1
|
Tartaglia G, Fuentes I, Patel N, Varughese A, Israel LE, Park PH, Alexander MH, Poojan S, Cao Q, Solomon B, Padron ZM, Dyer JA, Mellerio JE, McGrath JA, Palisson F, Salas-Alanis J, Han L, South AP. Antiviral drugs prolong survival in murine recessive dystrophic epidermolysis bullosa. EMBO Mol Med 2024; 16:870-884. [PMID: 38462666 PMCID: PMC11018630 DOI: 10.1038/s44321-024-00048-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/12/2024] Open
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a rare inherited skin disease characterized by defects in type VII collagen leading to a range of fibrotic pathologies resulting from skin fragility, aberrant wound healing, and altered dermal fibroblast physiology. Using a novel in vitro model of fibrosis based on endogenously produced extracellular matrix, we screened an FDA-approved compound library and identified antivirals as a class of drug not previously associated with anti-fibrotic action. Preclinical validation of our lead hit, daclatasvir, in a mouse model of RDEB demonstrated significant improvement in fibrosis as well as overall quality of life with increased survival, weight gain and activity, and a decrease in pruritus-induced hair loss. Immunohistochemical assessment of daclatasvir-treated RDEB mouse skin showed a reduction in fibrotic markers, which was supported by in vitro data demonstrating TGFβ pathway targeting and a reduction of total collagen retained in the extracellular matrix. Our data support the clinical development of antivirals for the treatment of patients with RDEB and potentially other fibrotic diseases.
Collapse
Affiliation(s)
- Grace Tartaglia
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ignacia Fuentes
- DEBRA Chile, Santiago, Chile
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana, Universidad de Desarrollo, Santiago, Chile
| | - Neil Patel
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Abigail Varughese
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lauren E Israel
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Pyung Hun Park
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michael H Alexander
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Shiv Poojan
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Qingqing Cao
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Brenda Solomon
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Zachary M Padron
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jonathan A Dyer
- Department of Dermatology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Jemima E Mellerio
- St. John's Institute of Dermatology, King's College London (Guy's Campus), London, UK
| | - John A McGrath
- St. John's Institute of Dermatology, King's College London (Guy's Campus), London, UK
| | - Francis Palisson
- DEBRA Chile, Santiago, Chile
- Servicio de Dermatologia, Facultad de Medicina Clínica Alemana-Universidad de Desarrollo, Santiago, Chile
| | | | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Andrew P South
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA.
- The Joan and Joel Rosenbloom Research Center for Fibrotic Diseases, Thomas Jefferson University, Philadelphia, PA, USA.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
- Department of Otolaryngology Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Rizaldi G, Hafid AF, Wahyuni TS. Promising alkaloids and flavonoids compounds as anti-hepatitis c virus agents: a review. J Public Health Afr 2023. [PMID: 37492538 PMCID: PMC10365654 DOI: 10.4081/jphia.2023.2514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Background: Virus infections are presently seen as a major public health problem. Hepatitis C Virus (HCV) is recognized as a “silent killer” because the acute infection has no symptoms, and it develops as a chronic infection that causes hepatocellular carcinoma and liver damage. The World Health Organization (WHO) predicts that between 130-170 million people are estimated to have chronic Hepatitis C. Plants have various phytochemical compounds such as alkaloids and flavonoids that have prominent antiviral effects especially anti-HCV. The current HCV treatment still has limitations related to side effects and can lead to viral resistance. Therefore, it is necessary for the discovery and development of novel anti-HCV drugs for alternative and complementary medicine.
Objective: This review intends to evaluate the alkaloids and flavonoids that have the potential to be used against HCV by looking at their classification and their mechanism of action.
Methods: Twenty-one articles from 2010 to 2022 obtained from PUBMED database using keywords such as isolated compounds, alkaloids, flavonoids, hepatitis C virus.
Results: 21 alkaloids and 37 flavonoids reported active against HCV. Alkaloids include quinoline, quinolizidine and isoquinoline. In addition, flavanone, flavonol, flavone, flavan-3-ol, flavonolignan, anthocyanidin and proanthocyanidin comprise flavonoids. The berberine alkaloids and eriodictyol 7-O-(6′′-caffeoyl)-β-D- glucopyranoside flavonoids had the lowest IC50 with values of 0.49 mM and 0.041 nM.
Conclusions: Alkaloids and flavonoids compound had good activity against HCV with various mechanisms. Our results provide information of alkaloids and flavonoids to the researcher for the development of alternative and complementary medicine of hepatitis C.
Collapse
|
3
|
Studies of the symmetric binding mode of daclatasvir and analogs using a new homology model of HCV NS5A GT-4a. J Mol Model 2023; 29:25. [PMID: 36580076 PMCID: PMC9800351 DOI: 10.1007/s00894-022-05420-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/14/2022] [Indexed: 12/30/2022]
Abstract
CONTEXT Egypt has a high prevalence of the hepatitis C virus (HCV) genotype 4a (GT-4a). Unfortunately, the high resistance it exhibited still was not given the deserved attention in the scientific community. There is currently no consensus on the NS5A binding site because the crystal structure of HCV NS5A has not been resolved. The prediction of the binding modes of direct-acting antivirals (DAA) with the NS5A is a point of controversy due to the fact that several research groups presented different interaction models to elucidate the NS5A binding site. Consequently, a 3D model of HCV NS5A GT-4a was constructed and evaluated using molecular dynamics (MD) simulations. The generated model implies an intriguing new orientation of the AH relative to domain I. Additionally, the probable binding modes of marketed NS5A inhibitors were explored. MD simulations validated the stability of the predicted protein-ligand complexes. The suggested model predicts that daclatasvir and similar drugs bind symmetrically to HCV NS5A GT-4a. This will allow for the development of new NS5A-directed drugs, which may result in reduced resistance and/or a wider range of effectiveness against HCV. METHODS The 3D model of HCV NS5A GT-4a was constructed using the comparative modeling approach of the web-based application Robetta. Its stability was tested with 200-ns MD simulations using the Desmond package of Schrodinger. The OPLS2005 force field was assigned for minimization, and the RMSD, RMSF, and rGyr were tracked throughout the MD simulations. Fpocket was used to identify druggable protein pockets (cavities) over the simulation trajectories. The binding modes of marketed NS5A inhibitors were then generated and refined with the aid of docking predictions made by FRED and AutoDock Vina. The stability of these drugs in complex with GT-4a was investigated by using energetic and structural analyses over MD simulations. The Prime MM-GBSA (molecular mechanics/generalized Born surface area) method was used as a validation tool after the docking stage and for the averaged clusters after the MD simulation stage. We utilized PyMOL and VMD to visualize the data.
Collapse
|
4
|
Factors Influencing the Prevalence of Resistance-Associated Substitutions in NS5A Protein in Treatment-Naive Patients with Chronic Hepatitis C. Biomedicines 2020; 8:biomedicines8040080. [PMID: 32272736 PMCID: PMC7235841 DOI: 10.3390/biomedicines8040080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/24/2020] [Accepted: 04/05/2020] [Indexed: 12/12/2022] Open
Abstract
Direct-acting antivirals (DAAs) revolutionized treatment of hepatitis C virus (HCV) infection. Resistance-associated substitutions (RASs) present at the baseline impair response to DAA due to rapid selection of resistant HCV strains. NS5A is indispensable target of the current DAA treatment regimens. We evaluated prevalence of RASs in NS5A in DAA-naïve patients infected with HCV 1a (n = 19), 1b (n = 93), and 3a (n = 90) before systematic DAA application in the territory of the Russian Federation. Total proportion of strains carrying at least one RAS constituted 35.1% (71/202). In HCV 1a we detected only M28V (57.9%) attributed to a founder effect. Common RASs in HCV 1b were R30Q (7.5%), L31M (5.4%), P58S (4.4%), and Y93H (5.4%); in HCV 3a, A30S (31.0%), A30K (5.7%), S62L (8.9%), and Y93H (2.2%). Prevalence of RASs in NS5A of HCV 1b and 3a was similar to that worldwide, including countries practicing massive DAA application, i.e., it was not related to treatment. NS5A with and without RASs exhibited different co-variance networks, which could be attributed to the necessity to preserve viral fitness. Majority of RASs were localized in polymorphic regions subjected to immune pressure, with selected substitutions allowing immune escape. Altogether, this explains high prevalence of RAS in NS5A and low barrier for their appearance in DAA-inexperienced population.
