1
|
Brahma S, Chatterjee S, Dey A. Role of eicosanoids in insect immunity: new insights and recent advances. INSECT SCIENCE 2024. [PMID: 39158024 DOI: 10.1111/1744-7917.13434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/30/2024] [Accepted: 07/12/2024] [Indexed: 08/20/2024]
Abstract
Viruses, bacteria, fungus, protozoans, and different metazoan parasites and parasitoids present a constant threat to insects. Insect immunity has two components: humoral and cell mediated. Humoral immunity can be achieved by various antimicrobial proteins, namely, cecropins, sarcotoxin, defensin, attacin, etc. The cell-mediated immunity comprises various cells having immune functions fostering nodulation, phagocytosis, microaggregation, encapsulation etc. Eicosanoids play a crucial role in insect immunity comparable to other animals. The above-mentioned are signaling molecules derived from polyunsaturated fatty acids and they exert numerous physiological effects, namely, inflammation, immune modulation, and regulation of cellular processes. The review article elucidates various roles of eicosanoids, namely, nodulation reaction, Toll signaling pathway, nitric oxide (NO) generation, Ca2+ mobilization, production of reactive oxygen species (ROS), actin polymerization and aquaporin activation. Eicosanoids can function in immune priming in insects drawing hemocytes. An agent named Duox was also identified serving as ROS generator in insect gut. Moreover, role of Repat gene in insect immunity was also studied. However, recently the role of prostacyclin (PGI2) was found to be negative as it inhibits platelet aggregation. In this brief review, we have tried to shed light on the various functions of eicosanoids in immunity of insect those have been discovered recently. This concise study will allow to decipher eicosanoids' function in insect immunity in a nutshell, and it will pave the way for more researches to understand the key players of insect immunity which may eventually help to develop novel vector and pest control strategies in near future.
Collapse
Affiliation(s)
- Shubhranil Brahma
- Department of Zoology, Iswar Chandra Vidyasagar College, Belonia, South Tripura, Tripura, India
| | - Somnath Chatterjee
- Department of Zoology, Dr. Bhupendra Nath Dutta Smriti Mahavidyalaya, Hatgobindapur, Purba Bardhaman, West Bengal, India
| | - Atrayee Dey
- Post Graduate Department of Zoology, Banwarilal Bhalotia College, Asansol, Paschim Bardhaman, West Bengal, India
| |
Collapse
|
2
|
Guinet B, Leobold M, Herniou EA, Bloin P, Burlet N, Bredlau J, Navratil V, Ravallec M, Uzbekov R, Kester K, Gundersen Rindal D, Drezen JM, Varaldi J, Bézier A. A novel and diverse family of filamentous DNA viruses associated with parasitic wasps. Virus Evol 2024; 10:veae022. [PMID: 38617843 PMCID: PMC11013392 DOI: 10.1093/ve/veae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/20/2023] [Accepted: 02/23/2024] [Indexed: 04/16/2024] Open
Abstract
Large dsDNA viruses from the Naldaviricetes class are currently composed of four viral families infecting insects and/or crustaceans. Since the 1970s, particles described as filamentous viruses (FVs) have been observed by electronic microscopy in several species of Hymenoptera parasitoids but until recently, no genomic data was available. This study provides the first comparative morphological and genomic analysis of these FVs. We analyzed the genomes of seven FVs, six of which were newly obtained, to gain a better understanding of their evolutionary history. We show that these FVs share all genomic features of the Naldaviricetes while encoding five specific core genes that distinguish them from their closest relatives, the Hytrosaviruses. By mining public databases, we show that FVs preferentially infect Hymenoptera with parasitoid lifestyle and that these viruses have been repeatedly integrated into the genome of many insects, particularly Hymenoptera parasitoids, overall suggesting a long-standing specialization of these viruses to parasitic wasps. Finally, we propose a taxonomical revision of the class Naldaviricetes in which FVs related to the Leptopilina boulardi FV constitute a fifth family. We propose to name this new family, Filamentoviridae.
