1
|
Mohan G, Choudhury A, Bhat J, Phartyal R, Lal R, Verma M. Human Riboviruses: A Comprehensive Study. J Mol Evol 2025; 93:11-37. [PMID: 39739017 DOI: 10.1007/s00239-024-10221-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/20/2024] [Indexed: 01/02/2025]
Abstract
The urgency to understand the complex interactions between viruses, their animal reservoirs, and human populations has been necessitated by the continuous spread of zoonotic viral diseases as evidenced in epidemics and pandemics throughout human history. Riboviruses are involved in some of the most prevalent human diseases, responsible for causing epidemics and pandemics. These viruses have an animal origin and have been known to cross the inter-species barrier time and time again, eventually infecting human beings. Their evolution has been a long road to harbour important adaptations for increasing fitness, mutability and virulence; a result of natural selection and mutation pressure, making these viruses highly infectious and difficult to counter. Accumulating favourable mutations in the course, they imitate the GC content and codon usage patterns of the host for maximising the chances of infection. A myriad of viral and host factors determine the fate of specific viral infections, which may include virus protein and host receptor compatibility, host restriction factors and others. Thus, understanding the biology, transmission and molecular mechanisms of Riboviruses is essential for the development of effective antiviral treatments, vaccine development and strategies to prevent and control viral infections. Keeping these aspects in mind, this review aims to provide a holistic approach towards understanding Riboviruses.
Collapse
Affiliation(s)
- Gauravya Mohan
- Department of Biological Sciences, Sri Venkateswara College, University of Delhi (South Campus), New Delhi, 110021, India
| | - Akangkha Choudhury
- Department of Biological Sciences, Sri Venkateswara College, University of Delhi (South Campus), New Delhi, 110021, India
| | - Jeevika Bhat
- Department of Biological Sciences, Sri Venkateswara College, University of Delhi (South Campus), New Delhi, 110021, India
| | - Rajendra Phartyal
- Department of Zoology, Sri Venkateswara College, University of Delhi (South Campus), New Delhi, 110021, India
| | - Rup Lal
- PhiXGen Private Limited, Gurugram, Haryana, 122001, India
| | - Mansi Verma
- Department of Zoology, Hansraj College, University of Delhi, Mahatma Hansraj Marg, Malkaganj, Delhi, 110007, India.
| |
Collapse
|
2
|
See SA, Bhassu S, Tang SS, Yusoff K. Newly developed mRNA vaccines induce immune responses in Litopenaeus vannamei shrimps during primary vaccination. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105264. [PMID: 39299363 DOI: 10.1016/j.dci.2024.105264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
White spot syndrome virus (WSSV) causes highly destructive infection in crustacean aquaculture, often resulting in 100% mortality within a week. However, there is lack of studies addressing the safety issues of WSSV vaccines in shrimps. In this study, WSSV VP28 mRNA vaccines were developed using codon deoptimization approach. These vaccines were administered to Litopenaeus vannamei shrimps at various dosages to access their safety and the shrimps' immune responses using quantification PCR (qPCR). The findings of this study indicate that the expression level of codon deoptimized VP28 mRNA vaccines are lower compared to the wild type VP28 vaccines, as observed through a comparison of bioinformatic predictions and experimental results. Additionally, the total haemocyte count (THC) in shrimps injected with codon deoptimized VP28 vaccine was higher than those injected with wild type VP28 vaccines. Furthermore, the expression of immune-related genes differed between codon deoptimized and wild type VP28 vaccines. In summary, the results suggest that 0.01 μg codon deoptimized VP28-D1 mRNA vaccine is the most promising WSSV mRNA vaccine, displaying low pathogenicity and expression in shrimps. To the best of our knowledge, this research represents the first attempt to attenuate WSSV using codon deoptimization method and development of a potential mRNA vaccine for shrimp purpose. The study addresses an important gap in shrimp vaccine research, offering potential solutions for WSSV control in shrimps.
Collapse
Affiliation(s)
- SiouNing Aileen See
- Animal Genetics and Genome Evolutionary Biology Laboratory, Division of Microbiology and Molecular Genetics, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Subha Bhassu
- Animal Genetics and Genome Evolutionary Biology Laboratory, Division of Microbiology and Molecular Genetics, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.
| | - Swee Seong Tang
- Microbial Biochemistry Laboratory, Division of Microbiology and Molecular Genetic, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Khatijah Yusoff
- Malaysia Genome Vaccine Institute, National Institute of Biotechnology Malaysia, Jalan Bangi, 43000, Kajang, Selangor, Malaysia
| |
Collapse
|
3
|
Jitobaom K, Sirihongthong T, Boonarkart C, Phakaratsakul S, Suptawiwat O, Auewarakul P. Human Schlafen 11 inhibits influenza A virus production. Virus Res 2023; 334:199162. [PMID: 37356582 PMCID: PMC10410578 DOI: 10.1016/j.virusres.2023.199162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Schlafen (SLFN) proteins are a subset of interferon-stimulated early response genes with antiviral properties. An antiviral mechanism of SLFN11 was previously demonstrated in human immunodeficiency virus type 1 (HIV-1)-infected cells, and it was shown that SLFN11 inhibited HIV-1 virus production in a codon usage-specific manner. The codon usage patterns of many viruses are vastly different from those of their hosts. The codon usage-specific inhibition of HIV-1 expression by SLFN11 suggests that SLFN11 may be able to inhibit other viruses with a suboptimal codon usage pattern. However, the effect of SLFN11 on the replication of influenza A virus (IAV) has never been reported. The induction of SLFN11 expression was observed upon IAV infection. The reduction of SLFN11 expression also promotes influenza virus replication. Moreover, we found that overexpression of SLFN11 could reduce the expression of a reporter gene with a viral codon usage pattern, and the inhibition of viral hemagglutinin (HA) gene was codon-specific as the expression of codon optimized HA was not affected. These results indicate that SLFN11 inhibits the influenza A virus in a codon-specific manner and that SLFN11 may contribute to innate defense against influenza A viruses.
Collapse
Affiliation(s)
- Kunlakanya Jitobaom
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand
| | - Thanyaporn Sirihongthong
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand
| | - Chompunuch Boonarkart
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand
| | - Supinya Phakaratsakul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand
| | - Ornpreya Suptawiwat
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Thailand
| | - Prasert Auewarakul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand.
| |
Collapse
|
4
|
Abbo SR, de Almeida JPP, Olmo RP, Balvers C, Griep JS, Linthout C, Koenraadt CJM, Silva BM, Fros JJ, Aguiar ERGR, Marois E, Pijlman GP, Marques JT. The virome of the invasive Asian bush mosquito Aedes japonicus in Europe. Virus Evol 2023; 9:vead041. [PMID: 37636319 PMCID: PMC10460169 DOI: 10.1093/ve/vead041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/05/2023] [Accepted: 06/30/2023] [Indexed: 08/29/2023] Open
Abstract
The Asian bush mosquito Aedes japonicus is rapidly invading North America and Europe. Due to its potential to transmit multiple pathogenic arthropod-borne (arbo)viruses including Zika virus, West Nile virus, and chikungunya virus, it is important to understand the biology of this vector mosquito in more detail. In addition to arboviruses, mosquitoes can also carry insect-specific viruses that are receiving increasing attention due to their potential effects on host physiology and arbovirus transmission. In this study, we characterized the collection of viruses, referred to as the virome, circulating in Ae. japonicus populations in the Netherlands and France. Applying a small RNA-based metagenomic approach to Ae. japonicus, we uncovered a distinct group of viruses present in samples from both the Netherlands and France. These included one known virus, Ae. japonicus narnavirus 1 (AejapNV1), and three new virus species that we named Ae. japonicus totivirus 1 (AejapTV1), Ae. japonicus anphevirus 1 (AejapAV1) and Ae. japonicus bunyavirus 1 (AejapBV1). We also discovered sequences that were presumably derived from two additional novel viruses: Ae. japonicus bunyavirus 2 (AejapBV2) and Ae. japonicus rhabdovirus 1 (AejapRV1). All six viruses induced strong RNA interference responses, including the production of twenty-one nucleotide-sized small interfering RNAs, a signature of active replication in the host. Notably, AejapBV1 and AejapBV2 belong to different viral families; however, no RNA-dependent RNA polymerase sequence has been found for AejapBV2. Intriguingly, our small RNA-based approach identified an ∼1-kb long ambigrammatic RNA that is associated with AejapNV1 as a secondary segment but showed no similarity to any sequence in public databases. We confirmed the presence of AejapNV1 primary and secondary segments, AejapTV1, AejapAV1, and AejapBV1 by reverse transcriptase polymerase chain reaction (PCR) in wild-caught Ae. japonicus mosquitoes. AejapNV1 and AejapTV1 were found at high prevalence (87-100 per cent) in adult females, adult males, and larvae. Using a small RNA-based, sequence-independent metagenomic strategy, we uncovered a conserved and prevalent virome among Ae. japonicus mosquito populations. The high prevalence of AejapNV1 and AejapTV1 across all tested mosquito life stages suggests that these viruses are intimately associated with Ae. japonicus.
