1
|
Alfadhli A, Barklis RL, Tafesse FG, Barklis E. Analysis of Factors That Regulate HIV-1 Fusion in Reverse. Viruses 2025; 17:472. [PMID: 40284914 PMCID: PMC12030895 DOI: 10.3390/v17040472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
Based on observations that HIV-1 envelope (Env) proteins on the surfaces of cells have the capacity to fuse with neighboring cells or enveloped viruses that express CD4 receptors and CXCR4 co-receptors, we tested factors that affect the capacities of lentiviral vectors pseudotyped with CD4 and CXCR4 variants to infect Env-expressing cells. The process, which we refer to as fusion in reverse, involves the binding and activation of cellular Env proteins to fuse membranes with lentiviruses carrying CD4 and CXCR4 proteins. We have found that infection via fusion in reverse depends on cell surface Env levels, is inhibitable by an HIV-1-specific fusion inhibitor, and preferentially requires lentiviral pseudotyping with a glycosylphosphatidylinositol (GPI)-anchored CD4 variant and a cytoplasmic tail-truncated CXCR4 protein. We have demonstrated that latently HIV-1-infected cells can be specifically infected using this mechanism, and that activation of latently infected cells increases infection efficiency. The fusion in reverse approach allowed us to characterize how alteration of CD4 plus CXCR4 lipid membranes affected Env protein activities. In particular, we found that perturbation of membrane cholesterol levels did not affect Env activity. In contrast, viruses assembled in cells deficient for long-chain sphingolipids showed increased infectivities, while viruses that incorporated a lipid scramblase were non-infectious. Our results yield new insights into factors that influence envelope protein functions.
Collapse
Affiliation(s)
| | | | | | - Eric Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA; (A.A.); (R.L.B.); (F.G.T.)
| |
Collapse
|
2
|
Alfadhli A, Barklis RL, Tafesse FG, Barklis E. ANALYSIS OF FACTORS THAT REGULATE HIV-1 FUSION IN REVERSE. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642481. [PMID: 40161791 PMCID: PMC11952479 DOI: 10.1101/2025.03.10.642481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Based on observations that HIV-1 envelope (Env) proteins on the surfaces of cells have the capacity to fuse with neighboring cells or enveloped viruses that express CD4 receptors and CXCR4 co-receptors, we tested factors that affect the capacities of lentiviral vectors pseudotyped with CD4 and CXCR4 variants to infect Env-expressing cells. The process, which we refer to as fusion in reverse, involves the binding and activation of cellular Env proteins to fuse membranes with lentiviruses carrying CD4 and CXCR4 proteins. We have found that infection via fusion in reverse depends on cell surface Env levels, is inhibitable by an HIV-1-specific fusion inhibitor, and preferentially requires lentiviral pseudotyping with a glycosylphosphatidylinositol (GPI) anchored CD4 variant, and a cytoplasmic tail-truncated CXCR4 protein. We have demonstrated that latently HIV-1-infected cells can be specifically infected using this mechanism, and that activation of latently infected cells increases infection efficiency. The fusion in reverse approach allowed us to characterize how alteration of CD4 plus CXCR4 lipid membranes affected Env protein activities. In particular, we found that perturbation of membrane cholesterol levels did not affect Env activity. In contrast, viruses assembled in cells deficient for long chain sphingolipids showed increased infectivities, while viruses that incorporated a lipid scramblase were non-infectious. Our results yield new insights as to factors that influence envelope protein functions.