Collapse
Affiliation(s)
- Benjamin Guinet
- LBBE, UMR CNRS 5558, Universite Claude Bernard Lyon 1, 43 bd du 11 novembre 1918, Villeurbanne CEDEX F-69622, France
| | - Matthieu Leobold
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS-Université de Tours, 20 Avenue Monge, Parc de Grandmont, Tours 37200, France
| | - Elisabeth A Herniou
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS-Université de Tours, 20 Avenue Monge, Parc de Grandmont, Tours 37200, France
| | - Pierrick Bloin
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS-Université de Tours, 20 Avenue Monge, Parc de Grandmont, Tours 37200, France
| | - Nelly Burlet
- LBBE, UMR CNRS 5558, Universite Claude Bernard Lyon 1, 43 bd du 11 novembre 1918, Villeurbanne CEDEX F-69622, France
| | - Justin Bredlau
- Department of Biology, Virginia Commonwealth University, 1000 W. Cary Street, Room 126, Richmond, VA 23284-9067, USA
| | - Vincent Navratil
- PRABI, Rhône-Alpes Bioinformatics Center, Université Lyon 1, 43 bd du 11 novembre 1918, Villeurbanne CEDEX 69622, France
- UMS 3601, Institut Français de Bioinformatique, IFB-Core, 2 rue Gaston Crémieu, Évry CEDEX 91057, France
- European Virus Bioinformatics Center, Leutragraben 1, Jena 07743, Germany
| | - Marc Ravallec
- Diversité, génomes et interactions microorganismes insectes (DGIMI), UMR 1333 INRA, Université de Montpellier 2, 2 Place Eugène Bataillon cc101, Montpellier CEDEX 5 34095, France
| | - Rustem Uzbekov
- Laboratory of Cell Biology and Electron Microscopy, Faculty of Medicine, Université de Tours, 10 bd Tonnelle, BP 3223, Tours CEDEX 37032, France
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Leninskye Gory 73, Moscow 119992, Russia
| | - Karen Kester
- Department of Biology, Virginia Commonwealth University, 1000 W. Cary Street, Room 126, Richmond, VA 23284-9067, USA
| | - Dawn Gundersen Rindal
- USDA-ARS Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, MD 20705, USA
| | - Jean-Michel Drezen
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS-Université de Tours, 20 Avenue Monge, Parc de Grandmont, Tours 37200, France
| | - Julien Varaldi
- LBBE, UMR CNRS 5558, Universite Claude Bernard Lyon 1, 43 bd du 11 novembre 1918, Villeurbanne CEDEX F-69622, France
| | - Annie Bézier
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS-Université de Tours, 20 Avenue Monge, Parc de Grandmont, Tours 37200, France
| |
Collapse
|
3
|
Zhou W, Hong J, Han J, Cai F, Tang Q, Yu Q, Li G, Ma S, Liu X, Huo S, Chen K, Zhu F. Silkworm glycosaminoglycans bind to Bombyx mori nuclear polyhedrosis virus and facilitate its entry. Int J Biol Macromol 2023; 253:127352. [PMID: 37838120 DOI: 10.1016/j.ijbiomac.2023.127352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/29/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023]
Abstract
Interacting with cell surface attachment factors or receptors is the first step for virus infection. Glycans cover a thick layer on eukaryotic cells and are potential targets of various viruses. Bombyx mori nuclear polyhedrosis viruses (BmNPV) is a baculovirus that causes huge economic loss to the sericulture industry but the mechanism of infection is unclear. Looking for potential host receptors for the virus is an important task. In this study, we investigated the role of glycosaminoglycan (GAG) modifications, including heparan sulfate (HS) and chondroitin sulfate (CS), during BmNPV infection. Enzymatic removal of cell surface HS and CS effectively inhibited BmNPV infection and replication. Exogenous HS and CS can directly bind to BmNPV virion in solution and act as neutralizers for viral infection. Furthermore, the expression of enzymes involved in GAG biosynthesis was upregulated in the BmNPV susceptible silkworm after virus administration, but down-regulated in the resistant strain after virus treatment, suggesting that BmNPV was able to utilize host cell machinery to promote the biosynthesis of GAGs. This study demonstrated HS and CS as important attachment factors that facilitate the viral entry process, and targeting HS and CS can be an effective means of inhibiting BmNPV infection.
