1
|
Golender N, Bumbarov V, Kovtunenko A, David D, Guini-Rubinstein M, Sol A, Beer M, Eldar A, Wernike K. Identification and Genetic Characterization of Viral Pathogens in Ruminant Gestation Abnormalities, Israel, 2015-2019. Viruses 2021; 13:v13112136. [PMID: 34834943 PMCID: PMC8619439 DOI: 10.3390/v13112136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/11/2021] [Accepted: 10/18/2021] [Indexed: 01/02/2023] Open
Abstract
Infectious agents including viruses are important abortifacients and can cause fetal abnormalities in livestock animals. Here, samples that had been collected in Israel from aborted or malformed ruminant fetuses between 2015 and 2019 were investigated for the presence of the following viruses: the reoviruses bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV), the flaviviruses bovine viral diarrhea virus (BVDV) and border disease virus (BDV), the peribunyaviruses Shuni virus (SHUV) and Akabane virus (AKAV), bovine herpesvirus type 1 (BoHV-1) and bovine ephemeral fever virus (BEFV). Domestic (cattle, sheep, goat) and wild/zoo ruminants were included in the study. The presence of viral nucleic acid or antigen could be confirmed in 21.8 % of abnormal pregnancies (213 out of 976 investigated cases), with peribunyaviruses, reoviruses and pestiviruses being the most prevalent. At least four different BTV serotypes were involved in abnormal courses of pregnancy in Israel. The subtyping of pestiviruses revealed the presence of two BDV and several distinct BVDV type 1 strains. The peribunyaviruses AKAV and SHUV were identified annually throughout the study period, however, variation in the extent of virus circulation could be observed between the years. In 2018, AKAV even represented the most detected pathogen in cases of small domestic ruminant gestation abnormalities. In conclusion, it was shown that various viruses are involved in abnormal courses of pregnancy in ruminants in Israel.
Collapse
Affiliation(s)
- Natalia Golender
- Department of Virology, Kimron Veterinary Institute, Bet Dagan 50250, Israel; (V.B.); (A.K.); (D.D.); (M.G.-R.); (A.S.); (A.E.)
- Correspondence: ; Tel.: +972-3968-8949; Fax: +972-3968-1788
| | - Velizar Bumbarov
- Department of Virology, Kimron Veterinary Institute, Bet Dagan 50250, Israel; (V.B.); (A.K.); (D.D.); (M.G.-R.); (A.S.); (A.E.)
| | - Anita Kovtunenko
- Department of Virology, Kimron Veterinary Institute, Bet Dagan 50250, Israel; (V.B.); (A.K.); (D.D.); (M.G.-R.); (A.S.); (A.E.)
| | - Dan David
- Department of Virology, Kimron Veterinary Institute, Bet Dagan 50250, Israel; (V.B.); (A.K.); (D.D.); (M.G.-R.); (A.S.); (A.E.)
| | - Marisol Guini-Rubinstein
- Department of Virology, Kimron Veterinary Institute, Bet Dagan 50250, Israel; (V.B.); (A.K.); (D.D.); (M.G.-R.); (A.S.); (A.E.)
| | - Asaf Sol
- Department of Virology, Kimron Veterinary Institute, Bet Dagan 50250, Israel; (V.B.); (A.K.); (D.D.); (M.G.-R.); (A.S.); (A.E.)
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (M.B.); (K.W.)
| | - Avi Eldar
- Department of Virology, Kimron Veterinary Institute, Bet Dagan 50250, Israel; (V.B.); (A.K.); (D.D.); (M.G.-R.); (A.S.); (A.E.)
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (M.B.); (K.W.)
