reported to encode viral DUB, and these vial DUBs actively disrupt cellular Ub-dependent processes to suppress host antiviral immune response, enhancing virus replication and thus proliferation. This review surveys the types of DUBs encoded by different viruses and their molecular processes for how the infecting viruses take advantage of the DUB system to evade the host immune response and expedite their replication.
Collapse
Affiliation(s)
- Jessica Proulx
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (J.P.); (K.B.)
| | - Kathleen Borgmann
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (J.P.); (K.B.)
| | - In-Woo Park
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Correspondence: ; Tel.: +1-(817)-735-5115; Fax: +1-(817)-735-2610
| |
Collapse
|
3
|
Murata S, Machida Y, Isezaki M, Maekawa N, Okagawa T, Konnai S, Ohashi K. Genetic characterization of a Marek's disease virus strain isolated in Japan. Virol J 2020; 17:186. [PMID: 33228722 PMCID: PMC7684920 DOI: 10.1186/s12985-020-01456-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/15/2020] [Indexed: 01/29/2023] Open
Abstract
Background Marek’s disease virus (MDV) causes malignant lymphomas in chickens (Marek’s disease, MD). MD is currently controlled by vaccination; however, MDV strains have a tendency to develop increased virulence. Distinct diversity and point mutations are present in the Meq proteins, the oncoproteins of MDV, suggesting that changes in protein function induced by amino acid substitutions might affect MDV virulence. We previously reported that recent MDV isolates in Japan display distinct mutations in Meq proteins from those observed in traditional MDV isolates in Japan, but similar to those in MDV strains isolated from other countries. Methods To further investigate the genetic characteristics in Japanese field strains, we sequenced the whole genome of an MDV strain that was successfully isolated from a chicken with MD in Japan. A phylogenetic analysis of the meq gene was also performed. Results Phylogenetic analysis revealed that the Meq proteins in most of the Japanese isolates were similar to those of Chinese and European strains, and the genomic sequence of the Japanese strain was classified into the Eurasian cluster. Comparison of coding region sequences among the Japanese strain and MDV strains from other countries revealed that the genetic characteristics of the Japanese strain were similar to those of Chinese and European strains. Conclusions The MDV strains distributed in Asian and European countries including Japan seem to be genetically closer to each other than to MDV strains from North America. These findings indicate that the genetic diversities of MDV strains that emerged may have been dependent on the different vaccination-based control approaches.
Collapse
Affiliation(s)
- Shiro Murata
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan. .,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan.
| | - Yuka Machida
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan
| | - Masayoshi Isezaki
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan
| | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan
| | - Satoru Konnai
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan.,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan
| | - Kazuhiko Ohashi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan.,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan
| |
Collapse
|
4
|
Lin J, Ai Y, Zhou H, Lv Y, Wang M, Xu J, Yu C, Zhang H, Wang M. UL36 Encoded by Marek's Disease Virus Exhibits Linkage-Specific Deubiquitinase Activity. Int J Mol Sci 2020; 21:E1783. [PMID: 32150874 PMCID: PMC7084888 DOI: 10.3390/ijms21051783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 12/19/2022] Open
Abstract
(1) Background: Deubiquitinase (DUB) regulates various important cellular processes via reversing the protein ubiquitination. The N-terminal fragment of a giant tegument protein, UL36, encoded by the Marek's disease (MD) virus (MDV), encompasses a putative DUB (UL36-DUB) and shares no homology with any known DUBs. The N-terminus 75 kDa fragment of UL36 exists in MD T lymphoma cells at a high level and participates in MDV pathogenicity. (2) Methods: To characterize deubiquitinating activity and substrate specificity of UL36-DUB, the UL36 N-terminal fragments, UL36(323), UL36(480), and mutants were prepared using the Bac-to-Bac system. The deubiquitinating activity and substrate specificity of these recombinant UL36-DUBs were analyzed using various ubiquitin (Ub) or ubiquitin-like (UbL) substrates and activity-based deubiquitinating enzyme probes. (3) Results: The results indicated that wild type UL36-DUBs show a different hydrolysis ability