Collapse
|
5
|
Dujardin M, Madan V, Gandhi NS, Cantrelle FX, Launay H, Huvent I, Bartenschlager R, Lippens G, Hanoulle X. Cyclophilin A allows the allosteric regulation of a structural motif in the disordered domain 2 of NS5A and thereby fine-tunes HCV RNA replication. J Biol Chem 2019; 294:13171-13185. [PMID: 31315928 DOI: 10.1074/jbc.ra119.009537] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/28/2019] [Indexed: 12/13/2022] Open
Abstract
Implicated in numerous human diseases, intrinsically disordered proteins (IDPs) are dynamic ensembles of interconverting conformers that often contain many proline residues. Whether and how proline conformation regulates the functional aspects of IDPs remains an open question, however. Here, we studied the disordered domain 2 of nonstructural protein 5A (NS5A-D2) of hepatitis C virus (HCV). NS5A-D2 comprises a short structural motif (PW-turn) embedded in a proline-rich sequence, whose interaction with the human prolyl isomerase cyclophilin A (CypA) is essential for viral RNA replication. Using NMR, we show here that the PW-turn motif exists in a conformational equilibrium between folded and disordered states. We found that the fraction of conformers in the NS5A-D2 ensemble that adopt the structured motif is allosterically modulated both by the cis/trans isomerization of the surrounding prolines that are CypA substrates and by substitutions conferring resistance to cyclophilin inhibitor. Moreover, we noted that this fraction is directly correlated with HCV RNA replication efficiency. We conclude that CypA can fine-tune the dynamic ensemble of the disordered NS5A-D2, thereby regulating viral RNA replication efficiency.
Collapse
Affiliation(s)
- Marie Dujardin
- University of Lille, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Vanesa Madan
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Neha S Gandhi
- School of Mathematical Sciences and Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - François-Xavier Cantrelle
- University of Lille, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Hélène Launay
- University of Lille, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Isabelle Huvent
- University of Lille, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Guy Lippens
- University of Lille, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Xavier Hanoulle
- University of Lille, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France.
| |
Collapse
|
6
|
Zhang Y, Zou J, Zhao X, Yuan Z, Yi Z. Hepatitis C virus NS5A inhibitor daclatasvir allosterically impairs NS4B-involved protein-protein interactions within the viral replicase and disrupts the replicase quaternary structure in a replicase assembly surrogate system. J Gen Virol 2018; 100:69-83. [PMID: 30516462 DOI: 10.1099/jgv.0.001180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Daclatasvir (DCV) is a highly potent direct-acting antiviral that targets the non-structural protein 5A (NS5A) of hepatitis C virus (HCV) and has been used with great clinical success. Previous studies have demonstrated its impact on viral replication complex assembly. However, the precise mechanisms by which DCV impairs the replication complex assembly remains elusive. In this study, by using HCV subgenomic replicons and a viral replicase assembly surrogate system in which the HCV NS3-5B polyprotein is expressed to mimic the viral replicase assembly, we assessed the impact of DCV on the aggregation and tertiary structure of NS5A, the protein-protein interactions within the viral replicase and the quaternary structure of the viral replicase. We found that DCV did not affect aggregation and tertiary structure of NS5A. DCV induced a quaternary structural change of the viral replicase, as evidenced by selective increase of NS4B's sensitivity to proteinase K digestion. Mechanically, DCV impaired the NS4B-involved protein-protein interactions within the viral replicase. These phenotypes were consistent with the phenotypes of several reported NS4B mutants that abolish the viral replicase assembly. The DCV-resistant mutant Y93H was refractory to the DCV-induced reduction of the NS4B-involved protein interactions and the quaternary structural change of the viral replicase. In addition, Y93H reduced NS4B-involved protein-protein interactions within the viral replicase and attenuated viral replication. We propose that DCV may induce a positional change of NS5A, which allosterically affects protein interactions within the replicase components and disrupts replicase assembly.
Collapse
Affiliation(s)
- Yang Zhang
- 1Key Laboratory of Medical Molecular Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Jingyi Zou
- 1Key Laboratory of Medical Molecular Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Xiaomin Zhao
- 1Key Laboratory of Medical Molecular Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Zhenghong Yuan
- 1Key Laboratory of Medical Molecular Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Zhigang Yi
- 2Department of Pathogen Diagnosis and Biosafety, Shanghai Public Health Clinical Center, Fudan University, Shanghai, PR China.,1Key Laboratory of Medical Molecular Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, PR China
| |
Collapse
|
7
|
Ashraf MU, Iman K, Khalid MF, Salman HM, Shafi T, Rafi M, Javaid N, Hussain R, Ahmad F, Shahzad-Ul-Hussan S, Mirza S, Shafiq M, Afzal S, Hamera S, Anwar S, Qazi R, Idrees M, Qureshi SA, Chaudhary SU. Evolution of efficacious pangenotypic hepatitis C virus therapies. Med Res Rev 2018; 39:1091-1136. [PMID: 30506705 DOI: 10.1002/med.21554] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 12/12/2022]
Abstract
Hepatitis C compromises the quality of life of more than 350 million individuals worldwide. Over the last decade, therapeutic regimens for treating hepatitis C virus (HCV) infections have undergone rapid advancements. Initially, structure-based drug design was used to develop molecules that inhibit viral enzymes. Subsequently, establishment of cell-based replicon systems enabled investigations into various stages of HCV life cycle including its entry, replication, translation, and assembly, as well as role of host proteins. Collectively, these approaches have facilitated identification of important molecules that are deemed essential for HCV life cycle. The expanded set of putative virus and host-encoded targets has brought us one step closer to developing robust strategies for efficacious, pangenotypic, and well-tolerated medicines against HCV. Herein, we provide an overview of the development of various classes of virus and host-directed therapies that are currently in use along with others that are undergoing clinical evaluation.
Collapse
Affiliation(s)
- Muhammad Usman Ashraf
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan.,Virology Laboratory, Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Kanzal Iman
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Muhammad Farhan Khalid
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan.,Department of Biomedical Engineering, University of Engineering and Technology, Lahore, Pakistan
| | - Hafiz Muhammad Salman
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan.,Plant Biotechnology Laboratory, Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Talha Shafi
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Momal Rafi
- Department of Statistics, University of Gujrat, Gujrat, Pakistan
| | - Nida Javaid
- Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Rashid Hussain
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Fayyaz Ahmad
- Department of Statistics, University of Gujrat, Gujrat, Pakistan
| | | | - Shaper Mirza
- Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Muhammad Shafiq
- Plant Biotechnology Laboratory, Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Samia Afzal
- Virology Laboratory, Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Sadia Hamera
- Department of Plant Genetics, Institute of Life Sciences, University of Rostock, Germany
| | - Saima Anwar
- Department of Biomedical Engineering, University of Engineering and Technology, Lahore, Pakistan
| | - Romena Qazi
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital & Research Centre, Lahore, Pakistan
| | - Muhammad Idrees
- Virology Laboratory, Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.,Hazara University, Mansehra, Pakistan
| | - Sohail A Qureshi
- Institute of Integrative Biosciences, CECOS-University of Information Technology and Emerging Sciences, Peshawar, Pakistan
| | - Safee Ullah Chaudhary
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| |
Collapse
|
8
|
Visualisation and analysis of hepatitis C virus non-structural proteins using super-resolution microscopy. Sci Rep 2018; 8:13604. [PMID: 30206266 PMCID: PMC6134135 DOI: 10.1038/s41598-018-31861-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 08/29/2018] [Indexed: 01/17/2023] Open
Abstract
Hepatitis C virus (HCV) RNA replication occurs in the cytosol of infected cells within a specialised membranous compartment. How the viral non-structural (NS) proteins are associated and organised within these structures remains poorly defined. We employed a super-resolution microscopy approach to visualise NS3 and NS5A in HCV infected cells. Using single molecule localisation microscopy, both NS proteins were resolved as clusters of localisations smaller than the diffraction-limited volume observed by wide-field. Analysis of the protein clusters identified a significant difference in size between the NS proteins. We also observed a reduction in NS5A cluster size following inhibition of RNA replication using daclatasvir, a phenotype which was maintained in the presence of the Y93H resistance associated substitution and not observed for NS3 clusters. These results provide insight into the NS protein organisation within hepatitis C virus RNA replication complexes and the mode of action of NS5A inhibitors.
Collapse
|
9
|
You Y, Kim HS, Park JW, Keum G, Jang SK, Kim BM. Sulfur(vi) fluoride exchange as a key reaction for synthesizing biaryl sulfate core derivatives as potent hepatitis C virus NS5A inhibitors and their structure-activity relationship studies. RSC Adv 2018; 8:31803-31821. [PMID: 35548241 PMCID: PMC9085918 DOI: 10.1039/c8ra05471a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/28/2018] [Indexed: 12/25/2022] Open
Abstract
Extremely potent, new hepatitis C virus (HCV) nonstructural 5A (NS5A) featuring substituted biaryl sulfate core structures was designed and synthesized. Based on the previously reported novel HCV NS5A inhibitors featuring biaryl sulfate core structures which exhibit two-digit picomolar half-maximal effective concentration (EC50) values against HCV genotype 1b and 2a, the new inhibitors equipped with the sulfate core structures containing diversely substituted aryl groups were explored. In this study, highly efficient, chemoselective coupling reactions between an arylsulfonyl fluoride and an aryl silyl ether, known as the sulfur(vi) fluoride exchange (SuFEx) reaction, were utilized. Among the inhibitors prepared based on the SuFEx chemistry, compounds 14, 15 and 29 exhibited two-digit picomolar EC50 values against GT-1b and single digit or sub nanomolar activities against the HCV GT-2a strain. Nonsymmetrical inhibitors containing an imidazole and amide moieties on each side of the sulfate core structures were also synthesized. In addition, a biotinylated probe targeting NS5A protein was prepared for labeling using the same synthetic methodology.