| |
Collapse
|
2
|
Földes F, Madai M, Papp H, Kemenesi G, Zana B, Geiger L, Gombos K, Somogyi B, Bock-Marquette I, Jakab F. Small Interfering RNAs Are Highly Effective Inhibitors of Crimean-Congo Hemorrhagic Fever Virus Replication In Vitro. Molecules 2020; 25:molecules25235771. [PMID: 33297527 PMCID: PMC7731286 DOI: 10.3390/molecules25235771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/26/2020] [Accepted: 12/04/2020] [Indexed: 11/24/2022] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is one of the prioritized diseases of the World Health Organization, considering its potential to create a public health emergency and, more importantly, the absence of efficacious drugs and/or vaccines for treatment. The highly pathogenic characteristic of CCHFV restricts research to BSL-4 laboratories, which complicates effective research and developmental strategies. In consideration of antiviral therapies, RNA interference can be used to suppress viral replication by targeting viral genes. RNA interference uses small interfering RNAs (siRNAs) to silence genes. The aim of our study was to design and test siRNAs in vitro that inhibit CCHFV replication and can serve as a basis for further antiviral therapies. A549 cells were infected with CCHFV after transfection with the siRNAs. Following 72 h, nucleic acid from the supernatant was extracted for RT Droplet Digital PCR analysis. Among the investigated siRNAs we identified effective candidates against all three segments of the CCHF genome. Consequently, blocking any segment of CCHFV leads to changes in the virus copy number that indicates an antiviral effect of the siRNAs. In summary, we demonstrated the ability of specific siRNAs to inhibit CCHFV replication in vitro. This promising result can be integrated into future anti-CCHFV therapy developments.
Collapse
Affiliation(s)
- Fanni Földes
- National Laboratory of Virology, BSL-4 Laboratory, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (F.F.); (M.M.); (H.P.); (G.K.); (B.Z.); (B.S.)
- Institute of Biology, Faculty of Sciences, University of Pécs, 7622 Pécs, Hungary
| | - Mónika Madai
- National Laboratory of Virology, BSL-4 Laboratory, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (F.F.); (M.M.); (H.P.); (G.K.); (B.Z.); (B.S.)
- Institute of Biology, Faculty of Sciences, University of Pécs, 7622 Pécs, Hungary
| | - Henrietta Papp
- National Laboratory of Virology, BSL-4 Laboratory, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (F.F.); (M.M.); (H.P.); (G.K.); (B.Z.); (B.S.)
- Institute of Biology, Faculty of Sciences, University of Pécs, 7622 Pécs, Hungary
| | - Gábor Kemenesi
- National Laboratory of Virology, BSL-4 Laboratory, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (F.F.); (M.M.); (H.P.); (G.K.); (B.Z.); (B.S.)
- Institute of Biology, Faculty of Sciences, University of Pécs, 7622 Pécs, Hungary
| | - Brigitta Zana
- National Laboratory of Virology, BSL-4 Laboratory, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (F.F.); (M.M.); (H.P.); (G.K.); (B.Z.); (B.S.)
- Institute of Biology, Faculty of Sciences, University of Pécs, 7622 Pécs, Hungary
| | - Lili Geiger
- Department of Laboratory Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (L.G.); (K.G.)
| | - Katalin Gombos
- Department of Laboratory Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (L.G.); (K.G.)
| | - Balázs Somogyi
- National Laboratory of Virology, BSL-4 Laboratory, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (F.F.); (M.M.); (H.P.); (G.K.); (B.Z.); (B.S.)
| | - Ildikó Bock-Marquette
- Regenerative Science, Sport and Medicina Research Group, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary;
| | - Ferenc Jakab
- National Laboratory of Virology, BSL-4 Laboratory, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (F.F.); (M.M.); (H.P.); (G.K.); (B.Z.); (B.S.)
- Institute of Biology, Faculty of Sciences, University of Pécs, 7622 Pécs, Hungary
- Correspondence: ; Tel.: +36-72-501-668 (ext. 29044)
| |
Collapse
|
3
|
Levin A, Hayouka Z, Friedler A, Loyter A. Nucleocytoplasmic shuttling of HIV-1 integrase is controlled by the viral Rev protein. Nucleus 2014. [DOI: 10.4161/nucl.11300] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
4
|
Chiang CF, Albariňo CG, Lo MK, Spiropoulou CF. Small interfering RNA inhibition of Andes virus replication. PLoS One 2014; 9:e99764. [PMID: 24924189 PMCID: PMC4055710 DOI: 10.1371/journal.pone.0099764] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/16/2014] [Indexed: 01/02/2023] Open
Abstract
Andes virus (ANDV) is the most common causative agent of hantavirus pulmonary syndrome (HPS) in the Americas, and is the only hantavirus associated with human-to-human transmission. Case fatality rates of ANDV-induced HPS are approximately 40%. There are currently no effective vaccines or antivirals against ANDV. Since HPS severity correlates with viral load, we tested small interfering RNA (siRNA) directed against ANDV genes as a potential antiviral strategy. We designed pools of 4 siRNAs targeting each of the ANDV genome segments (S, M, and L), and tested their efficacy in reducing viral replication in vitro. The siRNA pool targeting the S segment reduced viral transcription and replication in Vero-E6 cells more efficiently than those targeting the M and L segments. In contrast, siRNAs targeting the S, M, or L segment were similar in their ability to reduce viral replication in human lung microvascular endothelial cells. Importantly, these siRNAs inhibit ANDV replication even if given after infection. Taken together, our findings indicate that siRNAs targeting the ANDV genome efficiently inhibit ANDV replication, and show promise as a strategy for developing therapeutics against ANDV infection.