Collapse
Affiliation(s)
- Sandra R Abbo
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen 6708 PB, The Netherlands
| | - João P P de Almeida
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte 31270-901, Brazil
| | - Roenick P Olmo
- Insect Models of Innate Immunity, Université de Strasbourg, CNRS UPR9022, INSERM U1257, 2 Allee Konrad Roentgen, Strasbourg 67000, France
| | - Carlijn Balvers
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen 6708 PB, The Netherlands
- Laboratory of Entomology, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen 6708 PB, The Netherlands
| | - Jet S Griep
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen 6708 PB, The Netherlands
- Laboratory of Entomology, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen 6708 PB, The Netherlands
| | - Charlotte Linthout
- Laboratory of Entomology, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen 6708 PB, The Netherlands
| | - Constantianus J M Koenraadt
- Laboratory of Entomology, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen 6708 PB, The Netherlands
| | - Bruno M Silva
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte 31270-901, Brazil
| | - Jelke J Fros
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen 6708 PB, The Netherlands
| | - Eric R G R Aguiar
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte 31270-901, Brazil
- Department of Biological Science, Center of Biotechnology and Genetics, State University of Santa Cruz, Rod. Jorge Amado Km 16, Ilhéus 45662-900, Brazil
| | - Eric Marois
- Insect Models of Innate Immunity, Université de Strasbourg, CNRS UPR9022, INSERM U1257, 2 Allee Konrad Roentgen, Strasbourg 67000, France
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen 6708 PB, The Netherlands
| | - João T Marques
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte 31270-901, Brazil
- Insect Models of Innate Immunity, Université de Strasbourg, CNRS UPR9022, INSERM U1257, 2 Allee Konrad Roentgen, Strasbourg 67000, France
| |
Collapse
|
5
|
Wang H, Liu S, Lv Y, Wei W. Codon usage bias of Venezuelan equine encephalitis virus and its host adaption. Virus Res 2023; 328:199081. [PMID: 36854361 DOI: 10.1016/j.virusres.2023.199081] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/14/2022] [Accepted: 02/24/2023] [Indexed: 03/02/2023]
Abstract
Venezuelan equine encephalitis virus (VEEV) is an emerging zoonotic virus in the alphavirus genus. It can be transmitted to humans due to spillover from equid-mosquito cycles. The symptoms caused by VEEV include fever, headache, myalgia, nausea, and vomiting. It can also cause encephalitis in severe cases. The evolutionary features of VEEV are largely unknown. In this study, we comprehensively analyzed the codon usage pattern of VEEV by computing a variety of indicators, such as effective number of codons (ENc), codon adaptation index (CAI), relative synonymous codon usage (RSCU), on 130 VEEV coding sequences retrieved from GenBank. The results showed that the codon usage bias of VEEV is relatively low. ENc-GC3s plot, neutrality plot, and CAI-ENc correlation analyses supported that translational selection plays an important role in shaping the codon usage pattern of VEEV whereas the mutation pressure has a minor influence. Analysis of RSCU values showed that most of the preferred codons in VEEV are C/G-ended. Analysis of dinucleotide composition found that all CG- and UA-containing codons are not preferentially used. Phylogenetic analysis showed that VEEV isolates can be clustered into three genera and evolutionary force affects the codon usage pattern. Furthermore, a correspondence analysis (COA) showed that aromaticity and hydrophobicity as well as geographical distribution also have certain effects on the codon usage variation of VEEV, suggesting the possible involvement of translational selection. Overall, the codon usage of VEEV is comparatively slight and translational selection might be the main factor that shapes the codon usage pattern of VEEV. This study will promote our understanding about the evolution of VEEV and its host adaption, and might provide some clues for preventing the cross-species transmission of VEEV.
Collapse
Affiliation(s)
- Hongju Wang
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Shijie Liu
- School of Clinical Medicine, Henan University, Kaifeng, China
| | - Yao Lv
- School of Clinical Medicine, Henan University, Kaifeng, China
| | - Wenqiang Wei
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China.
| |
Collapse
|
6
|
Xiong B, Wang T, Huang S, Liao L, Wang X, Deng H, Zhang M, He J, Sun G, He S, Wang Z. Analysis of Codon Usage Bias in Xyloglucan Endotransglycosylase (XET) Genes. Int J Mol Sci 2023; 24:ijms24076108. [PMID: 37047091 PMCID: PMC10094191 DOI: 10.3390/ijms24076108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Xyloglucan endotransglycosylase (XET) genes are widely distributed in most plants, but the codon usage bias of XET genes has remained uncharacterized. Thus, we analyzed the codon usage bias using 4500 codons of 20 XET genes to elucidate the genetic and evolutionary patterns. Phylogenetic and hierarchical cluster analyses revealed that the 20 XET genes belonged to two groups. The closer the genetic distance, the more similar the codon usage preference. The codon usage bias of most XET genes was weak, but there was also some codon usage bias. AGA, AGG, AUC, and GUG were the top four codons (RSCU > 1.5) in the 20 XET genes. CitXET had a stronger codon usage bias, and there were eight optimal codons of CitXET (i.e., AGA, AUU, UCU, CUU, CCA, GCU, GUU, and AAA). The RSCU values underwent a correspondence analysis. The two main factors affecting codon usage bias (i.e., Axes 1 and 2) accounted for 54.8% and 17.6% of the total variation, respectively. Multiple correspondence analysis revealed that XET genes were widely distributed, with Group 1 genes being closer to Axis 1 than Group 2 genes, which were closer to Axis 2. Codons with A/U at the third codon position were distributed closer to Axis 1 than codons with G/C at the third codon position. PgXET, ZmXET, VlXET, VrXET, and PcXET were biased toward codons ending with G/C. In contrast, CitXET, DpXET, and BrpXET were strongly biased toward codons ending with A/U, indicating that these XET genes have a strong codon usage bias. Translational selection and base composition (especially A and U at the third codon position), followed by mutation pressure and natural selection, may be the most important factors affecting codon usage of 20 XET genes. These results may be useful in clarifying the codon usage bias of XET genes and the relevant evolutionary characteristics.
Collapse
Affiliation(s)
- Bo Xiong
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Tie Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Shengjia Huang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Ling Liao
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xun Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Honghong Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingfei Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiaxian He
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Guochao Sun
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Siya He
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhihui Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
7
|
Decoding molecular factors shaping human angiotensin converting enzyme 2 receptor usage by spike glycoprotein in lineage B beta-coronaviruses. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166514. [PMID: 35932890 PMCID: PMC9349031 DOI: 10.1016/j.bbadis.2022.166514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022]
Abstract
Acquiring the human ACE2 receptor usage trait enables the coronaviruses to spill over to humans. However, the origin of the ACE2 usage trait in coronaviruses is poorly understood. Using a multi-disciplinary approach combining evolutionary bioinformatics and molecular dynamics simulation, we decode the principal driving force behind human ACE2 receptor recognition in coronaviruses. Genomic content, evolutionary divergence, and codon usage bias analysis reveal that SARS-CoV2 is evolutionarily divergent from other human ACE2-user CoVs, indicating that SARS-CoV2 originates from a different lineage. Sequence analysis shows that all the human ACE2-user CoVs contain two insertions in the receptor-binding motif (RBM) that directly interact with ACE2. However, the insertion sequences in SARS-CoV2 are divergent from other ACE2-user CoVs, implicating their different recombination origins. The potential of mean force calculations reveals that the high binding affinity of SARS-CoV2 RBD to human ACE2 is primarily attributed to its ability to form a higher number of hydrogen bonds than the other ACE2-user CoVs. The adaptive branch-site random effects likelihood method identifies positive selection bias across the ACE2 user CoVs lineages. Recombination and selection forces shape the spike evolution in human ACE2-using beta-CoVs to optimize the interfacial hydrogen bonds between RBD and ACE2. However, these evolutionary forces work within the constraints of nucleotide composition, ensuring optimum codon adaptation of the spike (S) gene within the host cell.
Collapse
|
8
|
Chen MH, Abernathy E, Icenogle JP, Perelygina LM. Improved diagnostic and multiplex RT-qPCR for detecting rubella viral RNA. J Virol Methods 2022; 306:114555. [PMID: 35654258 DOI: 10.1016/j.jviromet.2022.114555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/19/2022] [Accepted: 05/27/2022] [Indexed: 11/18/2022]
Abstract
An examination of the nucleic acid sequence alignment of 48 full-length rubella virus genomes revealed that the 5' terminus of the genome is more conserved than the commonly used detection windows for rubella virus RNA located in the E1 protein coding region, suggesting that the 5' terminus could be a target for improving detection of all rubella virus genotypes. Two candidate primer sets were tested and the window between nucleotides (nts) 98 and 251 was found to have the greatest analytical sensitivity for detection of different genotypes. The new method had a limit of detection of four copies of rubella RNA per reaction with high specificity. The average coefficient variation of Ct was 2.2%. Concordance between the new method and currently used method, based on testing 251 clinical specimens collected from a rubella outbreak, was 99.4%. The assay was further improved upon by the incorporation of detection of both rubella virus RNA and mRNA from a cellular reference gene in a multiplex format. The multiplex format did not reduce the sensitivity or the reproducibility of rubella RNA detection and, of 60 specimens tested, the concordance between the single target and multiplex assays was 85.0%. To assess the utility of the multiplex assay for molecular surveillance, 62 rubella IgM positive serum samples from a rubella outbreak were tested, and eleven tested positive using the multiplex method while none were positive using the method targeting E1. These results show that the assay based on the new detection window near the 5' terminus of the genome can improve the detection of rubella virus for the purpose of molecular surveillance and case confirmation, with the added benefit of improved efficiency due to multiplexing.
