1
|
Li W, Chen Y, Feng Y, Li J, Kang X, Zhang S, Li Y, Zhao Z, Yang W, Zhao L, Wang H, Jiang T. Generation and Characterization of a Replication-Competent Human Adenovirus Type 55 Encoding EGFP. Viruses 2023; 15:v15051192. [PMID: 37243276 DOI: 10.3390/v15051192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Human adenovirus 55 (HAdV-55) has recently caused outbreaks of acute respiratory disease (ARD), posing a significant public threat to civilians and military trainees. Efforts to develop antiviral inhibitors and quantify neutralizing antibodies require an experimental system to rapidly monitor viral infections, which can be achieved through the use of a plasmid that can produce an infectious virus. Here, we used a bacteria-mediated recombination approach to construct a full-length infectious cDNA clone, pAd55-FL, containing the whole genome of HadV-55. Then, the green fluorescent protein expression cassette was assembled into pAd55-FL to replace the E3 region to obtain a recombinant plasmid of pAd55-dE3-EGFP. The rescued recombinant virus rAdv55-dE3-EGFP is genetically stable and replicates similarly to the wild-type virus in cell culture. The virus rAdv55-dE3-EGFP can be used to quantify neutralizing antibody activity in sera samples, producing results in concordance with the cytopathic effect (CPE)-based microneutralization assay. Using an rAdv55-dE3-EGFP infection of A549 cells, we showed that the assay could be used for antiviral screening. Our findings suggest that the rAdv55-dE3-EGFP-based high-throughput assay provides a reliable tool for rapid neutralization testing and antiviral screening for HAdV-55.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yuehong Chen
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Ye Feng
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Jing Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Xiaoping Kang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Sen Zhang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yuchang Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Zhiyan Zhao
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Wenguang Yang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Lu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Huiyao Wang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
- School of Public Health, Mudanjiang Medical University, Mudanjiang 157011, China
| | - Tao Jiang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- School of Public Health, Mudanjiang Medical University, Mudanjiang 157011, China
| |
Collapse
|
2
|
Lakshmi Narayan PK, Kajon AE. Human mastadenovirus-B (HAdV-B)-specific E3-CR1β and E3-CR1γ glycoproteins interact with each other and localize at the plasma membrane of non-polarized airway epithelial cells. Virology 2020; 546:67-78. [PMID: 32452418 PMCID: PMC7158847 DOI: 10.1016/j.virol.2020.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/20/2020] [Accepted: 04/06/2020] [Indexed: 11/23/2022]
Abstract
The E3 region of all simian and human types classified within species Human mastadenovirus B (HAdV-B) encodes two unique highly conserved ORFs of unknown function designated E3-CR1β and E3-CR1γ. We generated a HAdV-3 mutant encoding small epitope tags at the N-termini of both E3-CR1β and E3-CR1γ (HAdV-3 N-tag wt) and a double knock out (HAdV-3 N-tag DKO) mutant virus that does not express either protein. Our studies show that HAdV-3 E3-CR1β and E3-CR1γ are type I transmembrane proteins that are produced predominantly at late times post infection, are glycosylated, co-localize at the plasma membrane of non-polarized epithelial cells, and interact with each other. At their extreme C-termini HAdV-B E3-CR1β and E3-CR1γ possess a conserved di-leucine motif followed by a class II PDZ domain binding motif (PBM). HAdV-3 E3-CR1β and E3-CR1γ are dispensable for virus growth, progeny release, spread, and plaque formation in A549 cells. HAdV-B E3-CR1β and E3-CR1γ are type I transmembrane proteins. HAdV-B E3-CR1β and E3-CR1γ possess a C-terminal class II PDZ binding motif. HAdV-3 E3-CR1β and E3-CR1γ interact and co-localize at the plasma membrane. HAdV-3 E3-CR1β and E3-CR1γ are dispensable for virus progeny release and spread.
