1
|
Zhao Y, Yang J, Liu Y, Hu X, Wang X, Yang J, Liu J. Wheat Yellow Mosaic Virus P1 Inhibits ROS Accumulation to Facilitate Viral Infection. Int J Mol Sci 2025; 26:1455. [PMID: 40003921 PMCID: PMC11855546 DOI: 10.3390/ijms26041455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/01/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Reactive oxygen species (ROS), as signaling molecules, play a crucial role in the plant immune response. However, the mechanism(s) by which viruses affect ROS metabolism remain largely unexplored. Here, we found that wheat yellow mosaic virus (WYMV)-encoded P1 is a pathogenic protein. Transcriptomic and proteomic integrative analyses were performed on WYMV-infected overexpressing-P1 wheat and wild-type plants. A total of 9245 differentially expressed genes (DEGs) and 1383 differentially expressed proteins (DEPs) were identified in the transcriptome and proteome, respectively. At their intersection, 373 DEGs/Ps were identified. Enrichment analysis revealed that the expression of genes related to the ROS metabolism pathway in overexpressed P1 transgenic wheat (OE-P1) plants significantly increased during WYMV infection. We screened peroxidase (TaPOD) and thioredoxin reductase (TaTrxR) as they showed the most significant differences in expression. The silencing of TaPOD and TaTrxR revealed that they positively regulate WYMV infection by reducing ROS accumulation. Furthermore, hydrogen peroxide treatment induced WYMV resistance in wild-type wheat plants and OE-P1 transgenic plants. This study provides a theoretical basis for the role of P1 in plant viral infection.
Collapse
Affiliation(s)
- Yingjie Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jiaqian Yang
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Ying Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Xiaodi Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Xia Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jian Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jiaqian Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
2
|
Abrokwah LA, Torkpo SK, Pereira GDS, Oppong A, Eleblu J, Pita J, Offei SK. Rice Yellow Mottle Virus (RYMV): A Review. Viruses 2024; 16:1707. [PMID: 39599824 PMCID: PMC11598978 DOI: 10.3390/v16111707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/30/2024] [Accepted: 07/07/2024] [Indexed: 11/29/2024] Open
Abstract
Rice (Oryza spp.) is mostly grown directly from seed and sown on wet or dry seed beds or usually used as transplants on nursery beds. Among all the economically important viral diseases in the world, rice yellow mottle virus (RYMV) is only prevalent in rice-growing countries in Africa. RYMV has become the main rice production constraint in Africa over the last 20-25 years, causing yield losses of 10 to 100% depending on the age of the plant at the time of infection, degree of varietal susceptibility and the existing climatic conditions. Good agricultural practices and biotechnological tools in the development of improved resistant cultivars have been extensively utilized in controlling the disease. This review focuses on RYMV, its epidemiology, serological and molecular typing, disease management and the way forward for sustainable rice production.
Collapse
Affiliation(s)
- Linda Appianimaa Abrokwah
- Department of Crop Science, School of Agriculture, University of Ghana, Legon P.O. Box LG 68, Ghana; (L.A.A.); (S.K.O.)
- CSIR-Crops Research Institute, Kumasi-Ghana P.O. Box 3785, Ghana;
| | - Stephen Kwame Torkpo
- Department of Crop Science, School of Agriculture, University of Ghana, Legon P.O. Box LG 68, Ghana; (L.A.A.); (S.K.O.)
- Forest and Horticultural Crops Research Centre-Kade, School of Agriculture, College of Basic and Applied Sciences, University of Ghana, Legon P.O. Box LG 25, Ghana
| | | | - Allen Oppong
- CSIR-Crops Research Institute, Kumasi-Ghana P.O. Box 3785, Ghana;
| | - John Eleblu
- West Africa Centre for Crop Improvement, College of Basic and Applied Sciences, University of Ghana, Legon P.O. Box LG 25, Ghana;
| | - Justin Pita
- Universite Felix Houphouet Boigny, Abidjan 00225, Côte d’Ivoire;
| | - Samuel Kwame Offei
- Department of Crop Science, School of Agriculture, University of Ghana, Legon P.O. Box LG 68, Ghana; (L.A.A.); (S.K.O.)
