1
|
Targeting the Inside of Cells with Biologicals: Toxin Routes in a Therapeutic Context. BioDrugs 2023; 37:181-203. [PMID: 36729328 PMCID: PMC9893211 DOI: 10.1007/s40259-023-00580-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 02/03/2023]
Abstract
Numerous toxins translocate to the cytosol in order to fulfil their function. This demonstrates the existence of routes for proteins from the extracellular space to the cytosol. Understanding these routes is relevant to multiple aspects related to therapeutic applications. These include the development of anti-toxin treatments, the potential use of toxins as shuttles for delivering macromolecular cargo to the cytosol or the use of drugs based on toxins. Compared with other strategies for delivery, such as chemicals as carriers for macromolecular delivery or physical methods like electroporation, toxin routes present paths into the cell that potentially cause less damage and can be specifically targeted. The efficiency of delivery via toxin routes is limited. However, low-delivery efficiencies can be entirely sufficient, if delivered cargoes possess an amplification effect or if very few molecules are sufficient for inducing the desired effects. This is known for example from RNA-based vaccines that have been developed during the coronavirus disease 2019 pandemic as well as for other approved RNA-based drugs, which elicited the desired effect despite their typically low delivery efficiencies. The different mechanisms by which toxins enter cells may have implications for their technological utility. We review the mechanistic principles of the translocation pathway of toxins from the extracellular space to the cytosol, the delivery efficiencies, and therapeutic strategies or applications that exploit toxin routes for intracellular delivery.
Collapse
|
2
|
Menge C. The Role of Escherichia coli Shiga Toxins in STEC Colonization of Cattle. Toxins (Basel) 2020; 12:toxins12090607. [PMID: 32967277 PMCID: PMC7551371 DOI: 10.3390/toxins12090607] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 11/20/2022] Open
Abstract
Many cattle are persistently colonized with Shiga toxin-producing Escherichia coli (STEC) and represent a major source of human infections with human-pathogenic STEC strains (syn. enterohemorrhagic E. coli (EHEC)). Intervention strategies most effectively protecting humans best aim at the limitation of bovine STEC shedding. Mechanisms enabling STEC to persist in cattle are only partialy understood. Cattle were long believed to resist the detrimental effects of Shiga toxins (Stxs), potent cytotoxins acting as principal virulence factors in the pathogenesis of human EHEC-associated diseases. However, work by different groups, summarized in this review, has provided substantial evidence that different types of target cells for Stxs exist in cattle. Peripheral and intestinal lymphocytes express the Stx receptor globotriaosylceramide (Gb3syn. CD77) in vitro and in vivo in an activation-dependent fashion with Stx-binding isoforms expressed predominantly at early stages of the activation process. Subpopulations of colonic epithelial cells and macrophage-like cells, residing in the bovine mucosa in proximity to STEC colonies, are also targeted by Stxs. STEC-inoculated calves are depressed in mounting appropriate cellular immune responses which can be overcome by vaccination of the animals against Stxs early in life before encountering STEC. Considering Stx target cells and the resulting effects of Stxs in cattle, which significantly differ from effects implicated in human disease, may open promising opportunities to improve existing yet insufficient measures to limit STEC carriage and shedding by the principal reservoir host.
Collapse
Affiliation(s)
- Christian Menge
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, D-07743 Jena, Germany
| |
Collapse
|
3
|
Goldwater PN. Treatment and prevention of enterohemorrhagicEscherichia coliinfection and hemolytic uremic syndrome. Expert Rev Anti Infect Ther 2014; 5:653-63. [PMID: 17678428 DOI: 10.1586/14787210.5.4.653] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Over a quarter century after the discovery of verocytotoxin and the first report by Karmali and colleagues of cases of postdiarrheal hemolytic uremic syndrome (HUS) caused by verotoxigenic Escherichia coli (VTEC), otherwise known as Shiga-toxigenic E. coli (STEC), successful treatment of these infections has remained elusive. This is because the pathological insult producing the clinical picture of HUS occurs early in the disease process and curtails quickly, making treatment intervention a largely vain hope. Nevertheless, understanding of the pathogenesis of HUS has expanded and, as a result, we can expect a future breakthrough in the treatment of this life-threatening condition. This review examines the pathogenesis of HUS and explores targets for treatment, including the reasons why certain therapies have failed and why future therapies could be successful. This review also examines the status of vaccine development in prevention of VTEC/STEC disease.