Collapse
Affiliation(s)
| | - Adriana E Kajon
- Infectious Disease Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA.
| |
Collapse
|
3
|
Frietze KM, Campos SK, Kajon AE. No evidence of a death-like function for species B1 human adenovirus type 3 E3-9K during A549 cell line infection. BMC Res Notes 2012; 5:429. [PMID: 22882760 PMCID: PMC3500273 DOI: 10.1186/1756-0500-5-429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 08/09/2012] [Indexed: 12/31/2022] Open
Abstract
Background Subspecies B1 human adenoviruses (HAdV-B1) are prevalent respiratory pathogens. Compared to their species C (HAdV-C) counterparts, relatively little work has been devoted to the characterization of their unique molecular biology. The early region 3 (E3) transcription unit is an interesting target for future efforts because of its species-specific diversity in genetic content among adenoviruses. This diversity is particularly significant for the subset of E3-encoded products that are membrane glycoproteins and may account for the distinct pathobiology of the different human adenovirus species. In order to understand the role of HAdV-B-specific genes in viral pathogenesis, we initiated the characterization of unique E3 genes. As a continuation of our efforts to define the function encoded in the highly polymorphic ORF E3-10.9K and testing the hypothesis that the E3-10.9K protein orthologs with a hydrophobic domain contribute to the efficient release of viral progeny, we generated HAdV-3 mutant viruses unable to express E3-10.9K ortholog E3-9K and examined their ability to grow, disseminate, and egress in cell culture. Results No differences were observed in the kinetics of infected cell death, and virus progeny release or in the plaque size and dissemination phenotypes between cells infected with HAdV-3 E3-9K mutants or the parental virus. The ectopic expression of E3-10.9K orthologs with a hydrophobic domain did not compromise cell viability. Conclusions Our data show that despite the remarkable similarities with HAdV-C E3-11.6K, HAdV-B1 ORF E3-10.9K does not encode a product with a “death-like” biological activity.
Collapse
Affiliation(s)
- Kathryn M Frietze
- Infectious Disease Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest Drive SE, Albuquerque, NM, USA
| | | | | |
Collapse
|
4
|
Marinheiro JC, Dos Santos TG, Siqueira-Silva J, Lu X, Carvalho D, da Camara AA, Arruda E, Arruda K, Erdman DD, Hársi CM. A naturally occurring human adenovirus type 7 variant with a 1743 bp deletion in the E3 cassette. J Gen Virol 2011; 92:2399-2404. [PMID: 21677090 DOI: 10.1099/vir.0.029181-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Human adenovirus type 7 (HAdV-7) is an important cause of acute respiratory disease (ARD). Different genomic variants of HAdV-7 have been described, designated 7a-7l. In a previous study to investigate risk factors for ARD and wheezing, nasopharyngeal samples were collected from 90 ill children seeking medical attention in Ribeirão Preto, São Paulo, Brazil. HAdVs were identified in 31 samples and were characterized by serum neutralization and genome restriction analysis. Eleven HAdVs were identified as being HAdV-7, five of which were classified as being of genome type 7p (Gomen). Six other HAdV-7 isolates gave new restriction profiles with all enzymes used and were classified as being a new genomic variant, 7m. These isolates were further characterized by sequencing. The hexon and fiber genes of the 7m variant were nearly identical to the prototype, 7p. However, nucleotide sequences from the E3 cassette revealed a 1743 bp deletion affecting the 16.1K, 19K, 20.1K and 20.5K ORFs.
