1
|
Genotyping and Molecular Diagnosis of Hepatitis A Virus in Human Clinical Samples Using Multiplex PCR-Based Next-Generation Sequencing. Microorganisms 2022; 10:microorganisms10010100. [PMID: 35056549 PMCID: PMC8779169 DOI: 10.3390/microorganisms10010100] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 02/04/2023] Open
Abstract
Hepatitis A virus (HAV) is a serious threat to public health worldwide. We used multiplex polymerase chain reaction (PCR)-based next-generation sequencing (NGS) to derive information on viral genetic diversity and conduct precise phylogenetic analysis. Four HAV genome sequences were obtained using multiplex PCR-based NGS. HAV whole-genome sequence of one sample was obtained by conventional Sanger sequencing. The HAV strains demonstrated a geographic cluster with sub-genotype IA strains in the Republic of Korea. The phylogenetic pattern of HAV viral protein (VP) 3 region showed no phylogenetic conflict between the whole-genome and partial-genome sequences. The VP3 region in serum and stool samples showed sensitive detection of HAV with differences of quantification that did not exceed <10 copies/μL than the consensus VP4 region using quantitative PCR (qPCR). In conclusion, multiplex PCR-based NGS was implemented to define HAV genotypes using nearly whole-genome sequences obtained directly from hepatitis A patients. The VP3 region might be a potential candidate for tracking the genotypic origin of emerging HAV outbreaks. VP3-specific qPCR was developed for the molecular diagnosis of HAV infection. This study may be useful to predict for the disease management and subsequent development of hepatitis A infection at high risk of severe illness.
Collapse
|
2
|
Abe H, Ushijima Y, Bikangui R, Ondo GN, Zadeh VR, Pemba CM, Mpingabo PI, Igasaki Y, de Vries SG, Grobusch MP, Loembe MM, Agnandji ST, Lell B, Yasuda J. First evidence for continuous circulation of hepatitis A virus subgenotype IIA in Central Africa. J Viral Hepat 2020; 27:1234-1242. [PMID: 32564517 PMCID: PMC7586949 DOI: 10.1111/jvh.13348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 05/30/2020] [Accepted: 06/08/2020] [Indexed: 12/22/2022]
Abstract
Although a high seroprevalence of antibodies against hepatitis A virus (HAV) has been estimated in Central Africa, the current status of both HAV infections and seroprevalence of anti-HAV antibodies remains unclear due to a paucity of surveillance data available. We conducted a serological survey during 2015-2017 in Gabon, Central Africa, and confirmed a high seroprevalence of anti-HAV antibodies in all age groups. To identify the currently circulating HAV strains and to reveal the epidemiological and genetic characteristics of the virus, we conducted molecular surveillance in a total of 1007 patients presenting febrile illness. Through HAV detection and sequencing, we identified subgenotype IIA (HAV-IIA) infections in the country throughout the year. A significant prevalence trend emerged in the young child population, presenting several infection peaks which appeared to be unrelated to dry or rainy seasons. Whole-genome sequencing and phylogenetic analyses revealed local HAV-IIA evolutionary events in Central Africa, indicating the circulation of HAV-IIA strains of a region-specific lineage. Recombination analysis of complete genome sequences revealed potential recombination events in Gabonese HAV strains. Interestingly, Gabonese HAV-IIA possibly acquired the 5'-untranslated region (5'-UTR) of the rare subgenotype HAV-IIB in recent years, suggesting the present existence of HAV-IIB in Central Africa. These findings indicate a currently stable HAV-IIA circulation in Gabon, with a high risk of infections in children aged under 5 years. Our findings will enhance the understanding of the current status of HAV infections in Central Africa and provide new insight into the molecular epidemiology and evolution of HAV genotype II.