Collapse
Affiliation(s)
- Cheng-Feng Chiang
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Cesar G. Albariňo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Michael K. Lo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Christina F. Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|
5
|
Levin A, Hayouka Z, Friedler A, Loyter A. Transportin 3 and importin α are required for effective nuclear import of HIV-1 integrase in virus-infected cells. Nucleus 2012; 1:422-31. [PMID: 21326825 DOI: 10.4161/nucl.1.5.12903] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 07/02/2010] [Accepted: 07/07/2010] [Indexed: 01/25/2023] Open
Abstract
Unlike other retroviruses, human immunodeficiency virus type-1 (HIV-1) can infect terminally differentiated cells, due to the ability of its pre-integration complex (PIC) to translocate via the host nuclear pore complex (NPC). The PIC Nuclear import has been suggested to be mediated by the viral integrase protein (IN), via either the importin α or transportin 3 (TNPO3/transportin-SR2) pathways.We show that in virus-infected cells, IN interacts with both importin α and TNPO3, simultaneously or separately, suggesting a multiple use of nuclear import pathways. Disruption of either the IN-importin α or IN-TNPO3 complexes in virus-infected cells by specific cell-permeable-peptides resulted in inhibition of IN and viral cDNA nuclear import. Here we show that peptides which disrupt either one of these complexes block virus infection, indicating involvement of both pathways in efficient viral replication. Formation of IN-importin α and IN-TNPO3 complexes has also been observed in IN-transfected cultured cells. Using specific peptides, we demonstrate that in transfected cells but not in virus infected cells the importin α pathway overrides that of TNPO3. The IN-importin α and IN-TNPO3 complexes were not observed in virus-infected Rev-expressing cells, indicating the Rev protein's ability to disrupt both complexes.Our work suggests that IN nuclear import requires the involvement of both importin α and TNPO3. The ability to inhibit nuclear import of the IN-DNA complex and consequently, virus infection by peptides that interrupt IN's interaction with either importin α or TNPO3 indicates that for efficient infection, nuclear import of IN should be mediated by both nuclear-import receptors.
Collapse
Affiliation(s)
- Aviad Levin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|
6
|
Flusin O, Vigne S, Peyrefitte CN, Bouloy M, Crance JM, Iseni F. Inhibition of Hazara nairovirus replication by small interfering RNAs and their combination with ribavirin. Virol J 2011; 8:249. [PMID: 21600011 PMCID: PMC3120786 DOI: 10.1186/1743-422x-8-249] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 05/21/2011] [Indexed: 01/25/2023] Open
Abstract
Background The genus Nairovirus in the family Bunyaviridae contains 34 tick-borne viruses classified into seven serogroups. Hazara virus (HAZV) belongs to the Crimean-Congo hemorrhagic fever (CCHF) serogroup that also includes CCHF virus (CCHFV) a major pathogen for humans. HAZV is an interesting model to study CCHFV due to a close serological and phylogenetical relationship and a classification which allows handling in a BSL2 laboratory. Nairoviruses are characterized by a tripartite negative-sense single stranded RNA genome (named L, M and S segments) that encode the RNA polymerase, the Gn-Gc glycoproteins and the nucleoprotein (NP), respectively. Currently, there are neither vaccines nor effective therapies for the treatment of any bunyavirus infection in humans. In this study we report, for the first time, the use of RNA interference (RNAi) as an approach to inhibit nairovirus replication. Results Chemically synthesized siRNAs were designed to target the mRNA produced by the three genomic segments. We first demonstrated that the siRNAs targeting the NP mRNA displayed a stronger antiviral effect than those complementary to the L and M transcripts in A549 cells. We further characterized the two most efficient siRNAs showing, that the induced inhibition is specific and associated with a decrease in NP synthesis during HAZV infection. Furthermore, both siRNAs depicted an antiviral activity when used before and after HAZV infection. We next showed that HAZV was sensitive to ribavirin which is also known to inhibit CCHFV. Finally, we demonstrated the additive or synergistic antiviral effect of siRNAs used in combination with ribavirin. Conclusions Our study highlights the interest of using RNAi (alone or in combination with ribavirin) to treat nairovirus infection. This approach has to be considered for the development of future antiviral compounds targeting CCHFV, the most pathogenic nairovirus.