Collapse
Affiliation(s)
- Min-Hsin Chen
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | - Emily Abernathy
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Joseph P Icenogle
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Ludmila M Perelygina
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| |
Collapse
|
9
|
Zhao S, Cui H, Hu Z, Du L, Ran X, Wen X. Senecavirus A Enhances Its Adaptive Evolution via Synonymous Codon Bias Evolution. Viruses 2022; 14:v14051055. [PMID: 35632797 PMCID: PMC9146685 DOI: 10.3390/v14051055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 12/10/2022] Open
Abstract
Synonymous codon bias in the viral genome affects protein translation and gene expression, suggesting that the synonymous codon mutant plays an essential role in influencing virulence and evolution. However, how the recessive mutant form contributes to virus evolvability remains elusive. In this paper, we characterize how the Senecavirus A (SVA), a picornavirus, utilizes synonymous codon mutations to influence its evolution, resulting in the adaptive evolution of the virus to adverse environments. The phylogenetic tree and Median-joining (MJ)-Network of these SVA lineages worldwide were constructed to reveal SVA three-stage genetic development clusters. Furthermore, we analyzed the codon bias of the SVA genome of selected strains and found that SVA could increase the GC content of the third base of some amino acid synonymous codons to enhance the viral RNA adaptive evolution. Our results highlight the impact of recessive mutation of virus codon bias on the evolution of the SVA and uncover a previously underappreciated evolutionary strategy for SVA. They also underline the importance of understanding the genetic evolution of SVA and how SVA adapts to the adverse effects of external stress.
Collapse
Affiliation(s)
- Simiao Zhao
- College of Animal Science and Technology, Hainan University, Haikou 570228, China; (S.Z.); (H.C.); (Z.H.); (L.D.)
| | - Huiqi Cui
- College of Animal Science and Technology, Hainan University, Haikou 570228, China; (S.Z.); (H.C.); (Z.H.); (L.D.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhenru Hu
- College of Animal Science and Technology, Hainan University, Haikou 570228, China; (S.Z.); (H.C.); (Z.H.); (L.D.)
| | - Li Du
- College of Animal Science and Technology, Hainan University, Haikou 570228, China; (S.Z.); (H.C.); (Z.H.); (L.D.)
| | - Xuhua Ran
- College of Animal Science and Technology, Hainan University, Haikou 570228, China; (S.Z.); (H.C.); (Z.H.); (L.D.)
- Correspondence: (X.R.); (X.W.)
| | - Xiaobo Wen
- College of Animal Science and Technology, Hainan University, Haikou 570228, China; (S.Z.); (H.C.); (Z.H.); (L.D.)
- Correspondence: (X.R.); (X.W.)
| |
Collapse
|
10
|
Shafat Z, Ahmed A, Parvez MK, Parveen S. Analysis of codon usage patterns in open reading frame 4 of hepatitis E viruses. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022; 11:65. [PMID: 35573872 PMCID: PMC9086417 DOI: 10.1186/s43088-022-00244-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 04/19/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Hepatitis E virus (HEV) is a member of the family Hepeviridae and causes acute HEV infections resulting in thousands of deaths worldwide. The zoonotic nature of HEV in addition to its tendency from human to human transmission has led scientists across the globe to work on its different aspects. HEV also accounts for about 30% mortality rates in case of pregnant women. The genome of HEV is organized into three open reading frames (ORFs): ORF1 ORF2 and ORF3. A reading frame encoded protein ORF4 has recently been discovered which is exclusive to GT 1 isolates of HEV. The ORF4 is suggested to play crucial role in pregnancy-associated pathology and enhanced replication. Though studies have documented the ORF4's importance, the genetic features of ORF4 protein genes in terms of compositional patterns have not been elucidated. As codon usage performs critical role in establishment of the host-pathogen relationship, therefore, the present study reports the codon usage analysis (based on nucleotide sequences of HEV ORF4 available in the public database) in three hosts along with the factors influencing the codon usage patterns of the protein genes of ORF4 of HEV. RESULTS The nucleotide composition analysis indicated that ORF4 protein genes showed overrepresentation of C nucleotide and while A nucleotide was the least-represented, with random distribution of G and T(U) nucleotides. The relative synonymous codon usage (RSCU) analysis revealed biasness toward C/G-ended codons (over U/A) in all three natural HEV-hosts (human, rat and ferret). It was observed that all the ORF4 genes were richly endowed with GC content. Further, our results showed the occurrence of both coincidence and antagonistic codon usage patterns among HEV-hosts. The findings further emphasized that both mutational and selection forces influenced the codon usage patterns of ORF4 protein genes. CONCLUSIONS To the best of our knowledge, this is first bioinformatics study evaluating codon usage patterns in HEV ORF4 protein genes. The findings from this study are expected to increase our understanding toward significant factors involved in evolutionary changes of ORF4. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1186/s43088-022-00244-w.
Collapse
Affiliation(s)
- Zoya Shafat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Anwar Ahmed
- Centre of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad K. Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shama Parveen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| |
Collapse
|
11
|
Shafat Z, Ahmed A, Parvez MK, Parveen S. Decoding the codon usage patterns in Y-domain region of hepatitis E viruses. J Genet Eng Biotechnol 2022; 20:56. [PMID: 35404024 PMCID: PMC9001762 DOI: 10.1186/s43141-022-00319-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 02/17/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND Hepatitis E virus (HEV) is a positive-sense RNA virus belonging to the family Hepeviridae. The genome of HEV is organized into three open-reading frames (ORFs): ORF1, ORF2, and ORF3. The ORF1 non-structural Y-domain region (YDR) has been demonstrated to play an important role in the HEV pathogenesis. The nucleotide composition, synonymous codon usage bias in conjunction with other factors influencing the viral YDR genes of HEV have not been studied. Codon usage represents a significant mechanism in establishing the host-pathogen relationship. The present study for the first time elucidates the detailed codon usage patterns of YDR among HEV and HEV-hosts (Human, Rabbit, Mongoose, Pig, Wild boar, Camel, Monkey). RESULTS The overall nucleotide composition revealed the abundance of C and U nucleotides in YDR genomes. The relative synonymous codon usage (RSCU) analysis indicated biasness towards C and U over A and G ended codons in HEV across all hosts. Codon frequency comparative analyses among HEV-hosts showed both similarities and discrepancies in usage of preferred codons encoding amino acids, which revealed that HEV codon preference neither completely differed nor completely showed similarity with its hosts. Thus, our results clearly indicated that the synonymous codon usage of HEV is a mixture of the two types of codon usage: coincidence and antagonism. Mutation pressure from virus and natural selection from host seems to be accountable for shaping the codon usage patterns in YDR. The study emphasised that the influence of compositional constraints, codon usage biasness, mutational alongside the selective forces were reflected in the occurrence of YDR codon usage patterns. CONCLUSIONS Our study is the first in its kind to have reported the analysis of codon usage patterns on a total of seven different natural HEV hosts. Therefore, knowledge of preferred codons obtained from our study will not only augment our understanding towards molecular evolution but is also envisaged to provide insight into the efficient viral expression, viral adaptation, and host effects on the HEV YDR codon usage.
Collapse
Affiliation(s)
- Zoya Shafat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Anwar Ahmed
- Centre of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad K. Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shama Parveen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
12
|
Gaunt ER, Digard P. Compositional biases in RNA viruses: Causes, consequences and applications. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1679. [PMID: 34155814 PMCID: PMC8420353 DOI: 10.1002/wrna.1679] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 01/05/2023]
Abstract
If each of the four nucleotides were represented equally in the genomes of viruses and the hosts they infect, each base would occur at a frequency of 25%. However, this is not observed in nature. Similarly, the order of nucleotides is not random (e.g., in the human genome, guanine follows cytosine at a frequency of ~0.0125, or a quarter the number of times predicted by random representation). Codon usage and codon order are also nonrandom. Furthermore, nucleotide and codon biases vary between species. Such biases have various drivers, including cellular proteins that recognize specific patterns in nucleic acids, that once triggered, induce mutations or invoke intrinsic or innate immune responses. In this review we examine the types of compositional biases identified in viral genomes and current understanding of the evolutionary mechanisms underpinning these trends. Finally, we consider the potential for large scale synonymous recoding strategies to engineer RNA virus vaccines, including those with pandemic potential, such as influenza A virus and Severe Acute Respiratory Syndrome Coronavirus Virus 2. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Evolution and Genomics > Computational Analyses of RNA RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition.