Collapse
Affiliation(s)
- Juliana C Marinheiro
- Department of Microbiology, Virology Laboratories, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Tatiana G Dos Santos
- Department of Microbiology, Virology Laboratories, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Joselma Siqueira-Silva
- Department of Microbiology, Virology Laboratories, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Xiaoyan Lu
- Centers for Disease Control and Prevention, Gastroenteritis and Respiratory Viruses Laboratory Branch, Atlanta, GA, USA
| | - Daniela Carvalho
- Department of Microbiology, Virology Laboratories, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ataíde A da Camara
- Department of Cell and Molecular Biology, School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Eurico Arruda
- Department of Cell and Molecular Biology, School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Karla Arruda
- Department of Cell and Molecular Biology, School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Dean D Erdman
- Centers for Disease Control and Prevention, Gastroenteritis and Respiratory Viruses Laboratory Branch, Atlanta, GA, USA
| | - Charlotte M Hársi
- Department of Microbiology, Virology Laboratories, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Su X, Tian X, Zhang Q, Li H, Li X, Sheng H, Wang Y, Wu H, Zhou R. Complete genome analysis of a novel E3-partial-deleted human adenovirus type 7 strain isolated in Southern China. Virol J 2011; 8:91. [PMID: 21371333 PMCID: PMC3058094 DOI: 10.1186/1743-422x-8-91] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 03/04/2011] [Indexed: 12/29/2022] Open
Abstract
Human adenovirus (HAdV) is a causative agent of acute respiratory disease, which is prevalent throughout the world. Recently there are some reports which found that the HAdV-3 and HAdV-5 genomes were very stable across 50 years of time and space. But more and more recombinant genomes have been identified in emergent HAdV pathogens and it is a pathway for the molecular evolution of types. In our paper, we found a HAdV-7 GZ07 strain isolated from a child with acute respiratory disease, whose genome was E3-partial deleted. The whole genome was 32442 bp with 2864 bp deleted in E3 region and was annotated in detail (GenBank: HQ659699). The growth character was the same as that of another HAdV-7 wild strain which had no gene deletion. By comparison with E3 regions of the other HAdV-B, we found that only left-end two proteins were remained: 12.1 kDa glycoprotein and 16.1 kDa protein. E3 MHC class I antigen-binding glycoprotein, hypothetical 20.6 kDa protein, 20.6 kDa protein, 7.7 kDa protein., 10.3 kDa protein, 14.9 kDa protein and E3 14.7 kDa protein were all missing. It is the first report about E3 deletion in human adenovirus, which suggests that E3 region is also a possible recombination region in adenovirus molecular evolution.
Collapse
Affiliation(s)
- Xiaobo Su
- Key Laboratory of Tropical Marine Environmental Dynamics, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Open reading frame E3-10.9K of subspecies B1 human adenoviruses encodes a family of late orthologous proteins that vary in their predicted structural features and subcellular localization. J Virol 2010; 84:11310-22. [PMID: 20739542 DOI: 10.1128/jvi.00512-10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Subspecies B1 human adenoviruses (HAdV-B1s) are important causative agents of acute respiratory disease, but the molecular bases of their distinct pathobiology are still poorly understood. Marked differences in genetic content between HAdV-B1s and the well-characterized HAdV-Cs that may contribute to distinct pathogenic properties map to the E3 region. Between the highly conserved E3-19K and E3-10.4K/RIDα open reading frames (ORFs), and in the same location as the HAdV-C ADP/E3-11.6K ORF, HAdV-B1s carry ORFs E3-20.1K and E3-20.5K and a polymorphic third ORF, designated E3-10.9K, that varies in the size of its predicted product among HAdV-B1 serotypes and genomic variants. As an initial effort to define the function of the E3-10.9K ORF, we carried out a biochemical characterization of E3-10.9K-encoded orthologous proteins and investigated their expression in infected cells. Sequence-based predictions suggested that E3-10.9K orthologs with a hydrophobic domain are integral membrane proteins. Ectopically expressed, C-terminally tagged (with enhanced green fluorescent protein [EGFP]) E3-10.9K and E3-9K localized primarily to the plasma membrane, while E3-7.7K localized primarily to a juxtanuclear compartment that could not be identified. EGFP fusion proteins with a hydrophobic domain were N and O glycosylated. EGFP-tagged E3-4.8K, which lacked the hydrophobic domain, displayed diffuse cellular localization similar to that of the EGFP control. E3-10.9K transcripts from the major late promoter were detected at late time points postinfection. A C-terminally hemagglutinin-tagged version of E3-9K was detected by immunoprecipitation at late times postinfection in the membrane fraction of mutant virus-infected cells. These data suggest a role for ORF E3-10.9K-encoded proteins at late stages of HAdV-B1 replication, with potentially important functional implications for the documented ORF polymorphism.