Collapse
Affiliation(s)
- Youngsu You
- Department of Chemistry, College of Natural Sciences, Seoul National University Seoul 08826 South Korea
| | - Hee Sun Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology Pohang 37673 South Korea
| | - Jung Woo Park
- Supercomputing Modeling & Simulation Center, Division of Data Analysis, Korea Institute of Science and Technology Information (KISTI) 245 Daehak-ro, Yuseong-gu Daejeon 34141 South Korea
| | - Gyochang Keum
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology (KIST) Hwarangno 14-gil 5, Seongbuk-gu Seoul 02455 South Korea
| | - Sung Key Jang
- Department of Life Sciences, Pohang University of Science and Technology Pohang 37673 South Korea
| | - B Moon Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University Seoul 08826 South Korea
| |
Collapse
|
10
|
Knops E, Sierra S, Kalaghatgi P, Heger E, Kaiser R, Kalinina OV. Epistatic Interactions in NS5A of Hepatitis C Virus Suggest Drug Resistance Mechanisms. Genes (Basel) 2018; 9:E343. [PMID: 29986475 PMCID: PMC6071292 DOI: 10.3390/genes9070343] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/29/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) causes a major health burden and can be effectively treated by direct-acting antivirals (DAAs). The non-structural protein 5A (NS5A), which plays a role in the viral genome replication, is one of the DAAs’ targets. Resistance-associated viruses (RAVs) harbouring NS5A resistance-associated mutations (RAMs) have been described at baseline and after therapy failure. A mutation from glutamine to arginine at position 30 (Q30R) is a characteristic RAM for the HCV sub/genotype (GT) 1a, but arginine corresponds to the wild type in the GT-1b; still, GT-1b strains are susceptible to NS5A-inhibitors. In this study, we show that GT-1b strains with R30Q often display other specific NS5A substitutions, particularly in positions 24 and 34. We demonstrate that in GT-1b secondary substitutions usually happen after initial R30Q development in the phylogeny, and that the chemical properties of the corresponding amino acids serve to restore the positive charge in this region, acting as compensatory mutations. These findings may have implications for RAVs treatment.
Collapse
Affiliation(s)
- Elena Knops
- Institute of Virology, University of Cologne, 50935 Cologne, Germany.
| | - Saleta Sierra
- Institute of Virology, University of Cologne, 50935 Cologne, Germany.
- German Center for Infection Research (DZIF)-Cologne-Bonn Partner Site, 50935 Cologne, Germany.
| | - Prabhav Kalaghatgi
- Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, 66123 Saarbrücken, Germany.
- German Center for Infection Research (DZIF)-Saarbrücken Partner Site, 66123 Saarbrücken, Germany.
| | - Eva Heger
- Institute of Virology, University of Cologne, 50935 Cologne, Germany.
| | - Rolf Kaiser
- Institute of Virology, University of Cologne, 50935 Cologne, Germany.
- German Center for Infection Research (DZIF)-Cologne-Bonn Partner Site, 50935 Cologne, Germany.
| | - Olga V Kalinina
- Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, 66123 Saarbrücken, Germany.
| |
Collapse
|
11
|
Beldar S, Manimekalai MSS, Cho NJ, Baek K, Grüber G, Yoon HS. Self-association and conformational variation of NS5A domain 1 of hepatitis C virus. J Gen Virol 2018; 99:194-208. [PMID: 29300159 DOI: 10.1099/jgv.0.001000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Direct-acting antivirals (DAAs) targeting the non-structural 5A (NS5A) protein of the hepatitis C virus (HCV) are crucial drugs that have shown exceptional clinical success in patients. However, their mode of action (MoA) remains unclear, and drug-resistant HCV strains are rapidly emerging. It is critical to characterize the behaviour of the NS5A protein in solution, which can facilitate the development of new classes of inhibitors or improve the efficacy of the currently available DAAs. Using biophysical methods, including dynamic light scattering, size exclusion chromatography and chemical cross-linking experiments, we showed that the NS5A domain 1 from genotypes 1b and 1a of the HCV intrinsically self-associated and existed as a heterogeneous mixture in solution. Interestingly, the NS5A domain 1 from genotypes 1b and 1a exhibited different dynamic equilibria of monomers to higher-order structures. Using small-angle X-ray scattering, we studied the structural dynamics of the various states of the NS5A domain 1 in solution. We also tested the effect of daclatasvir (DCV), the most prominent DAA, on self-association of the wild and DCV-resistant mutant (Y93H) NS5A domain 1 proteins, and demonstrated that DCV induced the formation of large and irreversible protein aggregates that eventually precipitated out. This study highlights the conformational variability of the NS5A domain 1 of HCV, which may be an intrinsic structural behaviour of the HCV NS5A domain 1 in solution.
Collapse
Affiliation(s)
- Serap Beldar
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | | | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kwanghee Baek
- Department of Genetic Engineering, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do, 446-701, Republic of Korea
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Ho Sup Yoon
- Department of Genetic Engineering, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do, 446-701, Republic of Korea.,School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
12
|
DeGoey DA, Chen HJ, Cox PB, Wendt MD. Beyond the Rule of 5: Lessons Learned from AbbVie’s Drugs and Compound Collection. J Med Chem 2017; 61:2636-2651. [DOI: 10.1021/acs.jmedchem.7b00717] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- David A. DeGoey
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Hui-Ju Chen
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Philip B. Cox
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Michael D. Wendt
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
13
|
Yi Z, Yuan Z. Aggregation of a hepatitis C virus replicase module induced by ablation of p97/VCP. J Gen Virol 2017; 98:1667-1678. [PMID: 28691899 DOI: 10.1099/jgv.0.000828] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hijacking host membranes to assemble a membrane-associated viral replicase is a hallmark of almost all positive-strand RNA viruses. However, how the virus co-opts host factors to facilitate this energy-unfavourable process is incompletely understood. In a previous study, using hepatitis C virus (HCV) as a model and employing affinity purification of the viral replicase, we identified a valosin-containing protein (p97/VCP), a member of the ATPases associated with diverse cellular activities (AAA+ ATPase family), as a viral replicase-associated host factor. It is required for viral replication, depending on its ATPase activity. In this study, we used VCP pharmacological inhibitors and short hairpin (sh) RNA-mediated knockdown to ablate VCP function and then dissected the roles of VCP in viral replicase assembly in an HCV subgenomic replicon system and a viral replicase assembly surrogate system. Ablation of VCP specifically resulted in the pronounced formation of an SDS-resistant aggregation of HCV NS5A and the reduction of hyperphosphorylation of NS5A. The NS5A dimerization domain was indispensable for aggregation and the NS5A disordered regions also contributed to a lesser extent. The reduction of the hyperphosphorylation of NS5A coincided with the aggregation of NS5A. We propose that HCV may co-opt VCP to disaggregate an aggregation-prone replicase module to facilitate its replicase assembly.
Collapse
Affiliation(s)
- Zhigang Yi
- Key Laboratory of Medical Molecular Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Zhenghong Yuan
- Institutes of Medical Microbiology and Biomedical Sciences, Fudan University, Shanghai, PR China.,Key Laboratory of Medical Molecular Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, PR China
| |
Collapse
|
14
|
Novel replicons and trans-encapsidation systems for Hepatitis C Virus proteins live imaging and virus-host interaction proteomics. J Virol Methods 2017; 246:42-50. [PMID: 28438609 DOI: 10.1016/j.jviromet.2017.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 03/22/2017] [Accepted: 04/18/2017] [Indexed: 12/17/2022]
Abstract
Proteomics and imaging techniques are used more and more in tandem to investigate the virus-host interaction. Herein we present novel replicons, methods and trans-encapsidation systems suitable for determination of Hepatitis C Virus (HCV) proteins interactomes and live imaging of viral proteins dynamics in HCV cell culture (HCVcc) system. To identify endogenous factors involved in the HCV life cycle, we constructed full-length functional replicons with affinity purification (AP) tags fused to NS2 and NS5A proteins. Viral-host interactomes were determined and validated in HCVcc system. To investigate the dynamics of viral-host interactions, we developed a core-inducible packaging cell line which trans-encapsidates various subgenomic replicons suitable for AP in replication and assembly stages. Further, a transient trans-encapsidation system was developed for live imaging of the NS5A viral protein in replication and assembly steps, respectively. The NS5A dynamics was determined also in the full-length HCV replicon system. The analysis of NS5A dynamics showed a decreased mobility of the protein in assembly versus the replication step. The tools presented herein will allow the investigation of HCV-host interaction with improved biological relevance and biosafety.