- West Africa Centre for Crop Improvement, College of Basic and Applied Sciences, University of Ghana, Legon P.O. Box LG 25, Ghana;
| |
Collapse
|
3
|
Bamogo P, Tiendrébéogo F, Brugidou C, Sérémé D, Djigma FW, Simporé J, Lacombe S. Rice yellow mottle virus is a suitable amplicon vector for an efficient production of an anti-leishmianiasis vaccine in Nicotiana benthamiana leaves. BMC Biotechnol 2024; 24:21. [PMID: 38658899 PMCID: PMC11044499 DOI: 10.1186/s12896-024-00851-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/17/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Since the 2000's, plants have been used as bioreactors for the transient production of molecules of interest such as vaccines. To improve protein yield, "amplicon" vectors based on plant viruses are used. These viral constructs, engineered to carry the gene of interest replicate strongly once introduced into the plant cell, allowing significant accumulation of the protein. Here, we evaluated the suitability of the monocot-infecting RNA virus Rice yellow mottle virus (RYMV) as an amplicon vector. The promastigote surface antigen (PSA) of the protozoan Leishmania was considered as a protein of interest due to its vaccine properties against canine leishmaniasis. RESULTS Since P1 (ORF1) and CP (ORF3) proteins are not strictly necessary for viral replication, ORF1 was deleted and the PSA gene was substituted to ORF3 in the RYMV-based vector. We evaluated its expression in the best described plant bioreactor system, Nicotiana benthamiana which, unlike rice, allows transient transformation by Agrobacterium. Despite not being its natural host, we demonstrated a low level of RYMV-based vector replication in N. benthamiana leaves. Under optimized ratio, we showed that the P19 silencing suppressor in combination with the missing viral CP ORF significantly enhanced RYMV amplicon replication in N. benthamiana. Under these optimized CP/P19 conditions, we showed that the RYMV amplicon replicated autonomously in the infiltrated N. benthamiana cells, but was unable to move out of the infiltrated zones. Finally, we showed that when the RYMV amplicon was expressed under the optimized conditions we set up, it allowed enhanced PSA protein accumulation in N. benthamiana compared to the PSA coding sequence driven by the 35S promoter without amplicon background. CONCLUSION This work demonstrates that a non-dicot-infecting virus can be used as an amplicon vector for the efficient production of proteins of interest such as PSA in N. benthamiana leaves.
Collapse
Affiliation(s)
- Pka Bamogo
- Institut de L'Environnement et de Recherches Agricoles (INERA), LMI Patho-Bios Laboratoire de Virologie et de Biotechnologies Végétales, Ouagadougou, Burkina Faso.
- Université Joseph Ki-Zerbo, Laboratoire de biologie moléculaire et de Génétique (LABIOGENE), Ecole Doctorale Sciences et Technologie, Centre de recherche biomoléculaire Piétro Annigoni (CERBA), Ouagadougou, Burkina Faso.
- PHIM Plant Health Institute Montpellier, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France.
| | - F Tiendrébéogo
- Institut de L'Environnement et de Recherches Agricoles (INERA), LMI Patho-Bios Laboratoire de Virologie et de Biotechnologies Végétales, Ouagadougou, Burkina Faso
| | - C Brugidou
- Université Joseph Ki-Zerbo, Laboratoire de biologie moléculaire et de Génétique (LABIOGENE), Ecole Doctorale Sciences et Technologie, Centre de recherche biomoléculaire Piétro Annigoni (CERBA), Ouagadougou, Burkina Faso
- PHIM Plant Health Institute Montpellier, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - D Sérémé
- Institut de L'Environnement et de Recherches Agricoles (INERA), LMI Patho-Bios Laboratoire de Virologie et de Biotechnologies Végétales, Ouagadougou, Burkina Faso
| | - F W Djigma
- Université Joseph Ki-Zerbo, Laboratoire de biologie moléculaire et de Génétique (LABIOGENE), Ecole Doctorale Sciences et Technologie, Centre de recherche biomoléculaire Piétro Annigoni (CERBA), Ouagadougou, Burkina Faso
| | - J Simporé
- Université Joseph Ki-Zerbo, Laboratoire de biologie moléculaire et de Génétique (LABIOGENE), Ecole Doctorale Sciences et Technologie, Centre de recherche biomoléculaire Piétro Annigoni (CERBA), Ouagadougou, Burkina Faso
| | - S Lacombe
- Université Joseph Ki-Zerbo, Laboratoire de biologie moléculaire et de Génétique (LABIOGENE), Ecole Doctorale Sciences et Technologie, Centre de recherche biomoléculaire Piétro Annigoni (CERBA), Ouagadougou, Burkina Faso
- PHIM Plant Health Institute Montpellier, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
4
|
Oñate-Sánchez L, Verdonk JC. Citrate-Citric Acid RNA Isolation (CiAR) for Fast, Low-Cost, and Reliable RNA Extraction from Multiple Plant Species and Tissues. Curr Protoc 2021; 1:e298. [PMID: 34874606 DOI: 10.1002/cpz1.298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