Collapse
Affiliation(s)
- Paul N Goldwater
- The Women's & Children's Hospital, North Adelaide, South Australia, Australia.
| |
Collapse
|
4
|
Shi PL, Binnington B, Sakac D, Katsman Y, Ramkumar S, Gariepy J, Kim M, Branch DR, Lingwood C. Verotoxin A subunit protects lymphocytes and T cell lines against X4 HIV infection in vitro. Toxins (Basel) 2012; 4:1517-34. [PMID: 23242319 PMCID: PMC3528260 DOI: 10.3390/toxins4121517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 11/24/2012] [Accepted: 12/06/2012] [Indexed: 11/23/2022] Open
Abstract
Our previous genetic, pharmacological and analogue protection studies identified the glycosphingolipid, Gb3 (globotriaosylceramide, Pk blood group antigen) as a natural resistance factor for HIV infection. Gb3 is a B cell marker (CD77), but a fraction of activated peripheral blood mononuclear cells (PBMCs) can also express Gb3. Activated PBMCs predominantly comprise CD4+ T-cells, the primary HIV infection target. Gb3 is the sole receptor for Escherichia coli verotoxins (VTs, Shiga toxins). VT1 contains a ribosome inactivating A subunit (VT1A) non-covalently associated with five smaller receptor-binding B subunits. The effect of VT on PHA/IL2-activated PBMC HIV susceptibility was determined. Following VT1 (or VT2) PBMC treatment during IL2/PHA activation, the small Gb3+/CD4+ T-cell subset was eliminated but, surprisingly, remaining CD4+ T-cell HIV-1IIIB (and HIV-1Ba-L) susceptibility was significantly reduced. The Gb3-Jurkat T-cell line was similarly protected by brief VT exposure prior to HIV-1IIIB infection. The efficacy of the VT1A subunit alone confirmed receptor independent protection. VT1 showed no binding or obvious Jurkat cell/PBMC effect. Protective VT1 concentrations reduced PBMC (but not Jurkat cell) proliferation by 50%. This may relate to the mechanism of action since HIV replication requires primary T-cell proliferation. Microarray analysis of VT1A-treated PBMCs indicated up regulation of 30 genes. Three of the top four were histone genes, suggesting HIV protection via reduced gene activation. VT blocked HDAC inhibitor enhancement of HIV infection, consistent with a histone-mediated mechanism. We speculate that VT1A may provide a benign approach to reduction of (X4 or R5) HIV cell susceptibility.
Collapse
Affiliation(s)
- Pei Lin Shi
- Department of Biochemistry, University of Toronto, Ontario M5G 1X8, Canada; E-Mail:
- Division of Molecular Structure and Function and Research Institute, The Hospital for Sick Children, Ontario M5G 1X8, Canada; E-Mail:
| | - Beth Binnington
- Division of Molecular Structure and Function and Research Institute, The Hospital for Sick Children, Ontario M5G 1X8, Canada; E-Mail:
| | - Darinka Sakac
- Canadian Blood Services, Toronto, Ontario M5G 2M1, Canada; E-Mails: (D.S.); (Y.K.)
| | - Yulia Katsman
- Canadian Blood Services, Toronto, Ontario M5G 2M1, Canada; E-Mails: (D.S.); (Y.K.)
| | - Stephanie Ramkumar
- Laboratory Medicine & Pathology, University of Toronto, Ontario M5G 1X8, Canada; E-Mails: (S.R.); (M.K.); (D.R.B.)
| | - Jean Gariepy
- Department of Medical Biophysics & Pharmaceutical Sciences, University of Toronto, Ontario M5G 1X8, Canada; E-Mail:
- Sunnybrook Research Institute, Sunnybrook Health Science Centre, Toronto M4N 3M5, Canada
| | - Minji Kim
- Canadian Blood Services, Toronto, Ontario M5G 2M1, Canada; E-Mails: (D.S.); (Y.K.)
