1
|
Belshan M, Holbrook A, George JW, Durant HE, Callahan M, Jaquet S, West JT, Siedlik J, Ciborowski P. Discovery of candidate HIV-1 latency biomarkers using an OMICs approach. Virology 2021; 558:86-95. [PMID: 33735754 PMCID: PMC10171037 DOI: 10.1016/j.virol.2021.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 11/19/2022]
Abstract
Infection with HIV-1 remains uncurable due to reservoirs of latently infected cells. Any potential cure for HIV will require a mechanism to identify and target these cells in vivo. We created a panel of Jurkat cell lines latently infected with the HIV DuoFlo virus to identify candidate biomarkers of latency. SWATH mass spectrometry was used to compare the membrane proteomes of one of the cell lines to parental Jurkat cells. Several candidate proteins with significantly altered expression were identified. The differential expression of several candidates was validated in multiple latently infected cell lines. Three factors (LAG-3, CD147,CD231) were altered across numerous cell lines, but the expression of most candidate biomarkers was variable. These results confirm that phenotypic differences in latently infected cells exists and identify additional novel biomarkers. The variable expression of biomarkers across different cell clones suggests universal antigen-based detection of latently infected cells may require a multiplex approach.
Collapse
Affiliation(s)
- Michael Belshan
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE, USA.
| | - Alexander Holbrook
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE, USA
| | - Joseph W George
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE, USA
| | - Hannah E Durant
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE, USA
| | - Michael Callahan
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE, USA
| | - Spencer Jaquet
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - John T West
- Department of Biochemistry, And the Nebraska Center for Virology, University of Nebraska, Lincoln, NE, USA
| | - Jacob Siedlik
- Department of Exercise Science and Pre-Health Professions, Creighton University, Omaha, NE, USA
| | - Pawel Ciborowski
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
2
|
Grabowska K, Harwood E, Ciborowski P. HIV and Proteomics: What We Have Learned from High Throughput Studies. Proteomics Clin Appl 2021; 15:e2000040. [PMID: 32978881 PMCID: PMC7900993 DOI: 10.1002/prca.202000040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/04/2020] [Indexed: 12/17/2022]
Abstract
The accelerated development of technology over the last three decades has driven biological sciences to high-throughput profiling experiments, now broadly referred to as systems biology. The unprecedented improvement of analytical instrumentation has opened new avenues for more complex experimental designs and expands the knowledge in genomics, proteomics, and other omics fields. Despite the collective efforts of hundreds of researchers, gleaning all the expected information from omics experiments is still quite far. This paper summarizes what has been learned from high-throughput proteomics studies thus far, and what is believed should be done to reveal even more valuable information from such studies. It is drawn from the background in using proteomics to study human immunodeficiency virus 1 infection of macrophages and/or T cells, but it is believed that some conclusions will be more broadly applicable.