Collapse
|
7
|
Seto J, Walsh MP, Metzgar D, Seto D. Computational analysis of adenovirus serotype 5 (HAdV-C5) from an HAdV coinfection shows genome stability after 45 years of circulation. Virology 2010; 404:180-6. [PMID: 20627349 DOI: 10.1016/j.virol.2010.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 03/01/2010] [Accepted: 05/13/2010] [Indexed: 11/19/2022]
Abstract
Adenovirus coinfections present opportunities for genome recombination. Computational analysis of an HAdV-C5 field strain genome, recovered from a patient with acute respiratory disease and coinfected with HAdV-B21, shows that there was no exchange of genomic material into HAdV-C5. Comparison of this genome to the sparsely amplified prototype demonstrates a high level of sequence conservation and stability of this genome across 45 years. Further, comparison to a version of the prototype that had been passaged in laboratory settings shows stability as well. HAdV genome stability and evolution are considerations for applications as vaccines and as vectors for gene delivery. In the annotation analysis, a single sequencing error in the HAdV-C5_ARM (Adenovirus Reference Material) genome is noted and may lead to erroneous annotation and biological interpretations.
Collapse
Affiliation(s)
- Jason Seto
- Department of Bioinformatics and Computational Biology, George Mason University, 10900 University Blvd., MSN 5B3, Manassas, VA 20110, USA.
| | | | | | | |
Collapse
|
8
|
Outbreak of acute respiratory infection among infants in Lisbon, Portugal, caused by human adenovirus serotype 3 and a new 7/3 recombinant strain. J Clin Microbiol 2010; 48:1391-6. [PMID: 20147640 DOI: 10.1128/jcm.02019-09] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human adenoviruses (AdVs) typically cause mild illnesses in otherwise healthy hosts. We investigated a pediatric outbreak of acute respiratory infection with fatal outcomes that occurred in Lisbon, Portugal, in 2004. Biological specimens were collected from 83 children attending two nurseries, a kinesiotherapy clinic, and the household of a nanny. Adenovirus infection was confirmed in 48 children by PCR and virus isolation. Most (96%) isolates were classified as being of subspecies B1. Phylogenetic analysis of fiber and hexon gene sequences revealed that most infants were infected with AdV serotype 3 (AdV3) strains. Infants attending one nursery harbored a new recombinant strain containing an AdV serotype 7 hexon and serotype 3 fiber (AdV7/3). Both the AdV3 and the AdV7/3 strains caused fatal infections. Two different serotype 3 strains were circulating in Lisbon in 2004, and the new AdV7/3 recombinant type originated from only one of those strains. These results demonstrate that recombination leads to the emergence of new adenovirus strains with epidemic and lethal potential.
Collapse
|
9
|
Mahadevan P, Seto J, Tibbetts C, Seto D. Natural variants of human adenovirus type 3 provide evidence for relative genome stability across time and geographic space. Virology 2010; 397:113-8. [DOI: 10.1016/j.virol.2009.10.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 09/23/2009] [Accepted: 10/30/2009] [Indexed: 10/20/2022]
|
10
|
Applying genomic and bioinformatic resources to human adenovirus genomes for use in vaccine development and for applications in vector development for gene delivery. Viruses 2010; 2:1-26. [PMID: 21994597 PMCID: PMC3185558 DOI: 10.3390/v2010001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 12/05/2009] [Accepted: 12/17/2009] [Indexed: 12/25/2022] Open
Abstract
Technological advances and increasingly cost-effect methodologies in DNA sequencing and computational analysis are providing genome and proteome data for human adenovirus research. Applying these tools, data and derived knowledge to the development of vaccines against these pathogens will provide effective prophylactics. The same data and approaches can be applied to vector development for gene delivery in gene therapy and vaccine delivery protocols. Examination of several field strain genomes and their analyses provide examples of data that are available using these approaches. An example of the development of HAdV-B3 both as a vaccine and also as a vector is presented.