Collapse
|
3
|
Cannon L, Fehrman S, Pinzone M, Weissman S, O'Doherty U. Machine Learning Bolsters Evidence That D1, Nef, and Tat Influence HIV Reservoir Dynamics. Pathog Immun 2024; 8:37-58. [PMID: 38292079 PMCID: PMC10827039 DOI: 10.20411/pai.v8i2.621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/04/2023] [Indexed: 02/01/2024] Open
Abstract
Background The primary hurdle to curing HIV is due to the establishment of a reservoir early in infection. In an effort to find new treatment strategies, we and others have focused on understanding the selection pressures exerted on the reservoir by studying how proviral sequences change over time. Methods To gain insights into the dynamics of the HIV reservoir we analyzed longitudinal near full-length sequences from 7 people living with HIV between 1 and 20 years following the initiation of antiretroviral treatment. We used this data to employ Bayesian mixed effects models to characterize the decay of the reservoir using single-phase and multiphasic decay models based on near full-length sequencing. In addition, we developed a machine-learning approach utilizing logistic regression to identify elements within the HIV genome most associated with proviral decay and persistence. By systematically analyzing proviruses that are deleted for a specific element, we gain insights into their role in reservoir contraction and expansion. Results Our analyses indicate that biphasic decay models of intact reservoir dynamics were better than single-phase models with a stronger statistical fit. Based on the biphasic decay pattern of the intact reservoir, we estimated the half-lives of the first and second phases of decay to be 18.2 (17.3 to 19.2, 95%CI) and 433 (227 to 6400, 95%CI) months, respectively.In contrast, the dynamics of defective proviruses differed favoring neither model definitively, with an estimated half-life of 87.3 (78.1 to 98.8, 95% CI) months during the first phase of the biphasic model. Machine-learning analysis of HIV genomes at the nucleotide level revealed that the presence of the splice donor site D1 was the principal genomic element associated with contraction. This role of D1 was then validated in an in vitro system. Using the same approach, we additionally found supporting evidence that HIV nef may confer a protective advantage for latently infected T cells while tat was associated with clonal expansion. Conclusions The nature of intact reservoir decay suggests that the long-lived HIV reservoir contains at least 2 distinct compartments. The first compartment decays faster than the second compartment. Our machine-learning analysis of HIV proviral sequences reveals specific genomic elements are associated with contraction while others are associated with persistence and expansion. Together, these opposing forces shape the reservoir over time.
Collapse
Affiliation(s)
- LaMont Cannon
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, Virginia
| | - Sophia Fehrman
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, Virginia
| | - Marilia Pinzone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sam Weissman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Una O'Doherty
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
4
|
Alfadhli A, Romanaggi C, Barklis RL, Merutka I, Bates TA, Tafesse FG, Barklis E. Capsid-specific nanobody effects on HIV-1 assembly and infectivity. Virology 2021; 562:19-28. [PMID: 34246112 DOI: 10.1016/j.virol.2021.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 11/15/2022]
Abstract
The capsid (CA) domain of the HIV-1 precursor Gag (PrGag) protein plays multiple roles in HIV-1 replication, and is central to the assembly of immature virions, and mature virus cores. CA proteins themselves are composed of N-terminal domains (NTDs) and C-terminal domains (CTDs). We have investigated the interactions of CA with anti-CA nanobodies, which derive from the antigen recognition regions of camelid heavy chain-only antibodies. The one CA NTD-specific and two CTD-specific nanobodies we analyzed proved sensitive and specific HIV-1 CA detection reagents in immunoassays. When co-expressed with HIV-1 Gag proteins in cells, the NTD-specific nanobody was efficiently assembled into virions and did not perturb virus assembly. In contrast, the two CTD-specific nanobodies reduced PrGag processing, virus release and HIV-1 infectivity. Our results demonstrate the feasibility of Gag-targeted nanobody inhibition of HIV-1.