Collapse
Affiliation(s)
- Weiwei Zhou
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Jindie Hong
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Jinying Han
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Fuchuan Cai
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Qi Tang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Qian Yu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Guohui Li
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Shangshang Ma
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Xiaoyong Liu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Feifei Zhu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
4
|
Tian Z, Guo X, Michaud JP, Zha M, Zhu L, Liu X, Liu X. The gut microbiome of Helicoverpa armigera enhances immune response to baculovirus infection via suppression of Duox-mediated reactive oxygen species. PEST MANAGEMENT SCIENCE 2023; 79:3611-3621. [PMID: 37184157 DOI: 10.1002/ps.7546] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Baculoviruses such as Helicoverpa armigera nucleopolyhedrovirus (HearNPV) infect their lepidopteran hosts via the larval midgut where they interact with host immune responses and gut microbiota. Here we demonstrate that gut microbiota proliferating in response to HearNPV infection promote larval immune responses which impede the infection process. RESULTS The microbial load of the larval midgut increased following HearNPV infection, due primarily to increases in Enterococcus spp., whereas most other bacterial genera declined, with Firmicutes replacing Proteobacteria as the dominant phylum. Injection of abdominal prolegs of infected larvae with H2 O2 promoted viral infection, diminished microbial abundance, and accelerated larval death, mimicking the effects of HearNPV infection, which up-regulated dual oxidase (Duox) expression, increasing H2 O2 levels in the midgut. Knockdown of Duox with RNAi reduced H2 O2 production in the guts of infected larvae, increased bacterial loads, decreased viral replication, and improved larval survival. Germ-free larvae were more susceptible to HearNPV than control larvae, exhibiting greater expression of Duox, higher levels of H2 O2 , and lower survival. Replenishment of gut bacteria in germ-free larvae restored the base-line immunity to HearNPV observed in normal larvae. Enterococcus spp., Levilactobacillus brevis, and Lactobacillus sp. bacteria were isolated and implicated in immunity restoration via replenishment in germ-free larvae. CONCLUSION These findings illuminate how gut microbiota play important roles in larval defense against oral baculovirus infection, and suggest novel avenues of investigation to enhance the efficacy of baculoviruses and improve control of lepidopteran pests. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhiqiang Tian
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xi Guo
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - J P Michaud
- Department of Entomology, Kansas State University, Agricultural Research Center-Hays, Hays, KS, USA
| | - Meng Zha
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Lin Zhu
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiaoming Liu
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiaoxia Liu
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Ferrelli ML, Salvador R. Effects of Mixed Baculovirus Infections in Biological Control: A Comprehensive Historical and Technical Analysis. Viruses 2023; 15:1838. [PMID: 37766245 PMCID: PMC10534452 DOI: 10.3390/v15091838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 09/29/2023] Open
Abstract
Baculoviruses are insect-specific DNA viruses that have been exploited as bioinsecticides for the control of agricultural and forest pests around the world. Mixed infections with two different baculoviruses have been found in nature, infecting the same host. They have been studied to understand the biology of virus interactions, their effects on susceptible insects, and their insecticidal implications. In this work, we summarize and analyze the in vivo baculovirus co-infections reported in the literature, mainly focusing on pest biocontrol applications. We discuss the most common terms used to describe the effects of mixed infections, such as synergism, neutralism, and antagonism, and how to determine them based on host mortality. Frequently, baculovirus co-infections found in nature are caused by a combination of a nucleopolyhedrovirus and a granulovirus. Studies performed with mixed infections indicated that viral dose, larval stage, or the presence of synergistic factors in baculovirus occlusion bodies are important for the type of virus interaction. We also enumerate and discuss technical aspects to take into account in studies on mixed infections, such as statistical procedures, quantification of viral inocula, the selection of instars, and molecular methodologies for an appropriate analysis of baculovirus interaction. Several experimental infections using two different baculoviruses demonstrated increased viral mortality or a synergistic effect on the target larvae compared to single infections. This can be exploited to improve the baculovirus-killing properties of commercial formulations. In this work, we offer a current overview of baculovirus interactions in vivo and discuss their potential applications in pest control strategies.