Collapse
|
15
|
Synergistic Activity of Combined NS5A Inhibitors. Antimicrob Agents Chemother 2015; 60:1573-83. [PMID: 26711745 DOI: 10.1128/aac.02639-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/13/2015] [Indexed: 12/29/2022] Open
Abstract
Daclatasvir (DCV) is a first-in-class hepatitis C virus (HCV) nonstructural 5A replication complex inhibitor (NS5A RCI) that is clinically effective in interferon-free combinations with direct-acting antivirals (DAAs) targeting alternate HCV proteins. Recently, we reported NS5A RCI combinations that enhance HCV inhibitory potential in vitro, defining a new class of HCV inhibitors termed NS5A synergists (J. Sun, D. R. O'Boyle II, R. A. Fridell, D. R. Langley, C. Wang, S. Roberts, P. Nower, B. M. Johnson F. Moulin, M. J. Nophsker, Y. Wang, M. Liu, K. Rigat, Y. Tu, P. Hewawasam, J. Kadow, N. A. Meanwell, M. Cockett, J. A. Lemm, M. Kramer, M. Belema, and M. Gao, Nature 527:245-248, 2015, doi:10.1038/nature15711). To extend the characterization of NS5A synergists, we tested new combinations of DCV and NS5A synergists against genotype (gt) 1 to 6 replicons and gt 1a, 2a, and 3a viruses. The kinetics of inhibition in HCV-infected cells treated with DCV, an NS5A synergist (NS5A-Syn), or a combination of DCV and NS5A-Syn were distinctive. Similar to activity observed clinically, DCV caused a multilog drop in HCV, followed by rebound due to the emergence of resistance. DCV-NS5A-Syn combinations were highly efficient at clearing cells of viruses, in line with the trend seen in replicon studies. The retreatment of resistant viruses that emerged using DCV monotherapy with DCV-NS5A-Syn resulted in a multilog drop and rebound in HCV similar to the initial decline and rebound observed with DCV alone on wild-type (WT) virus. A triple combination of DCV, NS5A-Syn, and a DAA targeting the NS3 or NS5B protein cleared the cells of viruses that are highly resistant to DCV. Our data support the observation that the cooperative interaction of DCV and NS5A-Syn potentiates both the genotype coverage and resistance barrier of DCV, offering an additional DAA option for combination therapy and tools for explorations of NS5A function.
Collapse
|
16
|
Sun JH, O’Boyle II DR, Fridell RA, Langley DR, Wang C, Roberts SB, Nower P, Johnson BM, Moulin F, Nophsker MJ, Wang YK, Liu M, Rigat K, Tu Y, Hewawasam P, Kadow J, Meanwell NA, Cockett M, Lemm JA, Kramer M, Belema M, Gao M. Resensitizing daclatasvir-resistant hepatitis C variants by allosteric modulation of NS5A. Nature 2015; 527:245-8. [DOI: 10.1038/nature15711] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 09/09/2015] [Indexed: 12/20/2022]
|
17
|
Cuypers L, Li G, Libin P, Piampongsant S, Vandamme AM, Theys K. Genetic Diversity and Selective Pressure in Hepatitis C Virus Genotypes 1-6: Significance for Direct-Acting Antiviral Treatment and Drug Resistance. Viruses 2015; 7:5018-39. [PMID: 26389941 PMCID: PMC4584301 DOI: 10.3390/v7092857] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/22/2015] [Accepted: 09/01/2015] [Indexed: 12/20/2022] Open
Abstract
Treatment with pan-genotypic direct-acting antivirals, targeting different viral proteins, is the best option for clearing hepatitis C virus (HCV) infection in chronically infected patients. However, the diversity of the HCV genome is a major obstacle for the development of antiviral drugs, vaccines, and genotyping assays. In this large-scale analysis, genome-wide diversity and selective pressure was mapped, focusing on positions important for treatment, drug resistance, and resistance testing. A dataset of 1415 full-genome sequences, including genotypes 1-6 from the Los Alamos database, was analyzed. In 44% of all full-genome positions, the consensus amino acid was different for at least one genotype. Focusing on positions sharing the same consensus amino acid in all genotypes revealed that only 15% was defined as pan-genotypic highly conserved (≥99% amino acid identity) and an additional 24% as pan-genotypic conserved (≥95%). Despite its large genetic diversity, across all genotypes, codon positions were rarely identified to be positively selected (0.23%-0.46%) and predominantly found to be under negative selective pressure, suggesting mainly neutral evolution. For NS3, NS5A, and NS5B, respectively, 40% (6/15), 33% (3/9), and 14% (2/14) of the resistance-related positions harbored as consensus the amino acid variant related to resistance, potentially impeding treatment. For example, the NS3 variant 80K, conferring resistance to simeprevir used for treatment of HCV1 infected patients, was present in 39.3% of the HCV1a strains and 0.25% of HCV1b strains. Both NS5A variants 28M and 30S, known to be associated with resistance to the pan-genotypic drug daclatasvir, were found in a significant proportion of HCV4 strains (10.7%). NS5B variant 556G, known to confer resistance to non-nucleoside inhibitor dasabuvir, was observed in 8.4% of the HCV1b strains. Given the large HCV genetic diversity, sequencing efforts for resistance testing purposes may need to be genotype-specific or geographically tailored.
Collapse
Affiliation(s)
- Lize Cuypers
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Minderbroedersstraat 10, Leuven 3000, Belgium.
| | - Guangdi Li
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Minderbroedersstraat 10, Leuven 3000, Belgium.
- Metabolic Syndrome Research Center, the Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Pieter Libin
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Minderbroedersstraat 10, Leuven 3000, Belgium.
- Artificial Intelligence Lab, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium.
| | - Supinya Piampongsant
- Department of Electrical Engineering ESAT, STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, University of Leuven, Kasteelpark Arenberg 10, Heverlee 3001, Belgium.
| | - Anne-Mieke Vandamme
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Minderbroedersstraat 10, Leuven 3000, Belgium.
- Center for Global Health and Tropical Medicine, Microbiology Unit, Institute for Hygiene and Tropical Medicine, University Nova of Lisboa, Rua da Junqueira 100, Lisbon 1349-008, Portugal.
| | - Kristof Theys
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Minderbroedersstraat 10, Leuven 3000, Belgium.
| |
Collapse
|
18
|
Wang H, Gao H, Duan S, Song X. Inhibition of microRNA-199a-5p reduces the replication of HCV via regulating the pro-survival pathway. Virus Res 2015; 208:7-12. [PMID: 26027911 DOI: 10.1016/j.virusres.2015.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/30/2015] [Accepted: 05/01/2015] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are endogenous, small non-coding RNAs that post-transcriptionally regulate the pathological processes of various liver diseases including hepatitis C virus (HCV) infection. In the present study, we demonstrated that HCV infection enhanced the expression of miR-199a-5p in HCV infected human hepatocytes and Huh7.5.1cells, as well as liver biopsy specimens. Inhibition of miR-199a-5p decreased HCV replication not only in terms of HCV RNA, but also the protein levels of NS3 and NS5A. Furthermore, we discovered that miR-199a-5p knockdown in Huh7.5.1 cells infected with genotype 2a (JFH1) or genotype 1b (SN1a) resulted in the remarkable inhibition of pro-survival pathways, as observed by the down-regulation of p-Akt, p-ERK and β-catenin protein levels. Moreover, pre-treatment with the pro-survival pathway specific activator prominently ablated the inhibition of HCV replication induced by miR-199a-5p knockdown. Collectively, our results highlight the up-regulation of miR-199a-5p expression with HCV infection and the promotion of HCV replication by miR-199a-5p. Moreover, miR-199a-5p may facilitate HCV replication by regulating pro-survival pathways through PI3K/Akt, Ras/ERK and Wnt/β-catenin. miR-199a-5p might be a potential drug target for developing a novel strategy to combat HCV infection.