- Laboratory Medicine & Pathology, University of Toronto, Ontario M5G 1X8, Canada; E-Mails: (S.R.); (M.K.); (D.R.B.)
| | - Donald R. Branch
- Canadian Blood Services, Toronto, Ontario M5G 2M1, Canada; E-Mails: (D.S.); (Y.K.)
- Laboratory Medicine & Pathology, University of Toronto, Ontario M5G 1X8, Canada; E-Mails: (S.R.); (M.K.); (D.R.B.)
- Department of Medicine, University of Toronto, Ontario M5G 1X8, Canada
- Division of Cell and Molecular Biology, Toronto General Research Institute of the University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Clifford Lingwood
- Department of Biochemistry, University of Toronto, Ontario M5G 1X8, Canada; E-Mail:
- Division of Molecular Structure and Function and Research Institute, The Hospital for Sick Children, Ontario M5G 1X8, Canada; E-Mail:
- Laboratory Medicine & Pathology, University of Toronto, Ontario M5G 1X8, Canada; E-Mails: (S.R.); (M.K.); (D.R.B.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-416-813-5998; Fax: +1-416-813-5993
| |
Collapse
|
5
|
Attempts to express the A1-GMCSF immunotoxin in the baculovirus expression vector system. Biosci Biotechnol Biochem 2012; 76:749-54. [PMID: 22484943 DOI: 10.1271/bbb.110862] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Immunotoxins are fusion proteins consisting of two elements, a targeting and a toxin moiety, and are designed for specific elimination of tumor cells. Previously we expressed a recombinant fusion protein consisting of the toxic fragment of Shiga toxin (A1) and GMCSF (A1-GMCSF) in Escherichia coli, and evaluated its cytotoxic properties in acute myeloid leukemia and colon carcinoma cell lines. In view of the specific cytotoxic effects of this immunotoxin, further detailed in-vitro and preclinical studies were undertaken. Large amounts of the recombinant protein of high purity and free of unwanted side products, such as lipopolysaccharides (LPS), were required. Since GMCSF is of mammalian origin and it requires proper disulfide bond formation, we intended to use the baculovirus expression vector system (BEVS) for the expression of the recombinant fusion protein. However, despite previous reports on the expression of several other immunotoxins by this system, the A1 derived fusion proteins revealed an inhibitory effect on baculoviral particle formation and even caused cell death in insect cells. This observation was further pursued and confirmed by the use of other baculoviral specific promoters. The salient features of this finding are described below.
Collapse
|
6
|
Abstract
Ricin and Shiga toxins designated as ribosome inactivating proteins (RIPs) are RNA N-glycosidases that depurinate a specific adenine (A₄₃₂₄ in rat 28S rRNA) in the conserved α-sarcin/ricin loop of the large rRNA, inhibiting protein synthesis. Evidence obtained from a number of studies suggests that interaction with ribosomal proteins plays an important role in the catalytic activity and ribosome specificity of RIPs. This review summarizes the recent developments in identification of the ribosomal proteins that interact with ricin and Shiga toxins and the principles governing these interactions.
Collapse
Affiliation(s)
- Nilgun E Tumer
- Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901-8520, USA.
| | | |
Collapse
|
7
|
Abstract
Enterohemorrhagic Escherichia coli serotype O157:H7 is a pathotype of diarrheagenic E. coli that produces one or more Shiga toxins, forms a characteristic histopathology described as attaching and effacing lesions, and possesses the large virulence plasmid pO157. The bacterium is recognized worldwide, especially in developed countries, as an emerging food-borne bacterial pathogen, which causes disease in humans and in some animals. Healthy cattle are the principal and natural reservoir of E. coli O157:H7, and most disease outbreaks are, therefore, due to consumption of fecally contaminated bovine foods or dairy products. In this review, we provide a general overview of E. coli O157:H7 infection, especially focusing on the bacterial characteristics rather than on the host responses during infection.
Collapse
Affiliation(s)
- Jang W Yoon
- Division of Molecular and Life Science, Hanyang University, Ansan 426-791, Korea
| | | |
Collapse
|