Collapse
Affiliation(s)
- María Leticia Ferrelli
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Buenos Aires, Argentina
| | - Ricardo Salvador
- Instituto de Microbiología y Zoología Agrícola (IMyZA), Centro de Investigaciones en Ciencias Agronómicas y Veterinarias (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA), Nicolás Repetto y de los Reseros s/n, Hurlingham 1686, Buenos Aires, Argentina
| |
Collapse
|
6
|
Jia Q, Fu Y. microRNA-34-5p encoded by Spodoptera frugiperda regulates the replication and infection of Autographa californica multiple nucleopolyhedrovirus by targeting odv-e66, ac78 and ie2. PEST MANAGEMENT SCIENCE 2022; 78:5379-5389. [PMID: 36057111 DOI: 10.1002/ps.7160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/12/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Spodoptera frugiperda is one of the significant migratory pests in the Global Alert issued by the Food and Agriculture Organization of the United Nations. As an insect-specific microbial insecticide, baculovirus has been used to control various pests. MicroRNA-34-5p (miR-34-5p) is involved in regulating growth, reproduction and innate immunity to pathogens in insects, playing an essential role in host-virus interactions. In this study, we explored the critical function of miR-34-5p encoded by S. frugiperda in the anti-Autographa californica multiple nucleopolyhedrovirus (AcMNPV), providing a reference for the design of a miR-34-5p target biopesticide against S. frugiperda and a theoretical basis for the wide application of microRNAs (miRNAs) in green pest control technology. RESULTS We focused on miR-34-5p identified as downregulated in Sf9 cells and S. frugiperda larvae infected by AcMNPV. The regulatory function of miR-34-5p in AcMNPV-S. frugiperda interactions was studied by transfecting synthetic mimics and inhibitors, and constructing recombinant bacmids with miR-34-5p overexpression. miR-34-5p inhibited the production of infectious budded virions at the cellular and insect levels, inhibited the replication of the viral DNA and glucose metabolism, and increased the transcription of the antimicrobial peptide gloverin. Furthermore, the virus genes odv-e66, ac78 and ie2 were shown to be direct targets. CONCLUSION We systematically revealed the mechanism by which miR-34-5p is involved in the insect antiviral process. miR-34-5p inhibited the replication and infection of AcMNPV by directly targeting AcMNPV genes, especially ac78 and ie2. Our study provides a new direction and thinking for the prevention and green control of lepidopteran pests. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiaojin Jia
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, People's Republic of China
- Department of Medical Laboratory Science, Fenyang College, Shanxi Medical University, Fenyang, People's Republic of China
| | - Yuejun Fu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, People's Republic of China
| |
Collapse
|
7
|
Roy MC, Ahmed S, Kim Y. Dorsal switch protein 1 as a damage signal in insect gut immunity to activate dual oxidase via an eicosanoid, PGE 2. Front Immunol 2022; 13:994626. [PMID: 36439105 PMCID: PMC9691268 DOI: 10.3389/fimmu.2022.994626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/18/2022] [Indexed: 08/05/2023] Open
Abstract
Various microbiota including beneficial symbionts reside in the insect gut. Infections of pathogens cause dysregulation of the microflora and threaten insect survival. Reactive oxygen species (ROS) have been used in the gut immune responses, in which its production is tightly regulated by controlling dual oxidase (Duox) activity via Ca2+ signal to protect beneficial microflora and gut epithelium due to its high cytotoxicity. However, it was not clear how the insects discriminate the pathogens from the various microbes in the gut lumen to trigger ROS production. An entomopathogenic nematode (Steinernema feltiae) infection elevated ROS level in the gut lumen of a lepidopteran insect, Spodoptera exigua. Dorsal switch protein 1 (DSP1) localized in the nucleus in the midgut epithelium was released into plasma upon the nematode infection and activated phospholipase A2 (PLA2). The activated PLA2 led to an increase of PGE2 level in the midgut epithelium, in which rising Ca2+ signal up-regulated ROS production. Inhibiting DSP1 release by its specific RNA interference (RNAi) or specific inhibitor, 3-ethoxy-4-methoxyphenol, treatment failed to increase the intracellular Ca2+ level and subsequently prevented ROS production upon the nematode infection. A specific PLA2 inhibitor treatment also prevented the up-regulation of Ca2+ and subsequent ROS production upon the nematode infection. However, the addition of PGE2 to the inhibitor treatment rescued the gut immunity. DSP1 release was not observed at infection with non-pathogenic pathogens but detected in plasma with pathogenic infections that would lead to damage to the gut epithelium. These results indicate that DSP1 acts as a damage-associated molecular pattern in gut immunity through DSP1/PLA2/Ca2+/Duox.