Collapse
Affiliation(s)
- Eleanor R. Gaunt
- Department of Infection and ImmunityThe Roslin Institute, The University of EdinburghEdinburghUK
| | - Paul Digard
- Department of Infection and ImmunityThe Roslin Institute, The University of EdinburghEdinburghUK
| |
Collapse
|
13
|
Froggatt HM, Burke KN, Chaparian RR, Miranda HA, Zhu X, Chambers BS, Heaton NS. Influenza A virus segments five and six can harbor artificial introns allowing expanded coding capacity. PLoS Pathog 2021; 17:e1009951. [PMID: 34570829 PMCID: PMC8496794 DOI: 10.1371/journal.ppat.1009951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 10/07/2021] [Accepted: 09/08/2021] [Indexed: 12/30/2022] Open
Abstract
Influenza A viruses encode their genomes across eight, negative sense RNA segments. The six largest segments produce mRNA transcripts that do not generally splice; however, the two smallest segments are actively spliced to produce the essential viral proteins NEP and M2. Thus, viral utilization of RNA splicing effectively expands the viral coding capacity without increasing the number of genomic segments. As a first step towards understanding why splicing is not more broadly utilized across genomic segments, we designed and inserted an artificial intron into the normally nonsplicing NA segment. This insertion was tolerated and, although viral mRNAs were incompletely spliced, we observed only minor effects on viral fitness. To take advantage of the unspliced viral RNAs, we encoded a reporter luciferase gene in frame with the viral ORF such that when the intron was not removed the reporter protein would be produced. This approach, which we also show can be applied to the NP encoding segment and in different viral genetic backgrounds, led to high levels of reporter protein expression with minimal effects on the kinetics of viral replication or the ability to cause disease in experimentally infected animals. These data together show that the influenza viral genome is more tolerant of splicing than previously appreciated and this knowledge can be leveraged to develop viral genetic platforms with utility for biotechnology applications. Unlike most host mRNAs, some viral mRNAs encode multiple discrete, functional proteins. One method influenza A viruses use to increase the protein products from two of their eight RNA genome segments is splicing. Splicing requires host machinery to remove part of the viral mRNA, the intron, to generate a different mRNA product. Although only certain influenza viral segments naturally splice, we were interested in whether additional segments could splice to produce multiple proteins. We inserted artificial introns harboring reporter genes into otherwise nonsplicing genomic segments of an H1N1 influenza A virus and found that this modification was well tolerated by the virus. We further demonstrated that an unrelated H3N2 influenza A virus could similarly support splicing and express a reporter protein from an artificial intron. These findings have implications for our understanding of how viruses expand their coding capacity with a limited genome. Additionally, encoding reporter proteins in spliced intronic sequences also represents a new method of generating reporter viruses requiring limited manipulation of the viral RNA.
Collapse
Affiliation(s)
- Heather M. Froggatt
- Department of Molecular Genetics and Microbiology Duke University School of Medicine Durham, North Carolina, United States of America
| | - Kaitlyn N. Burke
- Department of Molecular Genetics and Microbiology Duke University School of Medicine Durham, North Carolina, United States of America
| | - Ryan R. Chaparian
- Department of Molecular Genetics and Microbiology Duke University School of Medicine Durham, North Carolina, United States of America
| | - Hector A. Miranda
- Department of Molecular Genetics and Microbiology Duke University School of Medicine Durham, North Carolina, United States of America
| | - Xinyu Zhu
- Department of Molecular Genetics and Microbiology Duke University School of Medicine Durham, North Carolina, United States of America
| | - Benjamin S. Chambers
- Department of Molecular Genetics and Microbiology Duke University School of Medicine Durham, North Carolina, United States of America
| | - Nicholas S. Heaton
- Department of Molecular Genetics and Microbiology Duke University School of Medicine Durham, North Carolina, United States of America
- Duke Human Vaccine Institute Duke University School of Medicine Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
14
|
Das JK, Roy S. Comparative analysis of human coronaviruses focusing on nucleotide variability and synonymous codon usage patterns. Genomics 2021; 113:2177-2188. [PMID: 34019999 PMCID: PMC8131179 DOI: 10.1016/j.ygeno.2021.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 05/09/2021] [Accepted: 05/14/2021] [Indexed: 01/04/2023]
Abstract
The prevailing COVID-19 pandemic has drawn the attention of the scientific community to study the evolutionary origin of Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2). This study is a comprehensive quantitative analysis of the protein-coding sequences of seven human coronaviruses (HCoVs) to decipher the nucleotide sequence variability and codon usage patterns. It is essential to understand the survival ability of the viruses, their adaptation to hosts, and their evolution. The current analysis revealed a high abundance of the relative dinucleotide (odds ratio), GC and CT pairs in the first and last two codon positions, respectively, as well as a low abundance of the CG pair in the last two positions of the codon, which might be related to the evolution of the viruses. A remarkable level of variability of GC content in the third position of the codon among the seven coronaviruses was observed. Codons with high RSCU values are primarily from the aliphatic and hydroxyl amino acid groups, and codons with low RSCU values belong to the aliphatic, cyclic, positively charged, and sulfur-containing amino acid groups. In order to elucidate the evolutionary processes of the seven coronaviruses, a phylogenetic tree (dendrogram) was constructed based on the RSCU scores of the codons. The severe and mild categories CoVs were positioned in different clades. A comparative phylogenetic study with other coronaviruses depicted that SARS-CoV-2 is close to the CoV isolated from pangolins (Manis javanica, Pangolin-CoV) and cats (Felis catus, SARS(r)-CoV). Further analysis of the effective number of codon (ENC) usage bias showed a relatively higher bias for SARS-CoV and MERS-CoV compared to SARS-CoV-2. The ENC plot against GC3 suggested that the mutational bias might have a role in determining the codon usage variation among candidate viruses. A codon adaptability study on a few human host parasites (from different kingdoms), including CoVs, showed a diverse adaptability pattern. SARS-CoV-2 and SARS-CoV exhibit relatively lower but similar codon adaptability compared to MERS-CoV.
Collapse
Affiliation(s)
- Jayanta Kumar Das
- Department of Pediatrics, Johns Hopkins University School of Medicine, MD, USA.
| | - Swarup Roy
- Network Reconstruction & Analysis (NetRA) Lab, Department of Computer Applications, Sikkim University, Gangtok, India.
| |
Collapse
|
15
|
Simón D, Cristina J, Musto H. Nucleotide Composition and Codon Usage Across Viruses and Their Respective Hosts. Front Microbiol 2021; 12:646300. [PMID: 34262534 PMCID: PMC8274242 DOI: 10.3389/fmicb.2021.646300] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 06/04/2021] [Indexed: 11/13/2022] Open
Abstract
The genetic material of the three domains of life (Bacteria, Archaea, and Eukaryota) is always double-stranded DNA, and their GC content (molar content of guanine plus cytosine) varies between ≈ 13% and ≈ 75%. Nucleotide composition is the simplest way of characterizing genomes. Despite this simplicity, it has several implications. Indeed, it is the main factor that determines, among other features, dinucleotide frequencies, repeated short DNA sequences, and codon and amino acid usage. Which forces drive this strong variation is still a matter of controversy. For rather obvious reasons, most of the studies concerning this huge variation and its consequences, have been done in free-living organisms. However, no recent comprehensive study of all known viruses has been done (that is, concerning all available sequences). Viruses, by far the most abundant biological entities on Earth, are the causative agents of many diseases. An overview of these entities is important also because their genetic material is not always double-stranded DNA: indeed, certain viruses have as genetic material single-stranded DNA, double-stranded RNA, single-stranded RNA, and/or retro-transcribing. Therefore, one may wonder if what we have learned about the evolution of GC content and its implications in prokaryotes and eukaryotes also applies to viruses. In this contribution, we attempt to describe compositional properties of ∼ 10,000 viral species: base composition (globally and according to Baltimore classification), correlations among non-coding regions and the three codon positions, and the relationship of the nucleotide frequencies and codon usage of viruses with the same feature of their hosts. This allowed us to determine how the base composition of phages strongly correlate with the value of their respective hosts, while eukaryotic viruses do not (with fungi and protists as exceptions). Finally, we discuss some of these results concerning codon usage: reinforcing previous results, we found that phages and hosts exhibit moderate to high correlations, while for eukaryotes and their viruses the correlations are weak or do not exist.
Collapse
Affiliation(s)
- Diego Simón
- Laboratorio de Genómica Evolutiva, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.,Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la Republica, Montevideo, Uruguay.,Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Juan Cristina
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la Republica, Montevideo, Uruguay
| | - Héctor Musto
- Laboratorio de Genómica Evolutiva, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
16
|
Abstract
Rubella virus (RUBV), a rubivirus, is an airborne human pathogen that generally causes mild measles-like symptoms in children or adults. However, RUBV infection of pregnant women can result in miscarriage or congenital rubella syndrome (CRS), a collection of long-term birth defects including incomplete organ development and mental retardation. Worldwide vaccination campaigns have significantly reduced the number of RUBV infections, but RUBV continues to be a problem in countries with low vaccination coverage. Further, the recent discovery of pathogenic rubiviruses in other mammals emphasizes the spillover potential of rubella-related viruses to humans. In the last decade, our understanding of RUBV has been significantly increased by virological, biochemical, and structural studies, providing a platform to begin understanding the life cycle of RUBV at the molecular level. This review concentrates on recent work on RUBV, focusing on the virion, its structural components, and its entry, fusion, and assembly mechanisms. Important features of RUBV are compared with those of viruses from other families. We also use comparative genomics, manual curation, and protein homology modeling to highlight distinct features of RUBV that are evolutionarily conserved in the non-human rubiviruses. Since rubella-like viruses may potentially have higher pathogenicity and transmissibility to humans, we also propose a framework for utilizing RUBV as a model to study its more pathogenic cousins.