Collapse
|
11
|
Seto J, Walsh MP, Mahadevan P, Purkayastha A, Clark JM, Tibbetts C, Seto D. Genomic and bioinformatics analyses of HAdV-14p, reference strain of a re-emerging respiratory pathogen and analysis of B1/B2. Virus Res 2009; 143:94-105. [PMID: 19463726 DOI: 10.1016/j.virusres.2009.03.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 03/22/2009] [Accepted: 03/23/2009] [Indexed: 11/25/2022]
Abstract
Unlike other human adenovirus (HAdV) species, B is divided into subspecies B1 and B2. Originally this was partly based on restriction enzyme (RE) analysis. B1 members, except HAdV-50, are commonly associated with respiratory diseases while B2 members are rarely associated with reported respiratory diseases. Recently two members of B2 have been identified in outbreaks of acute respiratory disease (ARD). One, HAdV-14, has re-emerged after an apparent 52-year absence. Genomic analysis and bioinformatics data are reported for HAdV-14 prototype for use as a reference and to understand and counter its re-emergence. The data complement and extend the original criteria for subspecies designation, unique amongst the adenoviruses, and highlight differences between B1 and B2, representing the first comprehensive analysis of this division. These data also provide finer granularity into the pathoepidemiology of the HAdVs. Whole genome analysis uncovers heterogeneous identity structures of the hexon and fiber genes amongst the HAdV-14 and the B1/B2 subspecies, which may be important in prescient vaccine development. Analysis of cell surface proteins provides insight into HAdV-14 tropism, accounting for its role as a respiratory pathogen. This HAdV-14 prototype genome is also a reference for applications of B2 adenoviruses as vectors for vaccine development and gene therapy.
Collapse
Affiliation(s)
- Jason Seto
- Department of Bioinformatics and Computational Biology, George Mason University, 10900 University Blvd., MSN 5B3, Manassas, VA 20110, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Zhang Q, Su X, Seto D, Zheng BJ, Tian X, Sheng H, Li H, Wang Y, Zhou R. Construction and characterization of a replication-competent human adenovirus type 3-based vector as a live-vaccine candidate and a viral delivery vector. Vaccine 2009; 27:1145-53. [DOI: 10.1016/j.vaccine.2008.12.039] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 12/07/2008] [Accepted: 12/20/2008] [Indexed: 01/02/2023]
|
13
|
Kajon AE, Erdman DD. Assessment of genetic variability among subspecies b1 human adenoviruses for molecular epidemiology studies. METHODS IN MOLECULAR MEDICINE 2007; 131:335-55. [PMID: 17656793 DOI: 10.1007/978-1-59745-277-9_23] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Adenoviruses exhibit considerable intraserotypic genetic variability. Restriction enzyme analysis of the adenoviral genome is currently the most widely used procedure for the characterization of adenovirus isolates and has been extensively used for molecular epidemiological studies of subspecies B1 adenovirus infections. Comparison of restriction site maps between viral genomes is qualitatively consistent with DNA sequence homology providing that a sufficient number of sites are known. This technique is simple, sensitive, and can be adapted for screening numerous isolates and is therefore particularly useful for analysis of closely related genomes. Restriction enzyme analysis is still the only molecular approach that, at a reasonable cost, can give a "genome-wide" characterization of an adenovirus strain. Polymerase chain reaction (PCR) amplification followed by sequencing of the generated amplicon is the approach of choice for the detailed analysis of specific regions of the viral genome. Several laboratories have recently adopted PCR amplification of the hexon and/or fiber genes for the determination of adenovirus serotype identity, replacing identification by seroneutralization and hemmaglutination-inhibition. This approach permits rapid and objective type-specific identification of human adenoviruses and is especially useful for the characterization of serologically intermediate strains frequently identified among field strains of subspecies B1 adenoviruses.