Collapse
|
8
|
Liu L, Yu H, Wang D. Genomic and biological characteristics of an alphabaculovirus isolated from Trabala vishnou gigantina. Virus Res 2022; 308:198630. [PMID: 34788643 DOI: 10.1016/j.virusres.2021.198630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/02/2021] [Accepted: 10/29/2021] [Indexed: 11/30/2022]
Abstract
The oak lappet moth, Trabala vishnou gigantina is a forest insect pest that damages broad-leaf trees severely. Trabala vishnou gigantina nucleopolyhedrovirus (TrviNPV) has been isolated from a naturally infected T. vishnou gigantina larva and investigated for its biology and the potential to be a biological control agent against its insect host. TrviNPV was characterized by electron microscope of occlusion bodies (OBs), genomic sequencing and field control efficacy. TrviNPV OBs exhibited an irregular polyhedral shape varying in size from 0.99 to 3.99 μm with multiple nucleocapsids per virion. The genome of this virus was 165 657 bp in length with 40.33% GC content and encoded 146 putative ORFs including the 38 baculovirus core genes. TrviNPV is a group II alphabaculovirus that encodes F protein and lacks the gp64 gene specific to group I alphabaculoviruses. Phylogeny and Kimura-2 parameter analysis revealed TrviNPV to be a novel species and closest to ArdiNPV, EupsNPV and OrleNPV. Bioassays and field trials in a shrubland revealed that TrviNPV was virulent and effective to control T. vishnou gigantina in arid semi-desert region. This work firstly reported the whole genome of TrviNPV as well as its biological characters for a possibility to develop this virus as bio-pesticide in the future.
Collapse
Affiliation(s)
- Long Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Huan Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Dun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
9
|
Liu L, Zhang Z, Liu C, Qu L, Wang D. Genome Analysis of an Alphabaculovirus Isolated from the Larch Looper, Erannis ankeraria. Viruses 2021; 14:v14010034. [PMID: 35062240 PMCID: PMC8779214 DOI: 10.3390/v14010034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 11/22/2022] Open
Abstract
The larch looper, Erannis ankeraria Staudinger (Lepidoptera: Geometridae), is one of the major insect pests of larch forests, widely distributed from southeastern Europe to East Asia. A naturally occurring baculovirus, Erannis ankeraria nucleopolyhedrovirus (EranNPV), was isolated from E. ankeraria larvae. This virus was characterized by electron microscopy and by sequencing the whole viral genome. The occlusion bodies (OBs) of EranNPV exhibited irregular polyhedral shapes containing multiple enveloped rod-shaped virions with a single nucleocapsid per virion. The EranNPV genome was 125,247 bp in length with a nucleotide distribution of 34.9% G+C. A total of 131 hypothetical open reading frames (ORFs) were identified, including the 38 baculovirus core genes and five multi-copy genes. Five homologous regions (hrs) were found in the EranNPV genome. Phylogeny and pairwise kimura 2-parameter analysis indicated that EranNPV was a novel group II alphabaculovirus and was most closely related to Apocheima cinerarium NPV (ApciNPV). Field trials showed that EranNPV was effective in controlling E. ankeraria in larch forests. The above results will be relevant to the functional research on EranNPV and promote the use of this virus as a biocontrol agent.
Collapse
Affiliation(s)
- Long Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China;
| | - Zhilin Zhang
- Forest Protection Station, Ulanqab 012000, China;
| | - Chenglin Liu
- Institute of Forest Ecology, Environment and Nature Conservation, Chinese Academy of Forestry, Beijing 100091, China;
| | - Liangjian Qu
- Institute of Forest Ecology, Environment and Nature Conservation, Chinese Academy of Forestry, Beijing 100091, China;
- Correspondence: (L.Q.); (D.W.); Tel.: +86-29-8709-1511 (D.W.)
| | - Dun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China;
- Correspondence: (L.Q.); (D.W.); Tel.: +86-29-8709-1511 (D.W.)
| |
Collapse
|
10
|
Identification and Full Characterisation of Two Novel Crustacean Infecting Members of the Family Nudiviridae Provides Support for Two Subfamilies. Viruses 2021; 13:v13091694. [PMID: 34578276 PMCID: PMC8472649 DOI: 10.3390/v13091694] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
Multiple enveloped viruses with rod-shaped nucleocapsids have been described, infecting the epithelial cell nuclei within the hepatopancreas tubules of crustaceans. These bacilliform viruses share the ultrastructural characteristics of nudiviruses, a specific clade of viruses infecting arthropods. Using histology, electron microscopy and high throughput sequencing, we characterise two further bacilliform viruses from aquatic hosts, the brown shrimp (Crangon crangon) and the European shore crab (Carcinus maenas). We assembled the full double stranded, circular DNA genome sequences of these viruses (~113 and 132 kbp, respectively). Comparative genomics and phylogenetic analyses confirm that both belong within the family Nudiviridae but in separate clades representing nudiviruses found in freshwater and marine environments. We show that the three thymidine kinase (tk) genes present in all sequenced nudivirus genomes, thus far, were absent in the Crangon crangon nudivirus, suggesting there are twenty-eight core genes shared by all nudiviruses. Furthermore, the phylogenetic data no longer support the subdivision of the family Nudiviridae into four genera (Alphanudivirus to Deltanudivirus), as recently adopted by the International Committee on Taxonomy of Viruses (ICTV), but rather shows two main branches of the family that are further subdivided. Our data support a recent proposal to create two subfamilies within the family Nudiviridae, each subdivided into several genera.