Collapse
|
17
|
Phylogenomics Analysis of SARS-CoV2 Genomes Reveals Distinct Selection Pressure on Different Viral Strains. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5746461. [PMID: 33299872 PMCID: PMC7703455 DOI: 10.1155/2020/5746461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/21/2020] [Accepted: 11/11/2020] [Indexed: 11/18/2022]
Abstract
We are witnessing a tremendous outbreak of a novel coronavirus (SARS-CoV2) across the globe. Upon exposure to different population and changing environment, the viral strain might experience different mutational bias that leads to genetic diversity among the viral population. Also, the diversification can be influenced by distinct selection pressure on different viral genomes. We have carried out a comparative genomic analysis of 82 SARS-CoV2 genomes. We have evaluated their evolutionary divergence, substitution pattern, and rates. Viral genomes under distinct selection pressure have been identified. Sites that experience strong selection pressure also have been identified. Our result shows that the translational preference of a few codons is strongly correlated with the mutational bias imposed by genome compositional constraint and influenced by natural selection. Few genomes are evolving with a higher mutational rate with a distinct signature of nucleotide substitution in comparison to others. Four viral strains are under the effect of purifying selection, while nine SARS-CoV2 genomes are under strong positive selection bias. Site analysis indicates a strong positive selection pressure on two codon positions at 3606th and 8439th positions. Our study elucidates adaptation of few SARS-CoV2 viral strain during the outbreak shaping by natural selection and genomic compositional constraints.
Collapse
|
18
|
Dlamini GS, Muller SJ, Meraba RL, Young RA, Mashiyane J, Chiwewe T, Mapiye DS. Classification of COVID-19 and Other Pathogenic Sequences: A Dinucleotide Frequency and Machine Learning Approach. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2020; 8:195263-195273. [PMID: 34976561 PMCID: PMC8675546 DOI: 10.1109/access.2020.3031387] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 05/08/2023]
Abstract
The world is grappling with the COVID-19 pandemic caused by the 2019 novel SARS-CoV-2. To better understand this novel virus and its relationship with other pathogens, new methods for analyzing the genome are required. In this study, intrinsic dinucleotide genomic signatures were analyzed for whole genome sequence data of eight pathogenic species, including SARS-CoV-2. The genome sequences were transformed into dinucleotide relative frequencies and classified using the extreme gradient boosting (XGBoost) model. The classification models were trained to a) distinguish between the sequences of all eight species and b) distinguish between sequences of SARS-CoV-2 that originate from different geographic regions. Our method attained 100% in all performance metrics and for all tasks in the eight-species classification problem. Moreover, the models achieved 67% balanced accuracy for the task of classifying the SARS-CoV-2 sequences into the six continental regions and achieved 86% balanced accuracy for the task of classifying SARS-CoV-2 samples as either originating from Asia or not. Analysis of the dinucleotide genomic profiles of the eight species revealed a similarity between the SARS-CoV-2 and MERS-CoV viral sequences. Further analysis of SARS-CoV-2 viral sequences from the six continents revealed that samples from Oceania had the highest frequency of TT dinucleotides as well as the lowest CG frequency compared to the other continents. The dinucleotide signatures of AC, AG,CA, CT, GA, GT, TC, and TG were well conserved across most genomes, while the frequencies of other dinucleotide signatures varied considerably. Altogether, the results from this study demonstrate the utility of dinucleotide relative frequencies for discriminating and identifying similar species.
Collapse
|
19
|
Baha S, Behloul N, Liu Z, Wei W, Shi R, Meng J. Comprehensive analysis of genetic and evolutionary features of the hepatitis E virus. BMC Genomics 2019; 20:790. [PMID: 31664890 PMCID: PMC6820953 DOI: 10.1186/s12864-019-6100-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 09/12/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The hepatitis E virus (HEV) is the causative pathogen of hepatitis E, a global public health concern. HEV comprises 8 genotypes with a wide host range and geographic distribution. This study aims to determine the genetic factors influencing the molecular adaptive changes of HEV open reading frames (ORFs) and estimate the HEV origin and evolutionary history. RESULTS Sequences of HEV strains isolated between 1982 and 2017 were retrieved and multiple analyses were performed to determine overall codon usage patterns, effects of natural selection and/or mutation pressure and host influence on the evolution of HEV ORFs. Besides, Bayesian Coalescent Markov Chain Monte Carlo (MCMC) Analysis was performed to estimate the spatial-temporal evolution of HEV. The results indicated an A/C nucleotide bias and ORF-dependent codon usage bias affected mainly by natural selection. The adaptation of HEV ORFs to their hosts was also ORF-dependent, with ORF1 and ORF2 sharing an almost similar adaptation profile to the different hosts. The discriminant analysis based on the adaptation index suggested that ORF1 and ORF3 could play a pivotal role in viral host tropism. CONCLUSION In this study, we estimate that the common ancestor of the modern HEV strains emerged ~ 6000 years ago, in the period following the domestication of pigs. Then, natural selection played the major role in the evolution of the codon usage of HEV ORFs. The significant adaptation of ORF1 of genotype 1 to humans, makes ORF1 an evolutionary indicator of HEV host speciation, and could explain the epidemic character of genotype 1 strains in humans.
Collapse
Affiliation(s)
- Sarra Baha
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Jiangsu Province, China
| | - Nouredine Behloul
- College of Basic Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Zhenzhen Liu
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Jiangsu Province, China
| | - Wenjuan Wei
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Jiangsu Province, China
| | - Ruihua Shi
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Jiangsu Province, China
| | - Jihong Meng
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Jiangsu Province, China
- College of Basic Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
20
|
Deka H, Nath D, Uddin A, Chakraborty S. DNA compositional dynamics and codon usage patterns of M1 and M2 matrix protein genes in influenza A virus. INFECTION GENETICS AND EVOLUTION 2018; 67:7-16. [PMID: 30367980 DOI: 10.1016/j.meegid.2018.10.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/11/2018] [Accepted: 10/23/2018] [Indexed: 11/30/2022]
Abstract
Influenza A virus subtype H3N2 has been a serious health issue across the globe with approximately 36 thousand annual casualties in the United States of America only. Co-circulation in avian, swine and human hosts has led to frequent mutations in the virus genome, due to which development of successful antivirals against the virus has become a formidable challenge. Recently, focussed research is being carried out targeting the matrix proteins of this strain as vaccine candidates. This study is carried out to unravel the key features of the genes encoding the matrix proteins that manoeuvre the codon usage profile in the H3N2 strains. The findings reveal differential codon choice for both matrix protein 1 and matrix protein 2. The overall codon usage bias is less pronounced in both the datasets which is evident from higher value of effective number of codons (>55). Comparison of the codon usage for both the genes under study with that of humans revealed that the viral codon usage is not fully optimized for the human host conditions. Both the genes enrolled in the study showed variation which was reflected in almost all the indices used for codon usage studies. Neutrality analysis revealed a weak role of mutation pressure while selection was the major contributor towards codon usage.
Collapse
Affiliation(s)
- Himangshu Deka
- Department of Biotechnology, Assam University, Silchar 788011, Assam, India
| | - Durbba Nath
- Department of Biotechnology, Assam University, Silchar 788011, Assam, India
| | - Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Hailakandi 788150, Assam, India.
| | - Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar 788011, Assam, India.
| |
Collapse
|
21
|
Genome polarity of RNA viruses reflects the different evolutionary pressures shaping codon usage. Arch Virol 2018; 163:2883-2888. [PMID: 29987380 DOI: 10.1007/s00705-018-3930-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/10/2018] [Indexed: 10/28/2022]
Abstract
RNA viruses are classified by their genome polarity and replication strategies. Nucleotide composition and codon usage differ among virus groups, for instance positive-sense RNA (+ssRNA) viruses have higher GC-content than the other RNA virus groups. Codon usage of +ssRNA viruses is closer to humans showing significantly higher codon adaptation index (CAI) than those of negative-sense RNA (-ssRNA), double stranded RNA (dsRNA) and retroviruses. Ambisense viruses have high CAI comparable to that of +ssRNA virus despite their lower GC content, whereas dsRNA viruses have the lowest CAI. This may provide a benefit for +ssRNA viruses as their genomes are used as mRNA. However, analyses for influence of nucleotide composition on codon usage did not show a difference between +ssRNA and -ssRNA viruses. This suggests that genome composition and hence mutational pressure remain the major pressure causing the differences in codon usage among RNA viruses with different genome types.
Collapse
|
22
|
Analysis of synonymous codon usage bias in helicase gene from Autographa californica multiple nucleopolyhedrovirus. Genes Genomics 2018; 40:767-780. [PMID: 29934813 DOI: 10.1007/s13258-018-0689-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/28/2018] [Indexed: 10/17/2022]
Abstract
The helicase gene of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is not only involved in viral DNA replication, but also plays a role in viral host range. To identify the codon usage bias of helicase of AcMNPV, the codon usage bias of helicase was especially studies in AcMNPV and 41 reference strains of baculoviruses by calculating the codon adaptation index (CAI), effective number of codon (ENc), relative synonymous codon usage (RSCU), and other indices. The helicase of baculovirus is less biased (mean ENc = 50.539 > 40; mean CAI = 0.246). AcMNPV helicase has a strong bias toward the synonymous codons with G and C at the third codon position (GC3s = 53.6%). The plot of GC3s against ENc values revealed that GC compositional constraints are the main factor that determines the codon usage bias of major of helicase. Several indicators supported that the codon usage pattern of helicase is mainly subject to mutation pressure. Analysis of variation in codon usage and amino acid composition indicated AcMNPV helicase shows the significant preference for one or more postulated codons for each amino acid. A cluster analysis based on RSCU values suggested that AcMNPV is evolutionarily closer to members of group I alphabaculovirus. Comparison of the codon usage pattern among E. coli, yeast, mouse, human and AcMNPV showed that yeast is a suitable expression system for AcMNPV helicase. AcMNPV helicase shows weak codon usage bias. This study may help in elucidating the functional mechanism of AcMNPV helicase and the evolution of baculovirus helicases.