against varied types of ubiquitin chains. These wild type UL36-DUBs presented the highest activity to K11, K48, and K63 linkage Ub chains, weak activity to K6, K29, and K33 Ub chains, and no activity to K27 linkage Ub chain. UL36 has higher cleavage efficiency for K48 and K63 poly-ubiquitin than linear ubiquitin chain (M1-Ub4), but no activity on various ubiquitin-like modifiers. The mutation of C98 and H234 residues eliminated the deubiquitinating activity of UL36-DUB. D232A mutation impacted, but did not eliminated UL36(480) activity. The Ub-Br probe can bind to wild type UL36-DUB and mutants UL36(480)H234A and UL36(480)D232A, but not C98 mutants. These in vitro results suggested that the C98 and H234 are essential catalytic residues of UL36-DUB. UL36-DUB exhibited a strict substrate specificity. Inhibition assay revealed that UL36-DUB exhibits resistance to the Roche protease inhibitor cocktail and serine protease inhibitor, but not to the Solarbio protease inhibitor cocktail. (4) Conclusions: UL36-DUB exhibited a strict substrate preference, and the protocol developed in the current study for obtaining active UL36-DUB protein should promote the high-throughput screening of UL36 inhibitors and the study on the function of MDV-encoded UL36.
Collapse
Affiliation(s)
- Junyan Lin
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun 130062, Jilin, China; (J.L.); (Y.A.); (H.Z.); (Y.L.); (M.W.); (J.X.)
| | - Yongxing Ai
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun 130062, Jilin, China; (J.L.); (Y.A.); (H.Z.); (Y.L.); (M.W.); (J.X.)
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, 5333 Xi An Road, Changchun 130062, Jilin, China
| | - Hongda Zhou
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun 130062, Jilin, China; (J.L.); (Y.A.); (H.Z.); (Y.L.); (M.W.); (J.X.)
| | - Yan Lv
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun 130062, Jilin, China; (J.L.); (Y.A.); (H.Z.); (Y.L.); (M.W.); (J.X.)
| | - Menghan Wang
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun 130062, Jilin, China; (J.L.); (Y.A.); (H.Z.); (Y.L.); (M.W.); (J.X.)
| | - Jiacui Xu
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun 130062, Jilin, China; (J.L.); (Y.A.); (H.Z.); (Y.L.); (M.W.); (J.X.)
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, 5333 Xi An Road, Changchun 130062, Jilin, China
| | - Cong Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Avenue, Changchun 130022, Jilin, China;
| | - Huanmin Zhang
- Avian Disease and Oncology Laboratory, Agriculture Research Service, United States Department of Agriculture, 4279 East Mount Hope Road East Lansing, MI 48823, USA
| | - Mengyun Wang
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun 130062, Jilin, China; (J.L.); (Y.A.); (H.Z.); (Y.L.); (M.W.); (J.X.)
| |
Collapse
|
5
|
Zhou X, Wu S, Zhou H, Wang M, Wang M, Lü Y, Cheng Z, Xu J, Ai Y. Marek's Disease Virus Regulates the Ubiquitylome of Chicken CD4 + T Cells to Promote Tumorigenesis. Int J Mol Sci 2019; 20:E2089. [PMID: 31035338 PMCID: PMC6539122 DOI: 10.3390/ijms20092089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/23/2019] [Accepted: 04/26/2019] [Indexed: 12/19/2022] Open
Abstract
Ubiquitination and deubiquitination of cellular proteins are reciprocal reactions catalyzed by ubiquitination-related enzymes and deubiquitinase (DUB) which regulate almost all cellular processes. Marek's disease virus (MDV) encodes a viral DUB that plays an important role in the MDV pathogenicity. Chicken CD4+ T-cell lymphoma induced by MDV is a key contributor to multiple visceral tumors and immunosuppression of chickens with Marek's disease (MD). However, alterations in the ubiquitylome of MDV-induced T lymphoma cells are still unclear. In this study, a specific antibody against K-ε-GG was used to isolate ubiquitinated peptides from CD4+ T cells and MD T lymphoma cells. Mass spectrometry was used to compare and analyze alterations in the ubiquitylome. Our results showed that the ubiquitination of 717 and 778 proteins was significantly up- and downregulated, respectively, in T lymphoma cells. MDV up- and downregulated ubiquitination of a similar percentage of proteins. The ubiquitination of transferases, especially serine/threonine kinases, was the main regulatory target of MDV. Compared with CD4+ T cells of the control group, MDV mainly altered the ubiquitylome associated with the signal transduction, immune system, cancer, and infectious disease pathways in T lymphoma cells. In these pathways, the ubiquitination of CDK1, IL-18, PRKCB, ETV6, and EST1 proteins was significantly up- or downregulated as shown by immunoblotting. The current study revealed that the MDV infection could exert a significant influence on the ubiquitylome of CD4+ T cells.