Collapse
|
11
|
Comparative genomic analysis of three geographical isolates from China reveals high genetic stability of Plutella xylostella granulovirus. PLoS One 2021; 16:e0243143. [PMID: 33444318 PMCID: PMC7808651 DOI: 10.1371/journal.pone.0243143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/17/2020] [Indexed: 11/29/2022] Open
Abstract
In this study, the genomes of three Plutella xylostella granulovirus (PlxyGV) isolates, PlxyGV-W and PlxyGV-Wn from near Wuhan and PlxyGV-B from near Beijing, China were completely sequenced and comparatively analyzed to investigate genetic stability and diversity of PlxyGV. PlxyGV-W, PlxyGV-B and PlxyGV-Wn consist of 100,941bp, 100,972bp and 100,999bp in length with G + C compositions of 40.71–40.73%, respectively, and share nucleotide sequence identities of 99.5–99.8%. The three individual isolates contain 118 putative protein-encoding ORFs in common. PlxyGV-W, PlxyGV-B and PlxyGV-Wn have ten, nineteen and six nonsynonymous intra isolate nucleotide polymorphisms (NPs) in six, fourteen and five ORFs, respectively, including homologs of five DNA replication/late expression factors and two per os infectivity factors. There are seventeen nonsynonymous inter isolate NPs in seven ORFs between PlxyGV-W and PlxyGV-B, seventy three nonsynonymous NPs in forty seven ORFs between PlxyGV-W and PlxyGV-Wn, seventy seven nonsynonymous NPs in forty six ORFs between PlxyGV-B and PlxyGV-Wn. Alignment of the genome sequences of nine PlxyGV isolates sequenced up to date shows that the sequence homogeneity between the genomes are over 99.4%, with the exception of the genome of PlxyGV-SA from South Africa, which shares a sequence identity of 98.6–98.7% with the other ones. No events of gene gain/loss or translocations were observed. These results suggest that PlxyGV genome is fairly stable in nature. In addition, the transcription start sites and polyadenylation sites of thirteen PlxyGV-specific ORFs, conserved in all PlxyGV isolates, were identified by RACE analysis using mRNAs purified from larvae infected by PlxyGV-Wn, proving the PlxyGV-specific ORFs are all genuine genes.
Collapse
|
12
|
Rodrigues DT, Peterson L, de Oliveira LB, Sosa-Gómez DR, Ribeiro BM, Ardisson-Araújo DM. Characterization of a novel alphabaculovirus isolated from the Southern armyworm, Spodoptera eridania (Cramer, 1782) (Lepidoptera: Noctuidae) and the evolution of odv-e66, a bacterium-acquired baculoviral chondroitinase gene. Genomics 2020; 112:3903-3914. [DOI: 10.1016/j.ygeno.2020.06.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/24/2020] [Accepted: 06/28/2020] [Indexed: 11/16/2022]
|
13
|
Etebari K, Parry R, Beltran MJB, Furlong MJ. Transcription Profile and Genomic Variations of Oryctes Rhinoceros Nudivirus in Coconut Rhinoceros Beetles. J Virol 2020; 94:e01097-20. [PMID: 32878889 PMCID: PMC7592217 DOI: 10.1128/jvi.01097-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/25/2020] [Indexed: 12/21/2022] Open
Abstract
Oryctes rhinoceros nudivirus (OrNV) is a double-stranded DNA (dsDNA) virus which has been used as a biocontrol agent to suppress the coconut rhinoceros beetle (Oryctes rhinoceros) in Southeast Asia and the Pacific Islands. A new wave of O. rhinoceros incursions in Oceania is thought to be related to the presence of low-virulence isolates of OrNV or virus-tolerant haplotypes of beetles. In this study, chronically infected beetles were collected from Philippines, Fiji, Papua New Guinea (PNG), and the Solomon Islands (SI). RNA sequencing (RNA-seq) was performed to investigate the global viral gene expression profiles and for comparative genomic analysis of structural variations. Maximum likelihood phylogenic analysis indicated that OrNV strains from the SI and Philippines are closely related, while OrNV strains from PNG and Fiji formed a distinct adjacent clade. We detected several polymorphic sites with a frequency higher than 35% in 892 positions of the viral genome. Nonsynonymous mutations were detected in several hypothetical proteins and 15 nudivirus core genes, such as gp034, lef-8, lef-4, and vp91 We found limited evidence of variation in viral gene expression among