Collapse
Affiliation(s)
- Hongwei Wang
- Department of Infection Diseases, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, China
| | - Haili Gao
- Department of Infection Diseases, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, China
| | - Shupeng Duan
- Department of Infection Diseases, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, China
| | - Xinwen Song
- Department of Infection Diseases, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, China.
| |
Collapse
|
19
|
Kwon HJ, Xing W, Chan K, Niedziela-Majka A, Brendza KM, Kirschberg T, Kato D, Link JO, Cheng G, Liu X, Sakowicz R. Direct binding of ledipasvir to HCV NS5A: mechanism of resistance to an HCV antiviral agent. PLoS One 2015; 10:e0122844. [PMID: 25856426 PMCID: PMC4391872 DOI: 10.1371/journal.pone.0122844] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/19/2015] [Indexed: 01/01/2023] Open
Abstract
Ledipasvir, a direct acting antiviral agent (DAA) targeting the Hepatitis C Virus NS5A protein, exhibits picomolar activity in replicon cells. While its mechanism of action is unclear, mutations that confer resistance to ledipasvir in HCV replicon cells are located in NS5A, suggesting that NS5A is the direct target of ledipasvir. To date co-precipitation and cross-linking experiments in replicon or NS5A transfected cells have not conclusively shown a direct, specific interaction between NS5A and ledipasvir. Using recombinant, full length NS5A, we show that ledipasvir binds directly, with high affinity and specificity, to NS5A. Ledipasvir binding to recombinant NS5A is saturable with a dissociation constant in the low nanomolar range. A mutant form of NS5A (Y93H) that confers resistance to ledipasvir shows diminished binding to ledipasvir. The current study shows that ledipasvir inhibits NS5A through direct binding and that resistance to ledipasvir is the result of a reduction in binding affinity to NS5A mutants.
Collapse
Affiliation(s)
- Hyock Joo Kwon
- Gilead Sciences, Inc., Foster City, California, United States of America
- * E-mail:
| | - Weimei Xing
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Katie Chan
- Gilead Sciences, Inc., Foster City, California, United States of America
| | | | | | | | - Darryl Kato
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - John O. Link
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Guofeng Cheng
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Xiaohong Liu
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Roman Sakowicz
- Gilead Sciences, Inc., Foster City, California, United States of America
| |
Collapse
|
20
|
Chukkapalli V, Berger KL, Kelly SM, Thomas M, Deiters A, Randall G. Daclatasvir inhibits hepatitis C virus NS5A motility and hyper-accumulation of phosphoinositides. Virology 2014; 476:168-179. [PMID: 25546252 DOI: 10.1016/j.virol.2014.12.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 12/09/2014] [Indexed: 12/18/2022]
Abstract
Combinations of direct-acting antivirals (DAAs) against the hepatitis C virus (HCV) have the potential to revolutionize the HCV therapeutic regime. An integral component of DAA combination therapies is HCV NS5A inhibitors. It has previously been proposed that NS5A DAAs inhibit two functions of NS5A: RNA replication and virion assembly. In this study, we characterize the impact of a prototype NS5A DAA, daclatasvir (DCV), on HCV replication compartment formation. DCV impaired HCV replicase localization and NS5A motility. In order to characterize the mechanism behind altered HCV replicase localization, we examined the impact of DCV on the interaction of NS5A with its essential cellular cofactor, phosphatidylinositol-4-kinase III α (PI4KA). We observed that DCV does not inhibit PI4KA directly, nor does it impair early events of the NS5A-PI4KA interaction that can occur when NS5A is expressed alone. NS5A functions that are unaffected by DCV include PI4KA binding, as determined by co-immunoprecipitation, and a basal accumulation of the PI4KA product, PI4P. However, DCV impairs late steps in PI4KA activation that requires NS5A expressed in the context of the HCV polyprotein. These NS5A functions include hyper-stimulation of PI4P levels and appropriate replication compartment formation. The data are most consistent with a model wherein DCV inhibits conformational changes in the NS5A protein or protein complex formations that occur in the context of HCV polyprotein expression and stimulate PI4P hyper-accumulation and replication compartment formation.
Collapse
Affiliation(s)
- Vineela Chukkapalli
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Kristi L Berger
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Sean M Kelly
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Meryl Thomas
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Glenn Randall
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
21
|
Issur M, Götte M. Resistance patterns associated with HCV NS5A inhibitors provide limited insight into drug binding. Viruses 2014; 6:4227-41. [PMID: 25384189 PMCID: PMC4246218 DOI: 10.3390/v6114227] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/22/2014] [Accepted: 10/22/2014] [Indexed: 12/13/2022] Open
Abstract
Direct-acting antivirals (DAAs) have significantly improved the treatment of infection with the hepatitis C virus. A promising class of novel antiviral agents targets the HCV NS5A protein. The high potency and broad genotypic coverage are favorable properties. NS5A inhibitors are currently assessed in advanced clinical trials in combination with viral polymerase inhibitors and/or viral protease inhibitors. However, the clinical use of NS5A inhibitors is also associated with new challenges. HCV variants with decreased susceptibility to these drugs can emerge and compromise therapy. In this review, we discuss resistance patterns in NS5A with focus prevalence and implications for inhibitor binding.
Collapse
Affiliation(s)
- Moheshwarnath Issur
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada.
| | - Matthias Götte
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
22
|
Nettles JH, Stanton RA, Broyde J, Amblard F, Zhang H, Zhou L, Shi J, McBrayer TR, Whitaker T, Coats SJ, Kohler JJ, Schinazi RF. Asymmetric binding to NS5A by daclatasvir (BMS-790052) and analogs suggests two novel modes of HCV inhibition. J Med Chem 2014; 57:10031-43. [PMID: 25365735 PMCID: PMC4266333 DOI: 10.1021/jm501291c] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Symmetric, dimeric daclatasvir (BMS-790052) is the clinical lead for a class of picomolar inhibitors of HCV replication. While specific, resistance-bearing mutations at positions 31 and 93 of domain I strongly suggest the viral NS5A as target, structural mechanism(s) for the drugs' activities and resistance remains unclear. Several previous models suggested symmetric binding modes relative to the homodimeric target; however, none can fully explain SAR details for this class. We present semiautomated workflows to model potential receptor conformations for docking. Surprisingly, ranking docked hits with our library-derived 3D-pharmacophore revealed two distinct asymmetric binding modes, at a conserved poly-proline region between 31 and 93, consistent with SAR. Interfering with protein-protein interactions at this membrane interface can explain potent inhibition of replication-complex formation, resistance, effects on lipid droplet distribution, and virion release. These detailed interaction models and proposed mechanisms of action will allow structure-based design of new NS5A directed compounds with higher barriers to HCV resistance.
Collapse
Affiliation(s)
- James H Nettles
- Center for AIDS Research, Department of Pediatrics, Emory University School of Medicine , Atlanta, Georgia 30322, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Berger C, Romero-Brey I, Radujkovic D, Terreux R, Zayas M, Paul D, Harak C, Hoppe S, Gao M, Penin F, Lohmann V, Bartenschlager R. Daclatasvir-like inhibitors of NS5A block early biogenesis of hepatitis C virus-induced membranous replication factories, independent of RNA replication. Gastroenterology 2014; 147:1094-105.e25. [PMID: 25046163 DOI: 10.1053/j.gastro.2014.07.019] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 06/21/2014] [Accepted: 07/15/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS Direct-acting antivirals that target nonstructural protein 5A (NS5A), such as daclatasvir, have high potency against the hepatitis C virus (HCV). They are promising clinical candidates, yet little is known about their antiviral mechanisms. We investigated the mechanisms of daclatasvir derivatives. METHODS We used a combination of biochemical assays, in silico docking models, and high-resolution imaging to investigate inhibitor-induced changes in properties of NS5A, including its interaction with phosphatidylinositol-4 kinase IIIα and induction of the membranous web, which is the site of HCV replication. Analyses were conducted with replicons, infectious virus, and human hepatoma cells that express a HCV polyprotein. Studies included a set of daclatasvir derivatives and HCV variants with the NS5A inhibitor class-defining resistance mutation Y93H. RESULTS NS5A inhibitors did not affect NS5A stability or dimerization. A daclatasvir derivative interacted with NS5A and molecular docking studies revealed a plausible mode by which the inhibitor bound to NS5A dimers. This interaction was impaired in mutant forms of NS5A that are resistant to daclatavir, providing a possible explanation for the reduced sensitivity of the HCV variants to this drug. Potent NS5A inhibitors were found to block HCV replication by preventing formation of the membranous web, which was not linked to an inhibition of phosphatidylinositol-4 kinase IIIα. Correlative light-electron microscopy revealed unequivocally that NS5A inhibitors had no overall effect on the subcellular distribution of NS5A, but completely prevented biogenesis of the membranous web. CONCLUSIONS Highly potent inhibitors of NS5A, such as daclatasvir, block replication of HCV RNA at the stage of membranous web biogenesis-a new paradigm in antiviral therapy.