Collapse
Affiliation(s)
- Ayna Alfadhli
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA
| | - CeAnn Romanaggi
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA
| | - Robin Lid Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA
| | - Ilaria Merutka
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA
| | - Timothy A Bates
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA
| | - Fikadu G Tafesse
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA.
| | - Eric Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA.
| |
Collapse
|
5
|
Barklis E, Alfadhli A, Kyle JE, Bramer LM, Bloodsworth KJ, Barklis RL, Leier HC, Petty RM, Zelnik ID, Metz TO, Futerman AH, Tafesse FG. Ceramide synthase 2 deletion decreases the infectivity of HIV-1. J Biol Chem 2021; 296:100340. [PMID: 33515546 PMCID: PMC7949126 DOI: 10.1016/j.jbc.2021.100340] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 01/01/2023] Open
Abstract
The lipid composition of HIV-1 virions is enriched in sphingomyelin (SM), but the roles that SM or other sphingolipids (SLs) might play in the HIV-1 replication pathway have not been elucidated. In human cells, SL levels are regulated by ceramide synthase (CerS) enzymes that produce ceramides, which can be converted to SMs, hexosylceramides, and other SLs. In many cell types, CerS2, which catalyzes the synthesis of very long chain ceramides, is the major CerS. We have examined how CerS2 deficiency affects the assembly and infectivity of HIV-1. As expected, we observed that very long chain ceramide, hexosylceramide, and SM were reduced in CerS2 knockout cells. CerS2 deficiency did not affect HIV-1 assembly or the incorporation of the HIV-1 envelope (Env) protein into virus particles, but it reduced the infectivites of viruses produced in the CerS2-deficient cells. The reduced viral infection levels were dependent on HIV-1 Env, since HIV-1 particles that were pseudotyped with the vesicular stomatitis virus glycoprotein did not exhibit reductions in infectivity. Moreover, cell-cell fusion assays demonstrated that the functional defect of HIV-1 Env in CerS2-deficient cells was independent of other viral proteins. Overall, our results indicate that the altered lipid composition of CerS2-deficient cells specifically inhibit the HIV-1 Env receptor binding and/or fusion processes.
Collapse
Affiliation(s)
- Eric Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, Oregon, USA.
| | - Ayna Alfadhli
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Jennifer E Kyle
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory (PNNL), Richland, Washington, USA
| | - Lisa M Bramer
- Computing and Analytics Division, National Security Directorate PNNL, Richland, Washington, USA
| | - Kent J Bloodsworth
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory (PNNL), Richland, Washington, USA
| | - Robin Lid Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Hans C Leier
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, Oregon, USA
| | - R Max Petty
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Iris D Zelnik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Thomas O Metz
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory (PNNL), Richland, Washington, USA
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Fikadu G Tafesse
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, Oregon, USA.
| |
Collapse
|
6
|
Ritchie C, Mack A, Harper L, Alfadhli A, Stork PJS, Nan X, Barklis E. Analysis of K-Ras Interactions by Biotin Ligase Tagging. Cancer Genomics Proteomics 2018. [PMID: 28647697 DOI: 10.21873/cgp.20034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Mutations of the human K-Ras 4B (K-Ras) G protein are associated with a significant proportion of all human cancers. Despite this fact, a comprehensive analysis of K-Ras interactions is lacking. Our investigations focus on characterization of the K-Ras interaction network. MATERIALS AND METHODS We employed a biotin ligase-tagging approach, in which tagged K-Ras proteins biotinylate neighbor proteins in a proximity-dependent fashion, and proteins are identified via mass spectrometry (MS) sequencing. RESULTS In transfected cells, a total of 748 biotinylated proteins were identified from cells expressing biotin ligase-tagged K-Ras variants. Significant differences were observed between membrane-associated variants and a farnesylation-defective mutant. In pancreatic cancer cells, 56 K-Ras interaction partners were identified. Most of these were cytoskeletal or plasma membrane proteins, and many have been identified previously as potential cancer biomarkers. CONCLUSION Biotin ligase tagging offers a rapid and convenient approach to the characterization of K-Ras interaction networks.