geographic populations. Only a few genes, such as gp01, gp022, and gp107, were differentially expressed among different strains. Additionally, small RNA sequencing from the SI population suggested that OrNV is targeted by the host RNA interference (RNAi) response with abundant 21-nucleotide small RNAs. Some of these genomic changes are specific to the geographic population and could be related to particular phenotypic characteristics of the strain, such as viral pathogenicity or transmissibility, and this requires further investigation.IMPORTANCE Oryctes rhinoceros nudivirus has been an effective biocontrol agent against the coconut rhinoceros beetle in Southeast Asia and the Pacific Islands for decades. The recent outbreak of these beetles in many South Pacific islands has had a significant impact on livelihoods in the region. It has been suggested that the resurgence and spread of the pest are related to the presence of low-virulence isolates of OrNV or virus-tolerant haplotypes of beetles. We examined viral genomic and transcriptional variations in chronically infected beetles from different geographical populations. A high number of polymorphic sites among several geographical strains of OrNV were identified, but potentially only a few of these variations in the genome are involved in functional changes and can potentially alter the typical function. These findings provide valuable resources for future studies to improve our understanding of the OrNV genetic variations in different geographic regions and their potential link to virus pathogenicity.
Collapse
Affiliation(s)
- Kayvan Etebari
- School of Biological Sciences, The University of Queensland, Brisbane, Australia
| | - Rhys Parry
- School of Biological Sciences, The University of Queensland, Brisbane, Australia
| | - Marie Joy B Beltran
- National Crop Protection Centre, College of Agriculture and Food Science, University of the Philippines Los Baños College, Laguna, Philippines
| | - Michael J Furlong
- School of Biological Sciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
14
|
Wang S, Wang P. Functional redundancy of structural proteins of the peritrophic membrane in Trichoplusia ni. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 125:103456. [PMID: 32814147 DOI: 10.1016/j.ibmb.2020.103456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
The peritrophic membrane (or peritrophic matrix) (PM) in insects is formed by binding of PM proteins with multiple chitin binding domains (CBDs) to chitin fibrils. Multi-CBD chitin binding proteins (CBPs) and the insect intestinal mucin (IIM) are major PM structural proteins. To understand the biochemical and physiological role of IIM in structural formation and physiological function of the PM, Trichoplusia ni mutant strains lacking IIM were generated by CRISPR/Cas9 mutagenesis. The mutant T. ni larvae were confirmed to lack IIM, but PM formation was observed as in wild type larvae and lacking IIM in the PM did not result in changes of protease activities in the larval midgut. Larval growth and development of the mutant strains were similar to the wild type strain on artificial diet and cabbage leaves, but had a decreased survival in the 5th instar. The larvae of the mutant strains with the PM formed without IIM did not have a change of susceptibility to the infection of the baculovirus AcMNPV and the Bacillus thuringiensis (Bt) formulation Dipel, to the toxicity of the Bt toxins Cry1Ac and Cry2Ab and the chemical insecticide sodium aluminofluoride. Treatment of the mutant T. ni larvae with Calcofluor reduced the larval susceptibility to the toxicity of Bt Cry1Ac, as similarly observed in the wild type larvae. Overall, in the mutant T. ni larvae, the PM was formed without IIM and the lacking of IIM in the PM did not drastically impact the performance of larvae on diet or cabbage leaves under the laboratory conditions.
Collapse
Affiliation(s)
- Shaohua Wang
- Department of Entomology, Cornell University, Geneva, NY, 14456, USA; School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Ping Wang
- Department of Entomology, Cornell University, Geneva, NY, 14456, USA.
| |
Collapse
|