Collapse
Affiliation(s)
- Xiaolu Zhou
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun 130062, Jilin, China.
| | - Shanli Wu
- College of Basic Medical Sciences, Jilin University, 126 Xin Min Avenue, Changchun 130021, Jilin, China.
| | - Hongda Zhou
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun 130062, Jilin, China.
| | - Mengyun Wang
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun 130062, Jilin, China.
| | - Menghan Wang
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun 130062, Jilin, China.
| | - Yan Lü
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun 130062, Jilin, China.
| | - Zhongyi Cheng
- Jingjie PTM Biolabs Co. Ltd., 452 6th Street, Hangzhou Eco. & Tech. Developmental Area, Hangzhou 310018, Zhejiang, China.
| | - Jiacui Xu
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun 130062, Jilin, China.
| | - Yongxing Ai
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun 130062, Jilin, China.
| |
Collapse
|
6
|
Neerukonda SN, Tavlarides-Hontz P, McCarthy F, Pendarvis K, Parcells MS. Comparison of the Transcriptomes and Proteomes of Serum Exosomes from Marek's Disease Virus-Vaccinated and Protected and Lymphoma-Bearing Chickens. Genes (Basel) 2019; 10:E116. [PMID: 30764491 PMCID: PMC6410298 DOI: 10.3390/genes10020116] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 01/01/2023] Open
Abstract
Marek's disease virus (MDV) is the causative agent of Marek's disease (MD), a complex pathology of chickens characterized by paralysis, immunosuppression, and T-cell lymphomagenesis. MD is controlled in poultry production via vaccines administered in ovo or at hatch, and these confer protection against lymphoma formation, but not superinfection by MDV field strains. Despite vaccine-induced humoral and cell-mediated immune responses, mechanisms eliciting systemic protection remain unclear. Here we report the contents of serum exosomes to assess their possible roles as indicators of systemic immunity, and alternatively, tumor formation. We examined the RNA and protein content of serum exosomes from CVI988 (Rispens)-vaccinated and protected chickens (VEX), and unvaccinated tumor-bearing chickens (TEX), via deep-sequencing and mass spectrometry, respectively. Bioinformatic analyses of microRNAs (miRNAs) and predicted miRNA targets indicated a greater abundance of tumor suppressor miRNAs in VEX compared to TEX. Conversely, oncomiRs originating from cellular (miRs 106a-363) and MDV miRNA clusters were more abundant in TEX compared to VEX. Most notably, mRNAs mapping to the entire MDV genome were identified in VEX, while mRNAs mapping to the repeats flanking the unique long (IRL/TRL) were identified in TEX. These data suggest that long-term systemic vaccine-induced immune responses may be mediated at the level of VEX which transfer viral mRNAs to antigen presenting cells systemically. Proteomic analyses of these exosomes suggested potential biomarkers for VEX and TEX. These data provide important putative insight into MDV-mediated immune suppression and vaccine responses, as well as potential serum biomarkers for MD protection and susceptibility.