Collapse
Affiliation(s)
- Olivier Flusin
- Unité de virologie, Institut de Recherche Biomédicale des Armées, 24 avenue des Maquis du Grésivaudan, La Tronche, France.
| | | | | | | | | | | |
Collapse
|
7
|
Levin A, Hayouka Z, Friedler A, Loyter A. Nucleocytoplasmic shuttling of HIV-1 integrase is controlled by the viral Rev protein. Nucleus 2010; 1:190-201. [PMID: 21326951 PMCID: PMC3030695 DOI: 10.4161/nucl.1.2.11300] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 01/13/2010] [Accepted: 01/14/2010] [Indexed: 01/21/2023] Open
Abstract
In the current study we show that the Rev protein of Human Immunodeficiency Virus type 1 (HIV-1) inhibits nuclear import and mediates nuclear export of the HIV-1 integrase (IN) protein, which catalyzes integration of the viral cDNA. Interaction between IN and Rev in virus infected cells, resulting in the formation of a Rev-IN complex, has been previously described by us. Here we show that nuclear import of the IN, is inhibited by early expressed Rev. No nuclear import of IN was observed when Rev-overexpressing cells were infected by wild-type HIV-1. Similarly, no translocation of IN into nuclei was observed in the presence of Rev-derived peptides. On the other hand, massive nuclear import was observed following infection by a ΔRev virus or in the presence of peptides that promote dissociation of the Rev-IN complex. Our results show that IN is only transiently present within the nuclei of infected cells. Treatment of infected cells with leptomycin B caused nuclear retention of the Rev-IN complex. Removal of the leptomycin from these treated cells resulted in nuclear export of both Rev and IN. On the other hand, disruption of the nuclear located Rev-IN complex resulted in export of only the Rev protein indicating Rev-mediated nuclear export of IN. Our results suggest the involvement of Rev in regulating the integration process by limiting the number of integration events per cell despite the presence of numerous copies of viral cDNA.
Collapse
Affiliation(s)
- Aviad Levin
- Department of Biological Chemistry; The Alexander Silberman Institute of Life Sciences
| | - Zvi Hayouka
- Institute of Chemistry; The Hebrew University of Jerusalem; Jerusalem, Israel
| | - Assaf Friedler
- Institute of Chemistry; The Hebrew University of Jerusalem; Jerusalem, Israel
| | - Abraham Loyter
- Department of Biological Chemistry; The Alexander Silberman Institute of Life Sciences
| |
Collapse
|
8
|
Levin A, Armon-Omer A, Rosenbluh J, Melamed-Book N, Graessmann A, Waigmann E, Loyter A. Inhibition of HIV-1 integrase nuclear import and replication by a peptide bearing integrase putative nuclear localization signal. Retrovirology 2009; 6:112. [PMID: 19961612 PMCID: PMC3224947 DOI: 10.1186/1742-4690-6-112] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 12/05/2009] [Indexed: 02/08/2023] Open
Abstract
Background The integrase (IN) of human immunodeficiency virus type 1 (HIV-1) has been implicated in different steps during viral replication, including nuclear import of the viral pre-integration complex. The exact mechanisms underlying the nuclear import of IN and especially the question of whether it bears a functional nuclear localization signal (NLS) remain controversial. Results Here, we studied the nuclear import pathway of IN by using multiple in vivo and in vitro systems. Nuclear import was not observed in an importin α temperature-sensitive yeast mutant, indicating an importin α-mediated process. Direct interaction between the full-length IN and importin α was demonstrated in vivo using bimolecular fluorescence complementation assay (BiFC). Nuclear import studies in yeast cells, with permeabilized mammalian cells, or microinjected cultured mammalian cells strongly suggest that the IN bears a NLS domain located between residues 161 and 173. A peptide bearing this sequence -NLS-IN peptide- inhibited nuclear accumulation of IN in transfected cell-cycle arrested cells. Integration of viral cDNA as well as HIV-1 replication in viral cell-cycle arrested infected cells were blocked by the NLS-IN peptide. Conclusion Our present findings support the view that nuclear import of IN occurs via the importin α pathway and is promoted by a specific NLS domain. This import could be blocked by NLS-IN peptide, resulting in inhibition of viral infection, confirming the view that nuclear import of the viral pre-integration complex is mediated by viral IN.