Collapse
Affiliation(s)
- Christopher Ritchie
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, U.S.A
| | - Andrew Mack
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, U.S.A
| | - Logan Harper
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, U.S.A
| | - Ayna Alfadhli
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, U.S.A
| | - Philip J S Stork
- Department of Vollum Institute, Oregon Health & Science University, Portland, OR, U.S.A
| | - Xiaolin Nan
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, U.S.A
| | - Eric Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, U.S.A.
| |
Collapse
|
7
|
Barklis E, Staubus AO, Mack A, Harper L, Barklis RL, Alfadhli A. Lipid biosensor interactions with wild type and matrix deletion HIV-1 Gag proteins. Virology 2018; 518:264-271. [PMID: 29549788 DOI: 10.1016/j.virol.2018.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/03/2018] [Accepted: 03/06/2018] [Indexed: 11/19/2022]
Abstract
The matrix (MA) domain of the HIV-1 precursor Gag protein (PrGag) has been shown interact with the HIV-1 envelope (Env) protein, and to direct PrGag proteins to plasma membrane (PM) assembly sites by virtue of its affinity to phosphatidylinositol-4,5-bisphosphate (PI[4,5]P2). Unexpectedly, HIV-1 viruses with large MA deletions (ΔMA) have been shown to be conditionally infectious as long as they are matched with Env truncation mutant proteins or alternative viral glycoproteins. To characterize the interactions of wild type (WT) and ΔMA Gag proteins with PI(4,5)P2 and other acidic phospholipids, we have employed a set of lipid biosensors as probes. Our investigations showed marked differences in WT and ΔMA Gag colocalization with biosensors, effects on biosensor release, and association of biosensors with virus-like particles. These results demonstrate an alternative approach to the analysis of viral protein-lipid associations, and provide new data as to the lipid compositions of HIV-1 assembly sites.
Collapse
Affiliation(s)
- Eric Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97035, United States.
| | - August O Staubus
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97035, United States
| | - Andrew Mack
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97035, United States
| | - Logan Harper
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97035, United States
| | - Robin Lid Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97035, United States
| | - Ayna Alfadhli
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97035, United States
| |
Collapse
|
8
|
Alfadhli A, Mack A, Harper L, Berk S, Ritchie C, Barklis E. Analysis of quinolinequinone reactivity, cytotoxicity, and anti-HIV-1 properties. Bioorg Med Chem 2016; 24:5618-5625. [PMID: 27663546 DOI: 10.1016/j.bmc.2016.09.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/07/2016] [Accepted: 09/10/2016] [Indexed: 12/15/2022]
Abstract
We have analyzed a set of quinolinequinones with respect to their reactivities, cytotoxicities, and anti-HIV-1 properties. Most of the quinolinequinones were reactive with glutathione, and several acted as sulfhydryl crosslinking agents. Quinolinequinones inhibited binding of the HIV-1 matrix protein to RNA to varying degrees, and several quinolinequinones showed the capacity to crosslink HIV-1 matrix proteins in vitro, and HIV-1 structural proteins in virus particles. Cytotoxicity assays yielded quinolinequinone CC50 values in the low micromolar range, reducing the potential therapeutic value of these compounds. However, one compound, 6,7-dichloro-5,8-quinolinequinone potently inactivated HIV-1, suggesting that quinolinequinones may prove useful in the preparation of inactivated virus vaccines or for other virucidal purposes.
Collapse
Affiliation(s)
- Ayna Alfadhli
- Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States
| | - Andrew Mack
- Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States
| | - Logan Harper
- Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States
| | - Sam Berk
- Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States
| | - Christopher Ritchie
- Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States
| | - Eric Barklis
- Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States.