Collapse
Affiliation(s)
| | | | - Fiona McCarthy
- Department of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA.
| | - Kenneth Pendarvis
- Department of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA.
| | - Mark S Parcells
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
7
|
The Role of Marek's Disease Virus UL12 and UL29 in DNA Recombination and the Virus Lifecycle. Viruses 2019; 11:v11020111. [PMID: 30696089 PMCID: PMC6409567 DOI: 10.3390/v11020111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 02/07/2023] Open
Abstract
Marek’s disease virus (MDV) is an oncogenic alphaherpesvirus that infects chickens and integrates its genome into the telomeres of latently infected cells. MDV encodes two proteins, UL12 and UL29 (ICP8), that are conserved among herpesviruses and could facilitate virus integration. The orthologues of UL12 and UL29 in herpes simplex virus 1 (HSV-1) possess exonuclease and single strand DNA-binding activity, respectively, and facilitate DNA recombination; however, the role of both proteins in the MDV lifecycle remains elusive. To determine if UL12 and/or UL29 are involved in virus replication, we abrogated their expression in the very virulent RB-1B strain. Abrogation of either UL12 or UL29 resulted in a severe impairment of virus replication. We also demonstrated that MDV UL12 can aid in single strand annealing DNA repair, using a well-established reporter cell line. Finally, we assessed the role of UL12 and UL29 in MDV integration and maintenance of the latent virus genome. We could demonstrate that knockdown of UL12 and UL29 does not interfere with the establishment or maintenance of latency. Our data therefore shed light on the role of MDV UL12 and UL29 in MDV replication, DNA repair, and maintenance of the latent virus genome.
Collapse
|
8
|
Murine Cytomegalovirus Deubiquitinase Regulates Viral Chemokine Levels To Control Inflammation and Pathogenesis. mBio 2017; 8:mBio.01864-16. [PMID: 28096485 PMCID: PMC5241396 DOI: 10.1128/mbio.01864-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Maintaining control over inflammatory processes represents a paradox for viral pathogens. Although many viruses induce host inflammatory responses to facilitate infection, control is necessary to avoid overactivation. One way is through the manipulation of proinflammatory chemokine levels, both host and viral. Murine cytomegalovirus (MCMV), a model betaherpesvirus, encodes a viral C-C chemokine, MCK2, which promotes host inflammatory responses and incorporates into virions to facilitate viral dissemination. Here, we show that the activity of M48, the conserved MCMV deubiquitinating enzyme (DUB), regulates MCK2 levels during infection. Inactivation of M48 DUB activity results in viral attenuation and exacerbates virally induced, MCK2-dependent inflammatory responses. M48 DUB activity also influences MCK2 incorporation into virions. Importantly, attenuation of DUB-mutant virus acute replication in vitro and in vivo is largely ameliorated by targeted deletion of MCK2. Thus, uncontrolled MCK2 levels appear to mediate DUB-mutant virus attenuation in specific tissues or cell types. This demonstrates that MCMV M48 DUB activity plays a previously unappreciated role in controlling MCK2 levels, thereby managing MCK2-dependent processes. These findings reveal a novel intrinsic control mechanism of virally induced inflammation and support the identification of betaherpesvirus DUBs as possible new targets for antiviral therapies. Human cytomegalovirus infections represent a tremendous burden not only to those afflicted but also to health care systems worldwide. As cytomegalovirus infections are a leading cause of nongenetic sensory loss and neurodevelopmental delay, it is imperative that valuable model systems exist in order that we might understand what viral factors contribute to replication and pathogenesis. Currently, the only approved drug treatments against CMV infection are nucleoside analogues, to which some strains have become resistant. Understanding unique viral enzymatic contributions to infections will allow the development of novel pharmacological therapies. Here, we show that M48, the conserved MCMV deubiquitinase, is critical for MCMV replication in mice and demonstrate that attenuation is due to deregulated production of a viral proinflammatory chemokine. The deubiquitinases of both human and murine CMV represent structurally unique DUBs and are therefore attractive targets for pharmacological intervention. Continued research into the substrates of these DUBs will lend additional insight into their potential as targets.
Collapse
|