Collapse
Affiliation(s)
- Aviad Levin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | | | | | | | | | | | | |
Collapse
|
9
|
Levin A, Rosenbluh J, Hayouka Z, Friedler A, Loyter A. Integration of HIV-1 DNA is regulated by interplay between viral rev and cellular LEDGF/p75 proteins. Mol Med 2009; 16:34-44. [PMID: 19855849 DOI: 10.2119/molmed.2009.00133] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 10/16/2009] [Indexed: 01/11/2023] Open
Abstract
The present work describes a novel interaction between the human immunodeficiency virus type 1 (HIV-1) Rev protein and the cellular lens epithelium-derived growth factor p75 (LEDGF/p75) protein in vitro and in virus-infected cells. Here we show, for the first time, that formation of an Rev-LEDGF/p75 complex is a crucial step in regulating viral cDNA integration. Coimmunoprecipitation experiments at various times after virus infection revealed that, first, an integrase enzyme (IN)-LEDGF/p75 complex is formed, which is then replaced by a Rev-LEDGF/p75 and Rev-IN complexes. This was supported by in vitro experiments showing that Rev promotes dissociation of the IN-LEDGF/p75 complex. Combination of the viral IN and the cellular LEDGF/p75 is required for proper integration of the viral cDNA into the host chromosomal DNA. Our findings demonstrate that integration of HIV-1 cDNA is regulated by an interplay between viral Rev and the host-cell LEDGF/p75 proteins.
Collapse
Affiliation(s)
- Aviad Levin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | |
Collapse
|
10
|
Levin A, Hayouka Z, Brack-Werner R, Volsky DJ, Friedler A, Loyter A. Novel regulation of HIV-1 replication and pathogenicity: Rev inhibition of integration. Protein Eng Des Sel 2009; 22:753-63. [PMID: 19875511 DOI: 10.1093/protein/gzp060] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Following fusion of the human immunodeficiency virus type-1 (HIV-1) with host cells' membrane and reverse transcription of the viral RNA, the resulted cDNA is integrated into the host genome by the viral integrase enzyme (IN). Quantitative estimations have revealed that only 1-2 copies are integrated per infected cell, although many copies of the viral RNA are reverse-transcribed. The molecular mechanism that restricts the integration degree has not, so far, been elucidated. Following integration, expressed partially spliced and unspliced transcripts are exported from the nuclei by the viral Rev protein. Here, we show that in virally infected cells, the Rev interacts with the IN forming a Rev-IN complex and consequently limits the number of integration events. Disruption of the Rev-IN complex by selected IN-derived peptides or infection by a Rev-deficient virus stimulate integration resulting in large numbers of integration event/cell. Conversely, infection of Rev-expression cells blocks integration and inhibits virus production. Increased integration appears to correlate with increased cell death of infected cultures. Our results thus demonstrate a new regulatory function of Rev and probably establish a link between Rev restriction of HIV-1 integration and protection of HIV-1-infected cells from premature cell death.
Collapse
Affiliation(s)
- Aviad Levin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Hydranencephaly is a rare and fatal central nervous system disorder where all or nearly all of the bilateral cerebral hemispheres are absent. The extensive hollow cerebrum is replaced with cerebrospinal fluid. Clinically, the differential diagnoses of hydranencephaly include severe hydrocephalus and alobar holoprosencephaly. Nearly all cases are sporadic, involving approximately 1 in 5000 continuing pregnancies. The exact main cause is still unknown, but hydranencephaly is usually found to develop secondarily to the occlusion of cerebral arteries above the supraclinoid level. We present the case of a 1-month-old male infant with hydranencephaly initially thought to be severely hydrocephalus via routine antenatal intrauterine sonography performed at 35 weeks of gestation. Hydranencephaly was confirmed by brain sonography, brain magnetic resonance imaging and magnetic resonance angiography postnatally. We discuss several imaging features that are helpful in distinguishing hydranencephaly from extreme hydrocephaly. Different theories that have been recently proposed regarding the origin of hydranencephaly are reviewed.
Collapse
|