| |
Collapse
|
9
|
Membrane-Active Sequences within gp41 Membrane Proximal External Region (MPER) Modulate MPER-Containing Peptidyl Fusion Inhibitor Activity and the Biosynthesis of HIV-1 Structural Proteins. PLoS One 2015; 10:e0134851. [PMID: 26230322 PMCID: PMC4521866 DOI: 10.1371/journal.pone.0134851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/14/2015] [Indexed: 12/04/2022] Open
Abstract
The membrane proximal external region (MPER) is a highly conserved membrane-active region located at the juxtamembrane positions within class I viral fusion glycoproteins and essential for membrane fusion events during viral entry. The MPER in the human immunodeficiency virus type I (HIV-1) envelope protein (Env) interacts with the lipid bilayers through a cluster of tryptophan (Trp) residues and a C-terminal cholesterol-interacting motif. The inclusion of the MPER N-terminal sequence contributes to the membrane reactivity and anti-viral efficacy of the first two anti-HIV peptidyl fusion inhibitors T20 and T1249. As a type I transmembrane protein, Env also interacts with the cellular membranes during its biosynthesis and trafficking. Here we investigated the roles of MPER membrane-active sequences during both viral entry and assembly, specifically, their roles in the design of peptidyl fusion inhibitors and the biosynthesis of viral structural proteins. We found that elimination of the membrane-active elements in MPER peptides, namely, penta Trp→alanine (Ala) substitutions and the disruption of the C-terminal cholesterol-interacting motif through deletion inhibited the anti-viral effect against the pseudotyped HIV-1. Furthermore, as compared to C-terminal dimerization, N-terminal dimerization of MPER peptides and N-terminal extension with five helix-forming residues enhanced their anti-viral efficacy substantially. The secondary structure study revealed that the penta-Trp→Ala substitutions also increased the helical content in the MPER sequence, which prompted us to study the biological relevance of such mutations in pre-fusion Env. We observed that Ala mutations of Trp664, Trp668 and Trp670 in MPER moderately lowered the intracellular and intraviral contents of Env while significantly elevating the content of another viral structural protein, p55/Gag and its derivative p24/capsid. The data suggest a role of the gp41 MPER in the membrane-reactive events during both viral entry and budding, and provide insights into the future development of anti-viral therapeutics.
Collapse
|
10
|
Abstract
UNLABELLED We have examined the interactions of wild-type (WT) and matrix protein-deleted (ΔMA) HIV-1 precursor Gag (PrGag) proteins in virus-producing cells using a biotin ligase-tagging approach. To do so, WT and ΔMA PrGag proteins were tagged with the Escherichia coli promiscuous biotin ligase (BirA*), expressed in cells, and examined. Localization patterns of PrGag proteins and biotinylated proteins overlapped, consistent with observations that BirA*-tagged proteins biotinylate neighbor proteins that are in close proximity. Results indicate that BirA*-tagged PrGag proteins biotinylated themselves as well as WT PrGag proteins in trans. Previous data have shown that the HIV-1 Envelope (Env) protein requires an interaction with MA for assembly into virions. Unexpectedly, ΔMA proteins biotinylated Env, whereas WT BirA*-tagged proteins did not, suggesting that the presence of MA made Env inaccessible to biotinylation. We also identified over 50 cellular proteins that were biotinylated by BirA*-tagged PrGag proteins. These included membrane proteins, cytoskeleton-associated proteins, nuclear transport factors, lipid metabolism regulators, translation factors, and RNA-processing proteins. The identification of these biotinylated proteins offers new insights into HIV-1 Gag protein trafficking and activities and provides new potential targets for antiviral interference. IMPORTANCE We have employed a novel strategy to analyze the interactions of the HIV-1 structural Gag proteins, which involved tagging wild-type and mutant Gag proteins with a biotin ligase. Expression of the tagged proteins in cells allowed us to analyze proteins that came in close proximity to the Gag proteins as they were synthesized, transported, assembled, and released from cells. The tagged proteins biotinylated proteins encoded by the HIV-1 pol gene and neighbor Gag proteins, but, surprisingly, only the mutant Gag protein biotinylated the HIV-1 Envelope protein. We also identified over 50 cellular proteins that were biotinylated, including membrane and cytoskeletal proteins and proteins involved in lipid metabolism, nuclear import, translation, and RNA processing. Our results offer new insights into HIV-1 Gag protein trafficking and activities and provide new potential targets for antiviral interference.
Collapse
|