Collapse
|
23
|
Antzin-Anduetza I, Mahiet C, Granger LA, Odendall C, Swanson CM. Increasing the CpG dinucleotide abundance in the HIV-1 genomic RNA inhibits viral replication. Retrovirology 2017; 14:49. [PMID: 29121951 PMCID: PMC5679385 DOI: 10.1186/s12977-017-0374-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/01/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The human immunodeficiency virus type 1 (HIV-1) structural protein Gag is necessary and sufficient to form viral particles. In addition to encoding the amino acid sequence for Gag, the underlying RNA sequence could encode cis-acting elements or nucleotide biases that are necessary for viral replication. Furthermore, RNA sequences that inhibit viral replication could be suppressed in gag. However, the functional relevance of RNA elements and nucleotide biases that promote or repress HIV-1 replication remain poorly understood. RESULTS To characterize if the RNA sequence in gag controls HIV-1 replication, the matrix (MA) region was codon modified, allowing the RNA sequence to be altered without affecting the protein sequence. Codon modification of nucleotides (nt) 22-261 or 22-378 in gag inhibited viral replication by decreasing genomic RNA (gRNA) abundance, gRNA stability, Gag expression, virion production and infectivity. Comparing the effect of these point mutations to deletions of the same region revealed that the mutations inhibited infectious virus production while the deletions did not. This demonstrated that codon modification introduced inhibitory sequences. There is a much lower than expected frequency of CpG dinucleotides in HIV-1 and codon modification introduced a substantial increase in CpG abundance. To determine if they are necessary for inhibition of HIV-1 replication, codons introducing CpG dinucleotides were mutated back to the wild type codon, which restored efficient Gag expression and infectious virion production. To determine if they are sufficient to inhibit viral replication, CpG dinucleotides were inserted into gag in the absence of other changes. The increased CpG dinucleotide content decreased HIV-1 infectivity and viral replication. CONCLUSIONS The HIV-1 RNA sequence contains low abundance of CpG dinucleotides. Increasing the abundance of CpG dinucleotides inhibits multiple steps of the viral life cycle, providing a functional explanation for why CpG dinucleotides are suppressed in HIV-1.
Collapse
Affiliation(s)
- Irati Antzin-Anduetza
- Department of Infectious Diseases, King's College London, 3rd Floor Borough Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Charlotte Mahiet
- Department of Infectious Diseases, King's College London, 3rd Floor Borough Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Luke A Granger
- Department of Infectious Diseases, King's College London, 3rd Floor Borough Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Charlotte Odendall
- Department of Infectious Diseases, King's College London, 3rd Floor Borough Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Chad M Swanson
- Department of Infectious Diseases, King's College London, 3rd Floor Borough Wing, Guy's Hospital, London, SE1 9RT, UK.
| |
Collapse
|
24
|
Wang H, Liu S, Zhang B, Wei W. Analysis of Synonymous Codon Usage Bias of Zika Virus and Its Adaption to the Hosts. PLoS One 2016; 11:e0166260. [PMID: 27893824 PMCID: PMC5125587 DOI: 10.1371/journal.pone.0166260] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/25/2016] [Indexed: 11/19/2022] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne virus (arbovirus) in the family Flaviviridae, and the symptoms caused by ZIKV infection in humans include rash, fever, arthralgia, myalgia, asthenia and conjunctivitis. Codon usage bias analysis can reveal much about the molecular evolution and host adaption of ZIKV. To gain insight into the evolutionary characteristics of ZIKV, we performed a comprehensive analysis on the codon usage pattern in 46 ZIKV strains by calculating the effective number of codons (ENc), codon adaptation index (CAI), relative synonymous codon usage (RSCU), and other indicators. The results indicate that the codon usage bias of ZIKV is relatively low. Several lines of evidence support the hypothesis that translational selection plays a role in shaping the codon usage pattern of ZIKV. The results from a correspondence analysis (CA) indicate that other factors, such as base composition, aromaticity, and hydrophobicity may also be involved in shaping the codon usage pattern of ZIKV. Additionally, the results from a comparative analysis of RSCU between ZIKV and its hosts suggest that ZIKV tends to evolve codon usage patterns that are comparable to those of its hosts. Moreover, selection pressure from Homo sapiens on the ZIKV RSCU patterns was found to be dominant compared with that from Aedes aegypti and Aedes albopictus. Taken together, both natural translational selection and mutation pressure are important for shaping the codon usage pattern of ZIKV. Our findings contribute to understanding the evolution of ZIKV and its adaption to its hosts.
Collapse
Affiliation(s)
- Hongju Wang
- Medical School of Henan University, Kaifeng, China
| | - Siqing Liu
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Disease, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Bo Zhang
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Disease, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wenqiang Wei
- Medical School of Henan University, Kaifeng, China
| |
Collapse
|
25
|
Analysis of codon usage pattern evolution in avian rotaviruses and their preferred host. INFECTION GENETICS AND EVOLUTION 2015; 34:17-25. [PMID: 26086995 DOI: 10.1016/j.meegid.2015.06.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 05/26/2015] [Accepted: 06/14/2015] [Indexed: 10/23/2022]
Abstract
Rotavirus infection is a worldwide problem, with occurrence of highly divergent viruses classified in 8 species (A-H). We report here the evolution assessment of codon usage patterns in virus-host system in avian rotavirus (AvRV) of species RVA, RVD, RVF and RVG (preferentially affecting birds). The nucleotide contents, codon usage bias (CUB), relative synonymous codon usage (RSCU), and effective number of codons (ENCs) values were investigated targeting overexpressing major inner capsid viral protein (VP6) of these AvRV species. The results confirm that the evolutionary characteristics influences the rotavirus (RV) genetic diversity and impact of host's natural selection on the AvRVs codons. Synonymous codon usage patterns were evaluated following multivariate statistical procedures on all available AvRV coding gene sequences. RSCU trees accommodated all AvRV species and preferred host sequences in one topology confirming greater imminence of AvRVs with the host chicken cell genes. Similarly, the codon adaptation index (CAI) results also displayed a higher adaptation of AvRVs to its chicken host. The codon preference analysis of RVs revealed that VP6 gene express more proficiently in the yeast system, whereas, codon optimization might be required for the effectual expression in Escherichia coli and Homo sapiens. The findings provide basic evidence on the dynamics of AvRV evolution and its host adaptation, which could be exploited for additional research on avian species in future.
Collapse
|
26
|
Large-scale nucleotide optimization of simian immunodeficiency virus reduces its capacity to stimulate type I interferon in vitro. J Virol 2014; 88:4161-72. [PMID: 24478441 DOI: 10.1128/jvi.03223-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Lentiviral RNA genomes present a strong bias in their nucleotide composition with extremely high frequencies of A nucleotide in human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV). Based on the observation that human optimization of RNA virus gene fragments may abolish their ability to stimulate the type I interferon (IFN-I) response, we identified the most biased sequences along the SIV genome and showed that they are the most potent IFN-I stimulators. With the aim of designing an attenuated SIV genome based on a reduced capacity to activate the IFN-I response, we synthesized artificial SIV genomes whose biased sequences were optimized toward macaque average nucleotide composition without altering their regulatory elements or amino acid sequences. A synthetic SIV optimized with 169 synonymous mutations in gag and pol genes showed a 100-fold decrease in replicative capacity. Interestingly, a synthetic SIV optimized with 70 synonymous mutations in pol had a normal replicative capacity. Its ability to stimulate IFN-I was reduced when infected cells were cocultured with reporter cells. IFN regulatory factor 3 (IRF3) transcription factor was required for IFN-I stimulation, implicating cytosolic sensors in the detection of SIV-biased RNA in infected cells. No reversion of introduced mutations was observed for either of the optimized viruses after 10 serial passages. In conclusion, we have designed large-scale nucleotide-modified SIVs that may display attenuated pathogenic potential. IMPORTANCE In this study, we synthesized artificial SIV genomes in which the most hyperbiased sequences were optimized to bring them closer to the nucleotide composition of the macaque SIV host. Interestingly, we generated a stable synthetic SIV optimized with 70 synonymous mutations in pol gene, which had a normal replicative capacity but a reduced ability to stimulate type I IFN. This demonstrates the possibility to rationally change viral nucleotide composition to design replicative and genetically stable lentiviruses with attenuated pathogenic potentials.
Collapse
|
27
|
[The life cycle of Rubella Virus]. Uirusu 2014; 64:137-46. [PMID: 26437836 DOI: 10.2222/jsv.64.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Rubella virus (RV), an infectious agent of rubella, is the sole member of the genus Rubivirus in the family of Togaviridae. RV has a positive-stranded sense RNA as a genome. A natural host of RV is limited to human, and rubella is considered to be a childhood disease in general. When woman is infected with RV during early pregnancy, her fetus may develop severe birth defects known as congenital rubella syndrome. In this review, the RV life cycle from the virus entry to budding is illustrated in comparison with those of member viruses of the genus alphavirus in the same family. The multiple functions of the RV capsid protein are also introduced.