Collapse
Affiliation(s)
- Carola Berger
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Inés Romero-Brey
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Danijela Radujkovic
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Raphael Terreux
- CNRS, UMR5086, Bases Moléculaires et Structurales des Systèmes Infectieux, Institut de Biologie et Chimie des Protéines, Lyon, France; Labex Ecofect (ANR-11-LABX-0042), University of Lyon, Lyon, France; Faculté de Pharmacie (ISPB), Lyon, France
| | - Margarita Zayas
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - David Paul
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Christian Harak
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Simone Hoppe
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Min Gao
- Bristol-Myers Squibb Research and Development, Wallingford, Connecticut
| | - Francois Penin
- CNRS, UMR5086, Bases Moléculaires et Structurales des Systèmes Infectieux, Institut de Biologie et Chimie des Protéines, Lyon, France; Labex Ecofect (ANR-11-LABX-0042), University of Lyon, Lyon, France
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany; German Centre for Infection Research, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
24
|
NS5A inhibitors impair NS5A-phosphatidylinositol 4-kinase IIIα complex formation and cause a decrease of phosphatidylinositol 4-phosphate and cholesterol levels in hepatitis C virus-associated membranes. Antimicrob Agents Chemother 2014; 58:7128-40. [PMID: 25224012 DOI: 10.1128/aac.03293-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The hepatitis C virus (HCV) nonstructural (NS) protein 5A is a multifunctional protein that plays a central role in viral replication and assembly. Antiviral agents directly targeting NS5A are currently in clinical development. Although the elucidation of the mechanism of action (MOA) of NS5A inhibitors has been the focus of intensive research, a detailed understanding of how these agents exert their antiviral effect is still lacking. In this study, we observed that the downregulation of NS5A hyperphosphorylation is associated with the actions of NS5A inhibitors belonging to different chemotypes. NS5A is known to recruit the lipid kinase phosphatidylinositol 4-kinase IIIα (PI4KIIIα) to the HCV-induced membranous web in order to generate phosphatidylinositol 4-phosphate (PI4P) at the sites of replication. We demonstrate that treatment with NS5A inhibitors leads to an impairment in the NS5A-PI4KIIIα complex formation that is paralleled by a significant reduction in PI4P and cholesterol levels within the endomembrane structures of HCV-replicating cells. A similar decrease in PI4P and cholesterol levels was also obtained upon treatment with a PI4KIIIα-targeting inhibitor. In addition, both the NS5A and PI4KIIIα classes of inhibitors induced similar subcellular relocalization of the NS5A protein, causing the formation of large cytoplasmic NS5A-containing clusters previously reported to be one of the hallmarks of inhibition of the action of PI4KIIIα. Because of the similarities between the effects induced by treatment with PI4KIIIα or NS5A inhibitors and the observation that agents targeting NS5A impair NS5A-PI4KIIIα complex formation, we speculate that NS5A inhibitors act by interfering with the function of the NS5A-PI4KIIIα complex.
Collapse
|
25
|
Ivachtchenko AV, Mitkin OD, Yamanushkin PM, Kuznetsova IV, Bulanova EA, Shevkun NA, Koryakova AG, Karapetian RN, Bichko VV, Trifelenkov AS, Kravchenko DV, Vostokova NV, Veselov MS, Chufarova NV, Ivanenkov YA. Discovery of novel highly potent hepatitis C virus NS5A inhibitor (AV4025). J Med Chem 2014; 57:7716-30. [PMID: 25148100 DOI: 10.1021/jm500951r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A series of next in class small-molecule hepatitis C virus (HCV) NS5A inhibitors with picomolar potency containing 2-pyrrolidin-2-yl-5-{4-[4-(2-pyrrolidin-2-yl-1H-imidazol-5-yl)buta-1,3-diynyl]phenyl}-1H-imidazole cores was designed based on the SAR studies available for the reported NS5A inhibitors. Compound 13a (AV4025), with (S,S,S,S)-stereochemistry (EC50 = 3.4 ± 0.2 pM, HCV replicon genotype 1b), was dramatically more active than were the compounds with two (S)- and two (R)-chiral centers. Human serum did not significantly reduce the antiviral activity (<4-fold). Relatively favorable pharmacokinetic features and good oral bioavailability were observed during animal studies. Compound 13a was well tolerated in rodents (in mice, LD50 = 2326 mg/kg or higher), providing a relatively high therapeutic index. During safety, pharmacology and subchronic toxicity studies in rats and dogs, it was not associated with any significant pathological or clinical findings. This compound is currently being evaluated in phase I/II clinical trials for the treatment of HCV infection.
Collapse
Affiliation(s)
- Alexandre V Ivachtchenko
- Alla Chem LLC , 1835 East Hallandale Beach Boulevard 442, Hallandale Beach, Florida 33009, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Affiliation(s)
- Menashe Elazar
- Department of Medicine, Division of Gastroenterology and Hepatology and Department of Microbiology and Immunology, Stanford University School of Medicine
| | - Jeffrey S Glenn
- Department of Medicine, Division of Gastroenterology and Hepatology and Department of Microbiology and Immunology, Stanford University School of Medicine and Veterans Administration Medical Center, Palo Alto, California.
| |
Collapse
|
27
|
McGivern DR, Masaki T, Williford S, Ingravallo P, Feng Z, Lahser F, Asante-Appiah E, Neddermann P, Francesco RD, Howe AY, Lemon SM. Kinetic analyses reveal potent and early blockade of hepatitis C virus assembly by NS5A inhibitors. Gastroenterology 2014; 147:453-62.e7. [PMID: 24768676 PMCID: PMC4107048 DOI: 10.1053/j.gastro.2014.04.021] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/21/2014] [Accepted: 04/09/2014] [Indexed: 01/06/2023]
Abstract
BACKGROUND & AIMS All-oral regimens combining different classes of direct-acting antivirals (DAA) are highly effective for treatment of patients with chronic hepatitis C. NS5A inhibitors will likely form a component of future interferon-sparing treatment regimens. However, despite their potential, the detailed mechanism of action of NS5A inhibitors is unclear. To study their mechanisms, we compared their kinetics of antiviral suppression with those of other classes of DAA, using the hepatitis C virus genotype 1a cell culture-infectious virus H77S.3. METHODS We performed detailed kinetic analyses of specific steps in the hepatitis C virus life cycle using cell cultures incubated with protease inhibitors, polymerase inhibitors, or NS5A inhibitors. Assays were designed to measure active viral RNA synthesis and steady-state RNA abundance, polyprotein synthesis, virion assembly, and infectious virus production. RESULTS Despite their high potency, NS5A inhibitors were slow to inhibit viral RNA synthesis compared with protease or polymerase inhibitors. By 24 hours after addition of an NS5A inhibitor, polyprotein synthesis was reduced <50%, even at micromolar concentrations. In contrast, inhibition of virus release by NS5A inhibitors was potent and rapid, with onset of inhibition as early as 2 hours. Cells incubated with NS5A inhibitors were rapidly depleted of intracellular infectious virus and RNA-containing hepatitis C virus particles, indicating a block in virus assembly. CONCLUSIONS DAAs that target NS5A rapidly inhibit intracellular assembly of genotype 1a virions. They also inhibit formation of functional replicase complexes, but have no activity against preformed replicase, thereby resulting in slow shut-off of viral RNA synthesis.