Collapse
|
14
|
Sirena D, Ruzsics Z, Schaffner W, Greber UF, Hemmi S. The nucleotide sequence and a first generation gene transfer vector of species B human adenovirus serotype 3. Virology 2005; 343:283-98. [PMID: 16169033 PMCID: PMC7172737 DOI: 10.1016/j.virol.2005.08.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 08/09/2005] [Accepted: 08/18/2005] [Indexed: 12/11/2022]
Abstract
Human adenovirus (Ad) serotype 3 causes respiratory infections. It is considered highly virulent, accounting for about 13% of all Ad isolates. We report here the complete Ad3 DNA sequence of 35,343 base pairs (GenBank accession DQ086466). Ad3 shares 96.43% nucleotide identity with Ad7, another virulent subspecies B1 serotype, and 82.56 and 62.75% identity with the less virulent species B2 Ad11 and species C Ad5, respectively. The genomic organization of Ad3 is similar to the other human Ads comprising five early transcription units, E1A, E1B, E2, E3, and E4, two delayed early units IX and IVa2, and the major late unit, in total 39 putative and 7 hypothetical open reading frames. A recombinant E1-deleted Ad3 was generated on a bacterial artificial chromosome. This prototypic virus efficiently transduced CD46-positive rodent and human cells. Our results will help in clarifying the biology and pathology of adenoviruses and enhance therapeutic applications of viral vectors in clinical settings.
Collapse
Affiliation(s)
- Dominique Sirena
- Institute of Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Zsolt Ruzsics
- Max von Pettenkofer Institute, Gene Centre of LMU Munich, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Walter Schaffner
- Institute of Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Urs F. Greber
- Institute of Zoology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Silvio Hemmi
- Institute of Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- Corresponding author. Fax: +41 44 635 6811.
| |
Collapse
|
15
|
Purkayastha A, Su J, McGraw J, Ditty SE, Hadfield TL, Seto J, Russell KL, Tibbetts C, Seto D. Genomic and bioinformatics analyses of HAdV-4vac and HAdV-7vac, two human adenovirus (HAdV) strains that constituted original prophylaxis against HAdV-related acute respiratory disease, a reemerging epidemic disease. J Clin Microbiol 2005; 43:3083-94. [PMID: 16000418 PMCID: PMC1169186 DOI: 10.1128/jcm.43.7.3083-3094.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2004] [Revised: 03/21/2005] [Accepted: 04/06/2005] [Indexed: 11/20/2022] Open
Abstract
Vaccine strains of human adenovirus serotypes 4 and 7 (HAdV-4vac and HAdV-7vac) have been used successfully to prevent adenovirus-related acute respiratory disease outbreaks. The genomes of these two vaccine strains have been sequenced, annotated, and compared with their prototype equivalents with the goals of understanding their genomes for molecular diagnostics applications, vaccine redevelopment, and HAdV pathoepidemiology. These reference genomes are archived in GenBank as HAdV-4vac (35,994 bp; AY594254) and HAdV-7vac (35,240 bp; AY594256). Bioinformatics and comparative whole-genome analyses with their recently reported and archived prototype genomes reveal six mismatches and four insertions-deletions (indels) between the HAdV-4 prototype and vaccine strains, in contrast to the 611 mismatches and 130 indels between the HAdV-7 prototype and vaccine strains. Annotation reveals that the HAdV-4vac and HAdV-7vac genomes contain 51 and 50 coding units, respectively. Neither vaccine strain appears to be attenuated for virulence based on bioinformatics analyses. There is evidence of genome recombination, as the inverted terminal repeat of HAdV-4vac is initially identical to that of species C whereas the prototype is identical to species B1. These vaccine reference sequences yield unique genome signatures for molecular diagnostics. As a molecular forensics application, these references identify the circulating and problematic 1950s era field strains as the original HAdV-4 prototype and the Greider prototype, from which the vaccines are derived. Thus, they are useful for genomic comparisons to current epidemic and reemerging field strains, as well as leading to an understanding of pathoepidemiology among the human adenoviruses.
Collapse
Affiliation(s)
- Anjan Purkayastha
- Bioinformatics and Computational Biology Program, School of Computational Sciences, George Mason University, 10900 University Boulevard, MSN 5B3, Manassas, Virginia 20110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|