Collapse
|
28
|
Abstract
CpG repression in RNA viruses has been known for decades, but a reasonable explanation has not yet been proposed to explain this phenomenon. In this study, we calculated the CpG odds ratio of all RNA viruses that have available genome sequences and analyzed the correlation with their genome polarity, base composition, synonymous codon usage, phylogenetic relationship, and host. The results indicated that the viral base composition, synonymous codon usage and host selection were the dominant factors that determined the CpG bias in RNA viruses. CpG usage variation between the different viral groups was caused by different combinations of these pressures, which also differed from each other in strength. The consistent under-representation of CpG usage in −ssRNA viruses is determined predominantly by base composition, which may be a consequence of the U/A preferred mutation bias of −ssRNA viruses, whereas the CpG usage of +ssRNA viruses is affected greatly by their hosts. As a result, most +ssRNA viruses mimic their hosts' CpG usage. Unbiased CpG usage in dsRNA viruses is most likely a result of their dsRNA genome, which allows the viruses to escape from the host-driven CpG elimination pressure. CpG was under-represented in all reverse-transcribing viruses (RT viruses), suggesting that DNA methylation is an important factor affecting the CpG usage of retroviruses. However, vertebrate-infecting RT viruses may also suffer host' CpG elimination pressure that also acts on +ssRNA viruses, which results in further under-representation of CpG in the vertebrate-infecting RT viruses.
Collapse
|
29
|
Genetic characterization and codon usage bias of full-length Hepatitis E virus sequences shed new lights on genotypic distribution, host restriction and genome evolution. INFECTION GENETICS AND EVOLUTION 2012; 12:1842-53. [PMID: 22951575 DOI: 10.1016/j.meegid.2012.07.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 07/27/2012] [Accepted: 07/29/2012] [Indexed: 02/08/2023]
Abstract
Hepatitis E virus (HEV) is present in different species and ecological niches. It has been divided into 4 major mammalian genotypes. In this study, 3 new full-length genomes of swine HEV were sequenced and the results did not reveal any particular host determinant in comparison with human isolates belonging to the same genotype. Nucleotide composition and codon usage bias were determined to characterize HEV host restriction and genome evolution. Peculiar nucleotide bias was observed for A and C nucleotides in all HEV genotypes. Apart from the ORF1 hypervariable region and the ORF2/3 overlapping region, no nucleotide bias was observed between the 3 codon positions. CpG dinucleotides were also shown to be under-represented in HEV as in most RNA viruses. The effective number of codon used in HEV genome was high, indicating a lack of codon bias. Correspondence analysis of the relative synonymous codon usage was performed and demonstrated that evolution of HEV is not driven by geographical or host factors, but is representative of HEV phylogeny. These results confirm that HEV genome evolution is mainly based on mutational pressure. Natural selection, for instance involving fine-tuning translation kinetics and escape from the host immune system, may also play a role in shaping the HEV genome, particularly in the ORF1 hypervariable region and the ORF2/3 overlapping region. These regions might be involved in host restriction. Finally this study revealed the need to re-evaluate the possible subtyping classification.
Collapse
|
30
|
Jiao W, Yin X, Li Z, Lan X, Li X, Tian X, Li B, Yang B, Zhang Y, Liu J. Molecular characterization of China rabies virus vaccine strain. Virol J 2011; 8:521. [PMID: 22093774 PMCID: PMC3226571 DOI: 10.1186/1743-422x-8-521] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 11/17/2011] [Indexed: 10/28/2022] Open
Abstract
BACKGROUND Rabies virus (RV), the agent of rabies, can cause a severe encephalomyelitis in several species of mammals, including humans. As a human rabies vaccine strain employed in China, the genetic knowledge of the aG strain has not been fully studied. The main goal of the present study is to amplify the whole genome of aG strain, and genetic relationships between other vaccine strains and wild strains were analyzed. RESULTS The entire genome of human rabies virus vaccine strain aG employed in China was sequenced; this is the second rabies virus vaccine strain from China to be fully characterized. The overall organization and the length of the genome were similar to that of other lyssaviruses. The length of aG strain was 11925nt, comprising a leader sequence of 58nt, nucleoprotein (N) gene of 1353nt, phosphoprotein (P) gene of 894 nt, matrix protein (M) gene of 609nt, glycoprotein (G) gene of 1575nt, RNA-dependent RNA polymerase (RdRp,L) gene of 6384nt, and a trailer region of 70 nt. There was TGAAAAAAA (TGA7) consensus sequence in the end of each gene, except AGA7 at the end of G gene. There was AACAYYYCT consensus start signal at the beginning of each gene. CONCLUSIONS In this report, we analyzed the full genome of China human rabies vaccine strain aG. Our studies indicated that the genome of aG retained the basic characteristics of RV. At gene level, N was the most conserved among the five coding genes, indicating this gene is the most appropriate for quantitative genotype definition. The phylogenetic analysis of the N indicated the aG strain clustered most closely with Japanese and Russian rabies vaccine strains, suggesting that they may share the same ancestor; also, the aG strain did not share high homology with wild strains isolated from China, making it may not be the best vaccine strain, more research is needed to elucidate the genetic relationship among the RV circulating in China.
Collapse
Affiliation(s)
- Wenqiang Jiao
- State Key Laboratory of Veterinary Etiological biology, Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujia ping 1, Yanchang bu, Lanzhou, Gansu, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Evolution of the sequence composition of Flaviviruses. INFECTION GENETICS AND EVOLUTION 2010; 10:129-36. [DOI: 10.1016/j.meegid.2009.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 10/26/2009] [Accepted: 11/03/2009] [Indexed: 11/20/2022]
|
32
|
An extensive analysis on the global codon usage pattern of baculoviruses. Arch Virol 2008; 153:2273-82. [DOI: 10.1007/s00705-008-0260-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 10/27/2008] [Indexed: 12/18/2022]
|
33
|
Greenbaum BD, Levine AJ, Bhanot G, Rabadan R. Patterns of evolution and host gene mimicry in influenza and other RNA viruses. PLoS Pathog 2008; 4:e1000079. [PMID: 18535658 PMCID: PMC2390760 DOI: 10.1371/journal.ppat.1000079] [Citation(s) in RCA: 208] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 04/25/2008] [Indexed: 12/25/2022] Open
Abstract
It is well known that the dinucleotide CpG is under-represented in the genomic DNA of many vertebrates. This is commonly thought to be due to the methylation of cytosine residues in this dinucleotide and the corresponding high rate of deamination of 5-methycytosine, which lowers the frequency of this dinucleotide in DNA. Surprisingly, many single-stranded RNA viruses that replicate in these vertebrate hosts also have a very low presence of CpG dinucleotides in their genomes. Viruses are obligate intracellular parasites and the evolution of a virus is inexorably linked to the nature and fate of its host. One therefore expects that virus and host genomes should have common features. In this work, we compare evolutionary patterns in the genomes of ssRNA viruses and their hosts. In particular, we have analyzed dinucleotide patterns and found that the same patterns are pervasively over- or under-represented in many RNA viruses and their hosts suggesting that many RNA viruses evolve by mimicking some of the features of their host's genes (DNA) and likely also their corresponding mRNAs. When a virus crosses a species barrier into a different host, the pressure to replicate, survive and adapt, leaves a footprint in dinucleotide frequencies. For instance, since human genes seem to be under higher pressure to eliminate CpG dinucleotide motifs than avian genes, this pressure might be reflected in the genomes of human viruses (DNA and RNA viruses) when compared to those of the same viruses replicating in avian hosts. To test this idea we have analyzed the evolution of the influenza virus since 1918. We find that the influenza A virus, which originated from an avian reservoir and has been replicating in humans over many generations, evolves in a direction strongly selected to reduce the frequency of CpG dinucleotides in its genome. Consistent with this observation, we find that the influenza B virus, which has spent much more time in the human population, has adapted to its human host and exhibits an extremely low CpG dinucleotide content. We believe that these observations directly show that the evolution of RNA viral genomes can be shaped by pressures observed in the host genome. As a possible explanation, we suggest that the strong selection pressures acting on these RNA viruses are most likely related to the innate immune response and to nucleotide motifs in the host DNA and RNAs. Viruses are obligate intracellular parasites that use different strategies to sequester host cell machinery and avoid the host immune system. In this paper we explore the genomes of viruses that encode their genetic information in single-stranded RNA, a different material than the one used by their hosts (double-stranded DNA). It is interesting to observe that these viruses share some of the host's characteristics. For instance, one of the most underrepresented motifs in the DNA of vertebrates is the dinucleotide CpG. This is commonly thought to be due to methylation and deamination of cytosine residues in this dinucleotide. Surprisingly, the same CpG suppression is observed in vertebrate RNA viruses but not in RNA phages. We show that RNA viruses present similar dinucleotide pressures as their host genes. We find that the influenza A virus, which originated from an avian reservoir and replicated in humans over many generations, evolves to reduce the frequency of CpG dinucleotides mimicking the human genes. Influenza B, which has been in humans longer, exhibits an extremely low CpG dinucleotide content. These observations suggest that the evolution of RNA viruses is shaped by pressures observed in the host genome.