Collapse
Affiliation(s)
- David R. McGivern
- Departments of Medicine and Microbiology & Immunology and the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA,To whom correspondence should be addressed: David R. McGivern, Ph.D., 8.001A Burnett-Womack CB #7292, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7292 USA, Tel: 919-843-9958; Fax: 919-843-7240, , Stanley M. Lemon, M.D., 8.034 Burnett-Womack CB #7292, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7292 USA, Tel: 919-843-1848; Fax: 919-843-7240,
| | - Takahiro Masaki
- Departments of Medicine and Microbiology & Immunology and the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Sara Williford
- Departments of Medicine and Microbiology & Immunology and the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | | | - Zongdi Feng
- Departments of Medicine and Microbiology & Immunology and the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | | | | | - Petra Neddermann
- Fondazione I.N.G.M., Istituto Nazionale di Genetica Molecolare, 20122 Milan, Italy
| | | | - Anita Y. Howe
- Merck Research Laboratory, Kenilworth, NJ 07033, USA
| | - Stanley M. Lemon
- Departments of Medicine and Microbiology & Immunology and the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA,To whom correspondence should be addressed: David R. McGivern, Ph.D., 8.001A Burnett-Womack CB #7292, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7292 USA, Tel: 919-843-9958; Fax: 919-843-7240, , Stanley M. Lemon, M.D., 8.034 Burnett-Womack CB #7292, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7292 USA, Tel: 919-843-1848; Fax: 919-843-7240,
| |
Collapse
|
28
|
Comparison of daclatasvir resistance barriers on NS5A from hepatitis C virus genotypes 1 to 6: implications for cross-genotype activity. Antimicrob Agents Chemother 2014; 58:5155-63. [PMID: 24936600 DOI: 10.1128/aac.02788-14] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A comparison of the daclatasvir (DCV [BMS-790052]) resistance barrier on authentic or hybrid replicons containing NS5A from hepatitis C virus (HCV) genotypes 1 to 6 (GT-1 to -6) was completed using a replicon elimination assay. The data indicated that genotype 1b (GT-1b) has the highest relative resistance barrier and genotype 2a (GT-2a M31) has the lowest. The rank order of resistance barriers to DCV was 1b>4a≥5a>6a≅1a>2a JFH>3a>2a M31. Importantly, DCV in combination with a protease inhibitor (PI) eliminated GT-2a M31 replicon RNA at a clinically relevant concentration. Previously, we reported the antiviral activity and resistance profiles of DCV on HCV genotypes 1 to 4 evaluated in the replicon system. Here, we report the antiviral activity and resistance profiles of DCV against hybrid replicons with NS5A sequences derived from HCV GT-5a and GT-6a clinical isolates. DCV was effective against both GT-5a and -6a hybrid replicon cell lines (50% effective concentrations [EC50s] ranging from 3 to 7 pM for GT-5a, and 74 pM for GT-6a). Resistance selection identified amino acid substitutions in the N-terminal domain of NS5A. For GT-5a, L31F and L31V, alone or in combination with K56R, were the major resistance variants (EC50s ranging from 2 to 40 nM). In GT-6a, Q24H, L31M, P32L/S, and T58A/S were identified as resistance variants (EC50s ranging from 2 to 250 nM). The in vitro data suggest that DCV has the potential to be an effective agent for HCV genotypes 1 to 6 when used in combination therapy.
Collapse
|
29
|
De Clercq E. Current race in the development of DAAs (direct-acting antivirals) against HCV. Biochem Pharmacol 2014; 89:441-52. [DOI: 10.1016/j.bcp.2014.04.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/01/2014] [Accepted: 04/01/2014] [Indexed: 02/06/2023]
|
30
|
Belema M, Meanwell NA. Discovery of daclatasvir, a pan-genotypic hepatitis C virus NS5A replication complex inhibitor with potent clinical effect. J Med Chem 2014; 57:5057-71. [PMID: 24749835 DOI: 10.1021/jm500335h] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The discovery and development of the first-in-class hepatitis C virus (HCV) NS5A replication complex inhibitor daclatasvir (6) provides a compelling example of the power of phenotypic screening to identify leads engaging novel targets in mechanistically unique ways. HCV NS5A replication complex inhibitors are pan-genotypic in spectrum, and this mechanistic class provides the most potent HCV inhibitors in vitro that have been described to date. Clinical trials with 6 demonstrated a potent effect on reducing plasma viral load and, in combination with mechanistically orthogonal HCV inhibitors, established the ability to cure even the most difficult infections without the need for immune stimulation. In this Drug Annotation, we describe the discovery of the original high-throughput screening lead 7 and the chemical conundrum and challenges resolved in optimizing to 6 as a clinical candidate and finally we summarize the results of select clinical studies.
Collapse
Affiliation(s)
- Makonen Belema
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | | |
Collapse
|
31
|
Tran TD, Wakenhut F, Pickford C, Shaw S, Westby M, Smith-Burchnell C, Watson L, Paradowski M, Milbank J, Brimage RA, Halstead R, Glen R, Wilson CP, Adam F, Hay D, Chiva JY, Nichols C, Blakemore DC, Gardner I, Dayal S, Pike A, Webster R, Pryde DC. The Discovery of Potent Nonstructural Protein 5A (NS5A) Inhibitors with a Unique Resistance Profile-Part 1. ChemMedChem 2014; 9:1378-86. [DOI: 10.1002/cmdc.201400045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Indexed: 11/06/2022]
|
32
|
Wakenhut F, Tran TD, Pickford C, Shaw S, Westby M, Smith-Burchnell C, Watson L, Paradowski M, Milbank J, Stonehouse D, Cheung K, Wybrow R, Daverio F, Crook S, Statham K, Leese D, Stead D, Adam F, Hay D, Roberts LR, Chiva JY, Nichols C, Blakemore DC, Goetz GH, Che Y, Gardner I, Dayal S, Pike A, Webster R, Pryde DC. The Discovery of Potent Nonstructural Protein 5A (NS5A) Inhibitors with a Unique Resistance Profile-Part 2. ChemMedChem 2014; 9:1387-96. [DOI: 10.1002/cmdc.201400046] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Indexed: 01/07/2023]
|
33
|
Lambert SM, Langley DR, Garnett JA, Angell R, Hedgethorne K, Meanwell NA, Matthews SJ. The crystal structure of NS5A domain 1 from genotype 1a reveals new clues to the mechanism of action for dimeric HCV inhibitors. Protein Sci 2014; 23:723-34. [PMID: 24639329 PMCID: PMC4093949 DOI: 10.1002/pro.2456] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 03/14/2014] [Indexed: 12/31/2022]
Abstract
New direct acting antivirals (DAAs) such as daclatasvir (DCV; BMS-790052), which target NS5A function with picomolar potency, are showing promise in clinical trials. The exact nature of how these compounds have an inhibitory effect on HCV is unknown; however, major resistance mutations appear in the N-terminal region of NS5A that include the amphipathic helix and domain 1. The dimeric symmetry of these compounds suggests that they act on a dimer of NS5A, which is also consistent with the presence of dimers in crystals of NS5A domain 1 from genotype 1b. Genotype 1a HCV is less potently affected by these compounds and resistance mutations have a greater effect than in the 1b genotypes. We have obtained crystals of domain 1 of the important 1a NS5A homologue and intriguingly, our X-ray crystal structure reveals two new dimeric forms of this domain. Furthermore, the high solvent content (75%) makes it ideal for ligand-soaking. Daclatasvir (DCV) shows twofold symmetry suggesting NS5A dimers may be of physiological importance and serve as potential binding sites for DCV. These dimers also allow for new conformations of a NS5A expansive network which could explain its operation on the membranous web. Additionally, sulfates bound in the crystal structure may provide evidence for the previously proposed RNA binding groove, or explain regulation of NS5A domain 2 and 3 function and phosphorylation, by domain 1.
Collapse
Affiliation(s)
- Sebastian M Lambert
- Department of Biological Sciences, Centre for Structural Biology, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
34
|
The combination of alisporivir plus an NS5A inhibitor provides additive to synergistic anti-hepatitis C virus activity without detectable cross-resistance. Antimicrob Agents Chemother 2014; 58:3327-34. [PMID: 24687498 DOI: 10.1128/aac.00016-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Alisporivir (ALV), a cyclophilin inhibitor, is a host-targeting antiviral (HTA) with multigenotypic anti-hepatitis C virus (HCV) activity and a high barrier to resistance. Recent advances have supported the concept of interferon (IFN)-free regimens to treat chronic hepatitis C. As the most advanced oral HTA, ALV with direct-acting antivirals (DAAs) represents an attractive drug combination for IFN-free therapy. In this study, we investigated whether particular DAAs exhibit additive, synergistic, or antagonistic effects when combined with ALV. Drug combinations of ALV with NS3 protease, NS5B polymerase, and NS5A inhibitors were investigated in HCV replicons from genotypes 1a, 1b, 2a, 3, and 4a (GT1a to -4a). Combinations of ALV with DAAs exerted an additive effect on GT1 and -4. A significant and specific synergistic effect was observed with ALV-NS5A inhibitor combination on GT2 and -3. Furthermore, ALV was fully active against DAA-resistant variants, and ALV-resistant variants were fully susceptible to DAAs. ALV blocks the contact between cyclophilin A and domain II of NS5A, and NS5A inhibitors target domain I of NS5A; our data suggest a molecular basis for the use of these two classes of inhibitors acting on two distinct domains of NS5A. These results provide in vitro evidence that ALV with NS5A inhibitor combination represents an attractive strategy and a potentially effective IFN-free regimen for treatment of patients with chronic hepatitis C. Due to its high barrier and lack of cross-resistance, ALV could be a cornerstone drug partner for DAAs.
Collapse
|
35
|
Kazmierski WM, Maynard A, Duan M, Baskaran S, Botyanszki J, Crosby R, Dickerson S, Tallant M, Grimes R, Hamatake R, Leivers M, Roberts CD, Walker J. Novel spiroketal pyrrolidine GSK2336805 potently inhibits key hepatitis C virus genotype 1b mutants: from lead to clinical compound. J Med Chem 2014; 57:2058-73. [PMID: 24568313 DOI: 10.1021/jm4013104] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Rapid clinical progress of hepatitis C virus (HCV) replication inhibitors, including these selecting for resistance in the NS5A region (NS5A inhibitors), promises to revolutionize HCV treatment. Herein, we describe our explorations of diverse spiropyrrolidine motifs in novel NS5A inhibitors and a proposed interaction model. We discovered that the 1,4-dioxa-7-azaspiro[4.4]nonane motif in inhibitor 41H (GSK2236805) supported high potency against genotypes 1a and 1b as well as in genotype 1b L31V and Y93H mutants. Consistent with this, 41H potently suppressed HCV RNA in the 20-day RNA reduction assay. Pharmacokinetic and safety data supported further progression of 41H to the clinic.