Collapse
Affiliation(s)
- Kinga Grabowska
- Laboratory of Virus Molecular BiologyIntercollegiate Faculty of BiotechnologyUniversity of GdanskGdansk80‐307Poland
- Department of Pharmacology and Experimental NeuroscienceCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198‐5800USA
| | - Emma Harwood
- Department of Pharmacology and Experimental NeuroscienceCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198‐5800USA
| | - Pawel Ciborowski
- Department of Pharmacology and Experimental NeuroscienceCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198‐5800USA
| |
Collapse
|
3
|
Sperk M, van Domselaar R, Rodriguez JE, Mikaeloff F, Sá Vinhas B, Saccon E, Sönnerborg A, Singh K, Gupta S, Végvári Á, Neogi U. Utility of Proteomics in Emerging and Re-Emerging Infectious Diseases Caused by RNA Viruses. J Proteome Res 2020; 19:4259-4274. [PMID: 33095583 PMCID: PMC7640957 DOI: 10.1021/acs.jproteome.0c00380] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Indexed: 12/21/2022]
Abstract
Emerging and re-emerging infectious diseases due to RNA viruses cause major negative consequences for the quality of life, public health, and overall economic development. Most of the RNA viruses causing illnesses in humans are of zoonotic origin. Zoonotic viruses can directly be transferred from animals to humans through adaptation, followed by human-to-human transmission, such as in human immunodeficiency virus (HIV), severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and, more recently, SARS coronavirus 2 (SARS-CoV-2), or they can be transferred through insects or vectors, as in the case of Crimean-Congo hemorrhagic fever virus (CCHFV), Zika virus (ZIKV), and dengue virus (DENV). At the present, there are no vaccines or antiviral compounds against most of these viruses. Because proteins possess a vast array of functions in all known biological systems, proteomics-based strategies can provide important insights into the investigation of disease pathogenesis and the identification of promising antiviral drug targets during an epidemic or pandemic. Mass spectrometry technology has provided the capacity required for the precise identification and the sensitive and high-throughput analysis of proteins on a large scale and has contributed greatly to unravelling key protein-protein interactions, discovering signaling networks, and understanding disease mechanisms. In this Review, we present an account of quantitative proteomics and its application in some prominent recent examples of emerging and re-emerging RNA virus diseases like HIV-1, CCHFV, ZIKV, and DENV, with more detail with respect to coronaviruses (MERS-CoV and SARS-CoV) as well as the recent SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Maike Sperk
- Division
of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, ANA Futura, Campus Flemingsberg, Stockholm 14152, Sweden
| | - Robert van Domselaar
- Division
of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institute, ANA Futura, Campus Flemingsberg, Stockholm 14152, Sweden
| | - Jimmy Esneider Rodriguez
- Division
of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 14152 Sweden
| | - Flora Mikaeloff
- Division
of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, ANA Futura, Campus Flemingsberg, Stockholm 14152, Sweden
| | - Beatriz Sá Vinhas
- Division
of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, ANA Futura, Campus Flemingsberg, Stockholm 14152, Sweden
| | - Elisa Saccon
- Division
of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, ANA Futura, Campus Flemingsberg, Stockholm 14152, Sweden
| | - Anders Sönnerborg
- Division
of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, ANA Futura, Campus Flemingsberg, Stockholm 14152, Sweden
- Division
of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institute, ANA Futura, Campus Flemingsberg, Stockholm 14152, Sweden
| | - Kamal Singh
- Department
of Molecular Microbiology and Immunology and the Bond Life Science
Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Soham Gupta
- Division
of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, ANA Futura, Campus Flemingsberg, Stockholm 14152, Sweden
| | - Ákos Végvári
- Division
of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 14152 Sweden
| | - Ujjwal Neogi
- Division
of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, ANA Futura, Campus Flemingsberg, Stockholm 14152, Sweden
- Department
of Molecular Microbiology and Immunology and the Bond Life Science
Center, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
4
|
Ramos I, Stamatakis K, Oeste CL, Pérez-Sala D. Vimentin as a Multifaceted Player and Potential Therapeutic Target in Viral Infections. Int J Mol Sci 2020; 21:E4675. [PMID: 32630064 PMCID: PMC7370124 DOI: 10.3390/ijms21134675] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 12/17/2022] Open
Abstract
Vimentin is an intermediate filament protein that plays key roles in integration of cytoskeletal functions, and therefore in basic cellular processes such as cell division and migration. Consequently, vimentin has complex implications in pathophysiology. Vimentin is required for a proper immune response, but it can also act as an autoantigen in autoimmune diseases or as a damage signal. Although vimentin is a predominantly cytoplasmic protein, it can also appear at extracellular locations, either in a secreted form or at the surface of numerous cell types, often in relation to cell activation, inflammation, injury or senescence. Cell surface targeting of vimentin appears to associate with the occurrence of certain posttranslational modifications, such as phosphorylation and/or oxidative damage. At the cell surface, vimentin can act as a receptor for bacterial and viral pathogens. Indeed, vimentin has been shown to play important roles in virus attachment and entry of severe acute respiratory syndrome-related coronavirus (SARS-CoV), dengue and encephalitis viruses, among others. Moreover, the presence of vimentin in specific virus-targeted cells and its induction by proinflammatory cytokines and tissue damage contribute to its implication in viral infection. Here, we recapitulate some of the pathophysiological implications of vimentin, including the involvement of cell surface vimentin in interaction with pathogens, with a special focus on its role as a cellular receptor or co-receptor for viruses. In addition, we provide a perspective on approaches to target vimentin, including antibodies or chemical agents that could modulate these interactions to potentially interfere with viral pathogenesis, which could be useful when multi-target antiviral strategies are needed.