Collapse
Affiliation(s)
- Benjamin D. Greenbaum
- BioMaPS Institute, Rutgers University, Piscataway, New Jersey, United States of America
| | - Arnold J. Levine
- Institute for Advanced Study, Princeton, New Jersey, United States of America
| | - Gyan Bhanot
- BioMaPS Institute, Rutgers University, Piscataway, New Jersey, United States of America
- Institute for Advanced Study, Princeton, New Jersey, United States of America
| | - Raul Rabadan
- Institute for Advanced Study, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
34
|
Delmas O, Holmes EC, Talbi C, Larrous F, Dacheux L, Bouchier C, Bourhy H. Genomic diversity and evolution of the lyssaviruses. PLoS One 2008; 3:e2057. [PMID: 18446239 PMCID: PMC2327259 DOI: 10.1371/journal.pone.0002057] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 03/17/2008] [Indexed: 12/25/2022] Open
Abstract
Lyssaviruses are RNA viruses with single-strand, negative-sense genomes responsible for rabies-like diseases in mammals. To date, genomic and evolutionary studies have most often utilized partial genome sequences, particularly of the nucleoprotein and glycoprotein genes, with little consideration of genome-scale evolution. Herein, we report the first genomic and evolutionary analysis using complete genome sequences of all recognised lyssavirus genotypes, including 14 new complete genomes of field isolates from 6 genotypes and one genotype that is completely sequenced for the first time. In doing so we significantly increase the extent of genome sequence data available for these important viruses. Our analysis of these genome sequence data reveals that all lyssaviruses have the same genomic organization. A phylogenetic analysis reveals strong geographical structuring, with the greatest genetic diversity in Africa, and an independent origin for the two known genotypes that infect European bats. We also suggest that multiple genotypes may exist within the diversity of viruses currently classified as 'Lagos Bat'. In sum, we show that rigorous phylogenetic techniques based on full length genome sequence provide the best discriminatory power for genotype classification within the lyssaviruses.
Collapse
Affiliation(s)
- Olivier Delmas
- Institut Pasteur, UPRE Lyssavirus Dynamics and Host Adaptation, World Health Organization Collaborating Centre for Reference and Research on Rabies, Paris, France
| | - Edward C. Holmes
- Mueller Laboratory, Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Chiraz Talbi
- Institut Pasteur, UPRE Lyssavirus Dynamics and Host Adaptation, World Health Organization Collaborating Centre for Reference and Research on Rabies, Paris, France
| | - Florence Larrous
- Institut Pasteur, UPRE Lyssavirus Dynamics and Host Adaptation, World Health Organization Collaborating Centre for Reference and Research on Rabies, Paris, France
| | - Laurent Dacheux
- Institut Pasteur, UPRE Lyssavirus Dynamics and Host Adaptation, World Health Organization Collaborating Centre for Reference and Research on Rabies, Paris, France
| | - Christiane Bouchier
- Institut Pasteur, Plate-forme Génomique - Pasteur Genopole® Ile de France, Paris, France
| | - Hervé Bourhy
- Institut Pasteur, UPRE Lyssavirus Dynamics and Host Adaptation, World Health Organization Collaborating Centre for Reference and Research on Rabies, Paris, France
| |
Collapse
|
35
|
Zhao S, Zhang Q, Liu X, Wang X, Zhang H, Wu Y, Jiang F. Analysis of synonymous codon usage in 11 human bocavirus isolates. Biosystems 2008; 92:207-14. [PMID: 18378386 PMCID: PMC7116908 DOI: 10.1016/j.biosystems.2008.01.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 01/29/2008] [Accepted: 01/29/2008] [Indexed: 11/21/2022]
Abstract
Human Bocavirus (HBoV) is a novel virus which can cause respiratory tract disease in infants or children. In this study, the codon usage bias and the base composition variations in the available 11 complete HBoV genome sequences have been investigated. Although, there is a significant variation in codon usage bias among different HBoV genes, codon usage bias in HBoV is a little slight, which is mainly determined by the base compositions on the third codon position and the effective number of codons (ENC) value. The results of correspondence analysis (COA) and Spearman's rank correlation analysis reveals that the G + C compositional constraint is the main factor that determines the codon usage bias in HBoV and the gene's function also contributes to the codon usage in this virus. Moreover, it was found that the hydrophobicity of each protein and the gene length are also critical in affecting these viruses’ codon usage, although they were less important than that of the mutational bias and the genes’ function. At last, the relative synonymous codon usage (RSCU) of 44 genes from these 11 HBoV isolates is analyzed using a hierarchical cluster method. The result suggests that genes with same function yet from different isolates are classified into the same lineage and it does not depend on geographical location. These conclusions not only can offer an insight into the codon usage patterns and gene classification of HBoV, but also may help in increasing the efficiency of gene delivery/expression systems.
Collapse
Affiliation(s)
- Sheng Zhao
- College of Animal Sciences and Technology, Northwest A&F University, Xinong Road No. 22, Yangling 712100, Shaanxi Province, PR China
| | | | | | | | | | | | | |
Collapse
|
36
|
Marston DA, McElhinney LM, Johnson N, Müller T, Conzelmann KK, Tordo N, Fooks AR. Comparative analysis of the full genome sequence of European bat lyssavirus type 1 and type 2 with other lyssaviruses and evidence for a conserved transcription termination and polyadenylation motif in the G-L 3' non-translated region. J Gen Virol 2007; 88:1302-1314. [PMID: 17374776 DOI: 10.1099/vir.0.82692-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We report the first full-length genomic sequences for European bat lyssavirus type-1 (EBLV-1) and type-2 (EBLV-2). The EBLV-1 genomic sequence was derived from a virus isolated from a serotine bat in Hamburg, Germany, in 1968 and the EBLV-2 sequence was derived from a virus isolate from a human case of rabies that occurred in Scotland in 2002. A long-distance PCR strategy was used to amplify the open reading frames (ORFs), followed by standard and modified RACE (rapid amplification of cDNA ends) techniques to amplify the 3' and 5' ends. The lengths of each complete viral genome for EBLV-1 and EBLV-2 were 11 966 and 11 930 base pairs, respectively, and follow the standard rhabdovirus genome organization of five viral proteins. Comparison with other lyssavirus sequences demonstrates variation in degrees of homology, with the genomic termini showing a high degree of complementarity. The nucleoprotein was the most conserved, both intra- and intergenotypically, followed by the polymerase (L), matrix and glyco- proteins, with the phosphoprotein being the most variable. In addition, we have shown that the two EBLVs utilize a conserved transcription termination and polyadenylation (TTP) motif, approximately 50 nt upstream of the L gene start codon. All available lyssavirus sequences to date, with the exception of Pasteur virus (PV) and PV-derived isolates, use the second TTP site. This observation may explain differences in pathogenicity between lyssavirus strains, dependent on the length of the untranslated region, which might affect transcriptional activity and RNA stability.
Collapse
Affiliation(s)
- D A Marston
- Rabies & Wildlife Zoonoses Group, Veterinary Laboratories Agency (VLA, Weybridge), WHO Collaborating Centre for the Characterisation of Rabies and Rabies-Related Viruses, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - L M McElhinney
- Rabies & Wildlife Zoonoses Group, Veterinary Laboratories Agency (VLA, Weybridge), WHO Collaborating Centre for the Characterisation of Rabies and Rabies-Related Viruses, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - N Johnson
- Rabies & Wildlife Zoonoses Group, Veterinary Laboratories Agency (VLA, Weybridge), WHO Collaborating Centre for the Characterisation of Rabies and Rabies-Related Viruses, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - T Müller
- Institute for Epidemiology, WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, Friedrich Loeffler Institute - Federal Research Institute for Animal Health, Seestrasse 55, D-16868 Wusterhausen, Germany
| | - K K Conzelmann
- Max-von-Pettenkofer Institute and Gene Center, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - N Tordo
- Unité Stratégies Antivirales, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - A R Fooks
- Rabies & Wildlife Zoonoses Group, Veterinary Laboratories Agency (VLA, Weybridge), WHO Collaborating Centre for the Characterisation of Rabies and Rabies-Related Viruses, New Haw, Addlestone, Surrey KT15 3NB, UK
| |
Collapse
|
37
|
Sewatanon J, Srichatrapimuk S, Auewarakul P. Compositional bias and size of genomes of human DNA viruses. Intervirology 2006; 50:123-32. [PMID: 17191014 DOI: 10.1159/000098238] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Accepted: 07/27/2006] [Indexed: 11/19/2022] Open
Abstract
Genomes of 144 human DNA viruses were analyzed in the aspect of their compositional asymmetry. DNA viruses were divided into two groups according to their genome sizes. The analysis revealed that the level of guanine and cytosine (GC content) in the coding sequences of small genome DNA viruses was significantly lower than that of large genome DNA viruses. Because small genome viruses replicate their genomes using cellular enzymes, while large genome viruses use their own enzymes for genome replication, the two groups of viruses may be under different mutational bias and/or selection pressure. In these viruses, GC content at the third codon position correlated with GC content at the first and second codon position. However, the relationship in small genome DNA viruses was weaker than that in large genome DNA viruses, suggesting that their genome composition may be more strongly influenced by codon usage preference or restriction on amino acid composition.
Collapse
Affiliation(s)
- Jaturong Sewatanon
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | | |
Collapse
|