Collapse
Affiliation(s)
- Wieslaw M Kazmierski
- GlaxoSmithKline , 5 Moore Drive, Research Triangle Park, North Carolina 27709-3398, United States
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Belema M, Lopez OD, Bender JA, Romine JL, St Laurent DR, Langley DR, Lemm JA, O'Boyle DR, Sun JH, Wang C, Fridell RA, Meanwell NA. Discovery and development of hepatitis C virus NS5A replication complex inhibitors. J Med Chem 2014; 57:1643-72. [PMID: 24621191 DOI: 10.1021/jm401793m] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lead inhibitors that target the function of the hepatitis C virus (HCV) nonstructural 5A (NS5A) protein have been identified by phenotypic screening campaigns using HCV subgenomic replicons. The demonstration of antiviral activity in HCV-infected subjects by the HCV NS5A replication complex inhibitor (RCI) daclatasvir (1) spawned considerable interest in this mechanistic approach. In this Perspective, we summarize the medicinal chemistry studies that led to the discovery of 1 and other chemotypes for which resistance maps to the NS5A protein and provide synopses of the profiles of many of the compounds currently in clinical trials. We also summarize what is currently known about the NS5A protein and the studies using NS5A RCIs and labeled analogues that are helping to illuminate aspects of both protein function and inhibitor interaction. We conclude with a synopsis of the results of notable clinical trials with HCV NS5A RCIs.
Collapse
Affiliation(s)
- Makonen Belema
- Department of Discovery Chemistry, ‡Department of Virology Discovery, and §Department of Computer-Assisted Drug Design, Bristol-Myers Squibb Research and Development , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Belema M, Nguyen VN, Romine JL, St. Laurent DR, Lopez OD, Goodrich JT, Nower PT, O’Boyle DR, Lemm JA, Fridell RA, Gao M, Fang H, Krause RG, Wang YK, Oliver AJ, Good AC, Knipe JO, Meanwell NA, Snyder LB. Hepatitis C Virus NS5A Replication Complex Inhibitors. Part 6: Discovery of a Novel and Highly Potent Biarylimidazole Chemotype with Inhibitory Activity Toward Genotypes 1a and 1b Replicons. J Med Chem 2014; 57:1995-2012. [DOI: 10.1021/jm4016203] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Makonen Belema
- Departments of Discovery Chemistry, ‡Virology, §Lead Discovery and Optimization, ∥Computer-Assisted
Drug Design, and ⊥Metabolism and Pharmacokinetics, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Van N. Nguyen
- Departments of Discovery Chemistry, ‡Virology, §Lead Discovery and Optimization, ∥Computer-Assisted
Drug Design, and ⊥Metabolism and Pharmacokinetics, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Jeffrey L. Romine
- Departments of Discovery Chemistry, ‡Virology, §Lead Discovery and Optimization, ∥Computer-Assisted
Drug Design, and ⊥Metabolism and Pharmacokinetics, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Denis R. St. Laurent
- Departments of Discovery Chemistry, ‡Virology, §Lead Discovery and Optimization, ∥Computer-Assisted
Drug Design, and ⊥Metabolism and Pharmacokinetics, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Omar D. Lopez
- Departments of Discovery Chemistry, ‡Virology, §Lead Discovery and Optimization, ∥Computer-Assisted
Drug Design, and ⊥Metabolism and Pharmacokinetics, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Jason T. Goodrich
- Departments of Discovery Chemistry, ‡Virology, §Lead Discovery and Optimization, ∥Computer-Assisted
Drug Design, and ⊥Metabolism and Pharmacokinetics, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Peter T. Nower
- Departments of Discovery Chemistry, ‡Virology, §Lead Discovery and Optimization, ∥Computer-Assisted
Drug Design, and ⊥Metabolism and Pharmacokinetics, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Donald R. O’Boyle
- Departments of Discovery Chemistry, ‡Virology, §Lead Discovery and Optimization, ∥Computer-Assisted
Drug Design, and ⊥Metabolism and Pharmacokinetics, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Julie A. Lemm
- Departments of Discovery Chemistry, ‡Virology, §Lead Discovery and Optimization, ∥Computer-Assisted
Drug Design, and ⊥Metabolism and Pharmacokinetics, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Robert A. Fridell
- Departments of Discovery Chemistry, ‡Virology, §Lead Discovery and Optimization, ∥Computer-Assisted
Drug Design, and ⊥Metabolism and Pharmacokinetics, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Min Gao
- Departments of Discovery Chemistry, ‡Virology, §Lead Discovery and Optimization, ∥Computer-Assisted
Drug Design, and ⊥Metabolism and Pharmacokinetics, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Hua Fang
- Departments of Discovery Chemistry, ‡Virology, §Lead Discovery and Optimization, ∥Computer-Assisted
Drug Design, and ⊥Metabolism and Pharmacokinetics, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Rudolph G. Krause
- Departments of Discovery Chemistry, ‡Virology, §Lead Discovery and Optimization, ∥Computer-Assisted
Drug Design, and ⊥Metabolism and Pharmacokinetics, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Ying-Kai Wang
- Departments of Discovery Chemistry, ‡Virology, §Lead Discovery and Optimization, ∥Computer-Assisted
Drug Design, and ⊥Metabolism and Pharmacokinetics, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - A. Jayne Oliver
- Departments of Discovery Chemistry, ‡Virology, §Lead Discovery and Optimization, ∥Computer-Assisted
Drug Design, and ⊥Metabolism and Pharmacokinetics, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Andrew C. Good
- Departments of Discovery Chemistry, ‡Virology, §Lead Discovery and Optimization, ∥Computer-Assisted
Drug Design, and ⊥Metabolism and Pharmacokinetics, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Jay O. Knipe
- Departments of Discovery Chemistry, ‡Virology, §Lead Discovery and Optimization, ∥Computer-Assisted
Drug Design, and ⊥Metabolism and Pharmacokinetics, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Nicholas A. Meanwell
- Departments of Discovery Chemistry, ‡Virology, §Lead Discovery and Optimization, ∥Computer-Assisted
Drug Design, and ⊥Metabolism and Pharmacokinetics, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Lawrence B. Snyder
- Departments of Discovery Chemistry, ‡Virology, §Lead Discovery and Optimization, ∥Computer-Assisted
Drug Design, and ⊥Metabolism and Pharmacokinetics, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| |
Collapse
|
38
|
Bhattacharya D, Ansari IH, Hamatake R, Walker J, Kazmierski WM, Striker R. Pharmacological disruption of hepatitis C NS5A protein intra- and intermolecular conformations. J Gen Virol 2013; 95:363-372. [PMID: 23997183 DOI: 10.1099/vir.0.054569-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Non-structural 5A protein (NS5A) has emerged as an important pharmacological target for hepatitis C virus (HCV). However, little is known about the conformation of NS5A intracellularly or how NS5A inhibitors achieve the picomolar (pM) inhibition of virus replication. Here, we have presented two structurally related small molecules, one that potently inhibits HCV replication and selects for resistance in NS5A, and another that is inactive. Resistance to this antiviral was greater in genotype 1a than in genotype 1b replicons and mapped to domain 1 of NS5A. Using a novel cell-based assay that measures the intracellular proximity of fluorescent tags covalently attached to NS5A, we showed that only the active antiviral specifically disrupted the close proximity of inter- and intramolecular positions of NS5A. The active antiviral, termed compound 1, caused a repositioning of both the N and C termini of NS5A, including disruption of the close approximation of the N termini of two different NS5A molecules in a multimolecular complex. These data provide the first study of how antivirals that select resistance in domain 1 of NS5A alter the cellular conformation of NS5A. This class of antiviral disrupts the close proximity of the N termini of domain 1 in a NS5A complex but also alters the conformation of domain 3, and leads to large aggregates of NS5A. Current models predict that a multicomponent cocktail of antivirals is needed to treat HCV infection, so a mechanistic understanding of what each component does to the viral machinery will be important.
Collapse
Affiliation(s)
| | - Israrul H Ansari
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Jill Walker
- GlaxoSmithKline, 5 Moore Drive, 3.3204 RTP, NC 27709, USA
| | | | - Rob Striker
- W. S. Middleton Memorial Veteran's Hospital, Madison, WI 53706, USA.,Department of Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|