Collapse
Affiliation(s)
- Irene Ramos
- Department of Neurology and Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Konstantinos Stamatakis
- Centro de Biología Molecular Severo Ochoa, UAM-CSIC. Nicolás Cabrera, 1, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; (K.S.); (C.L.O.)
| | - Clara L. Oeste
- Centro de Biología Molecular Severo Ochoa, UAM-CSIC. Nicolás Cabrera, 1, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; (K.S.); (C.L.O.)
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| |
Collapse
|
5
|
Holbrook AK, Peterson HD, Bianchi SA, Macdonald BW, Bredahl EC, Belshan M, Siedlik JA. CD4 + T cell activation and associated susceptibility to HIV-1 infection in vitro increased following acute resistance exercise in human subjects. Physiol Rep 2019; 7:e14234. [PMID: 31552706 PMCID: PMC6759488 DOI: 10.14814/phy2.14234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 12/13/2022] Open
Abstract
Early studies in exercise immunology suggested acute bouts of exercise had an immunosuppressive effect in human subjects. However, recent data, show acute bouts of combined aerobic and resistance training increase both lymphocyte activation and proliferation. We quantified resistance exercise-induced changes in the activation state of CD4+ T lymphocytes via surface protein expression and using a medically relevant model of infection (HIV-1). Using a randomized cross-over design, 10 untrained subjects completed a control and exercise session. The control session consisted of 30-min seated rest while the exercise session entailed 3 sets × 10 repetitions of back squat, leg press, and leg extensions at 70% 1-RM with 2-min rest between each set. Venous blood samples were obtained pre/post each session. CD4+ T lymphocytes were isolated from whole blood by negative selection. Expression of activation markers (CD69 & CD25) in both nonstimulated and stimulated (costimulation through CD3+ CD28) cells were assessed by flow cytometry. Resistance exercised-induced effects on intracellular activation was further evaluated via in vitro infection with HIV-1. Nonstimulated CD4+ T lymphocytes obtained postexercise exhibited elevated CD25 expression following 24 h in culture. Enhanced HIV-1 replication was observed in cells obtained postexercise. Our results demonstrate that an acute bout of resistance exercise increases the activation state of CD4+ T lymphocytes and results in a greater susceptibility to HIV-1 infection in vitro. These findings offer further evidence that exercise induces activation of T lymphocytes and provides a foundation for the use of medically relevant pathogens as indirect measures of intracellular activation.
Collapse
Affiliation(s)
| | - Hunter D. Peterson
- Department of Exercise Science and Pre‐Health ProfessionsCreighton UniversityOmahaNebraska
| | - Samantha A. Bianchi
- Department of Exercise Science and Pre‐Health ProfessionsCreighton UniversityOmahaNebraska
| | - Brad W. Macdonald
- Department of Exercise Science and Pre‐Health ProfessionsCreighton UniversityOmahaNebraska
| | - Eric C. Bredahl
- Department of Exercise Science and Pre‐Health ProfessionsCreighton UniversityOmahaNebraska
| | - Michael Belshan
- Department of Medical Microbiology and ImmunologyCreighton UniversityOmahaNebraska
| | - Jacob A. Siedlik
- Department of Exercise Science and Pre‐Health ProfessionsCreighton UniversityOmahaNebraska
| |
Collapse
|