RNA isolation is routinely carried out in many laboratories for different downstream applications. Although protocols for this can vary between labs depending on the specific plant species and tissues under study and the preferences of their researchers, these protocols usually include the use of volatile organic and toxic chemicals. As an alternative, several companies offer less hazardous RNA extraction kits, but these kits significantly increase the cost per sample and are thus not affordable for every lab, especially when a large number of samples is to be processed. We have previously described a fast and efficient method for RNA isolation from plant vegetative tissues that requires only two home-made, simple, inexpensive, and nontoxic buffers. Both buffers have low concentrations of citric acid and its sodium salt. The first buffer also contains a detergent to help with nucleic acid solubilization while keeping RNases inactive. The second buffer has sodium chloride at high molarity to separate protein from nucleic acids. RNA is precipitated, and contaminating DNA can then be optionally removed. Here, we describe and expand on this approach, which we call the citrate-citric acid RNA isolation, or CiAR, method. We provide a detailed description of the protocol, describe a modification to make it compatible with non-vegetative tissues, and compile and extend the number of species and tissues to which it can be applied. © 2021 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Luis Oñate-Sánchez
- Centro de Biotecnología y Genómica de Plantas, (Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| | - Julian C Verdonk
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
5
|
Odongo PJ, Onaga G, Ricardo O, Natsuaki KT, Alicai T, Geuten K. Insights Into Natural Genetic Resistance to Rice Yellow Mottle Virus and Implications on Breeding for Durable Resistance. FRONTIERS IN PLANT SCIENCE 2021; 12:671355. [PMID: 34267770 PMCID: PMC8276079 DOI: 10.3389/fpls.2021.671355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/14/2021] [Indexed: 06/13/2023]
Abstract
Rice is the main food crop for people in low- and lower-middle-income countries in Asia and sub-Saharan Africa (SSA). Since 1982, there has been a significant increase in the demand for rice in SSA, and its growing importance is reflected in the national strategic food security plans of several countries in the region. However, several abiotic and biotic factors undermine efforts to meet this demand. Rice yellow mottle virus (RYMV) caused by Solemoviridae is a major biotic factor affecting rice production and continues to be an important pathogen in SSA. To date, six pathogenic strains have been reported. RYMV infects rice plants through wounds and rice feeding vectors. Once inside the plant cells, viral genome-linked protein is required to bind to the rice translation initiation factor [eIF(iso)4G1] for a compatible interaction. The development of resistant cultivars that can interrupt this interaction is the most effective method to manage this disease. Three resistance genes are recognized to limit RYMV virulence in rice, some of which have nonsynonymous single mutations or short deletions in the core domain of eIF(iso)4G1 that impair viral host interaction. However, deployment of these resistance genes using conventional methods has proved slow and tedious. Molecular approaches are expected to be an alternative to facilitate gene introgression and/or pyramiding and rapid deployment of these resistance genes into elite cultivars. In this review, we summarize the knowledge on molecular genetics of RYMV-rice interaction, with emphasis on host plant resistance. In addition, we provide strategies for sustainable utilization of the novel resistant sources. This knowledge is expected to guide breeding programs in the development and deployment of RYMV resistant rice varieties.
Collapse
Affiliation(s)
- Patrick J. Odongo
- Molecular Biotechnology of Plants and Micro-Organisms, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
- National Crops Resources Research Institute, National Agriculture Research Organization, Kampala, Uganda
| | - Geoffrey Onaga
- National Crops Resources Research Institute, National Agriculture Research Organization, Kampala, Uganda
- M’bé Research Station, Africa Rice Center (AfricaRice), Bouaké, Côte d’Ivoire
| | - Oliver Ricardo
- Breeding Innovations Platform, International Rice Research Institute, Metro Manila, Philippines
| | - Keiko T. Natsuaki
- Graduate School of Agriculture, Tokyo University of Agriculture, Tokyo, Japan
| | - Titus Alicai
- National Crops Resources Research Institute, National Agriculture Research Organization, Kampala, Uganda
| | - Koen Geuten
- Molecular Biotechnology of Plants and Micro-Organisms, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| |
Collapse
|