Collapse
Affiliation(s)
- Haruka Abe
- Department of Emerging Infectious DiseasesInstitute of Tropical Medicine (NEKKEN)Nagasaki UniversityNagasakiJapan
| | - Yuri Ushijima
- Department of Emerging Infectious DiseasesInstitute of Tropical Medicine (NEKKEN)Nagasaki UniversityNagasakiJapan
| | - Rodrigue Bikangui
- Centre de Recherches Médicales de LambarénéLambarénéGabon,Institute for Tropical MedicineUniversity of TübingenTübingenGermany
| | | | - Vahid R. Zadeh
- Department of Emerging Infectious DiseasesInstitute of Tropical Medicine (NEKKEN)Nagasaki UniversityNagasakiJapan,Graduate School of Biomedical SciencesNagasaki UniversityNagasakiJapan
| | - Christelle M. Pemba
- Department of Emerging Infectious DiseasesInstitute of Tropical Medicine (NEKKEN)Nagasaki UniversityNagasakiJapan,Graduate School of Biomedical SciencesNagasaki UniversityNagasakiJapan
| | - Patrick I. Mpingabo
- Department of Emerging Infectious DiseasesInstitute of Tropical Medicine (NEKKEN)Nagasaki UniversityNagasakiJapan,Graduate School of Biomedical SciencesNagasaki UniversityNagasakiJapan
| | - Yui Igasaki
- Department of Emerging Infectious DiseasesInstitute of Tropical Medicine (NEKKEN)Nagasaki UniversityNagasakiJapan
| | - Sophia G. de Vries
- Centre de Recherches Médicales de LambarénéLambarénéGabon,Division of Internal MedicineDepartment of Infectious DiseasesCenter of Tropical Medicine and Travel MedicineAmsterdam University Medical CentersUniversity of AmsterdamAmsterdamNetherlands
| | - Martin P. Grobusch
- Centre de Recherches Médicales de LambarénéLambarénéGabon,Institute for Tropical MedicineUniversity of TübingenTübingenGermany,Division of Internal MedicineDepartment of Infectious DiseasesCenter of Tropical Medicine and Travel MedicineAmsterdam University Medical CentersUniversity of AmsterdamAmsterdamNetherlands
| | | | - Selidji T. Agnandji
- Centre de Recherches Médicales de LambarénéLambarénéGabon,Institute for Tropical MedicineUniversity of TübingenTübingenGermany
| | - Bertrand Lell
- Centre de Recherches Médicales de LambarénéLambarénéGabon,Division of Infectious Diseases and Tropical MedicineMedical University of ViennaViennaAustria
| | - Jiro Yasuda
- Department of Emerging Infectious DiseasesInstitute of Tropical Medicine (NEKKEN)Nagasaki UniversityNagasakiJapan,Graduate School of Biomedical SciencesNagasaki UniversityNagasakiJapan,National Research Center for the Control and Prevention of Infectious Diseases (CCPID)Nagasaki UniversityNagasakiJapan
| |
Collapse
|
3
|
Investigation of the Complete Sequence of HAV1B Isolated in Ahvaz City, Iran. Jundishapur J Microbiol 2019. [DOI: 10.5812/jjm.83965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
4
|
Bai H, Shiota T, Yoshizaki S, Saito-Obata M, Malbas FF, Lupisan SP, Oshitani H, Takeda N, Muramatsu M, Wakita T, Ishii K, Li TC. Detection of Subgenotype IA and IIIA Hepatitis A Viruses in Rivers Flowing through Metro Manila, the Philippines. Jpn J Infect Dis 2018; 72:53-55. [PMID: 30175732 DOI: 10.7883/yoken.jjid.2018.148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hepatitis A virus (HAV) is a common infectious etiology of acute hepatitis worldwide. The Philippines remains highly endemic for hepatitis A, but there is still a lack of information about HAV in the country. To evaluate the HAV contamination in environmental water in the Philippines, we conducted the detection and genetic analyses of HAV RNA in samples from river water. Twelve water samples were collected at 6 sampling sites of 3 rivers in Metro Manila, in both the dry and wet seasons in 2012 and 2013. The HAV RNA was detected in all the 6 samples collected in the dry season, and in one sample from the wet season. Phylogenetic analysis confirmed that the HAV strains detected in the river water included multiple sequences belonging to subgenotypes IA and IIIA. This indicates that at least 2 genotypes of the HAV strains are circulating in the environment in the Philippines, posing a risk of HAV infection to not only residents, but also tourists, especially in the dry season.
Collapse
Affiliation(s)
- Huimin Bai
- Department of Basic Medicine and Forensic Medicine, Baotou Medical College, Baotou Inner Mongolia
| | - Tomoyuki Shiota
- Department of Virology II, National Institute of Infectious Diseases
| | - Sayaka Yoshizaki
- Department of Virology II, National Institute of Infectious Diseases
| | - Mariko Saito-Obata
- Department of Virology, Tohoku University Graduate School of Medicine.,RITM-Tohoku Collaborating Research Center on Emerging and Re-Emerging Infectious Diseases
| | | | | | - Hitoshi Oshitani
- Department of Virology, Tohoku University Graduate School of Medicine.,RITM-Tohoku Collaborating Research Center on Emerging and Re-Emerging Infectious Diseases
| | - Naokazu Takeda
- Research Institute for Microbial Diseases, Osaka University
| | | | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases
| | - Koji Ishii
- Department of Virology II, National Institute of Infectious Diseases
| | - Tian-Cheng Li
- Department of Virology II, National Institute of Infectious Diseases
| |
Collapse
|
5
|
Malhotra B, Kanwar A, Reddy PVJ, Chauhan A, Tiwari J, Bhargava S, Verma HN. Molecular characterization of hepatitis A virus from children hospitalized at a tertiary care centre in northwest India. Indian J Med Res 2018; 147:507-512. [PMID: 30082576 PMCID: PMC6094522 DOI: 10.4103/ijmr.ijmr_1910_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background & objectives: Hepatitis A virus (HAV) infection is a major cause of childhood hepatitis, prevalent worldwide. HAV is classified into seven genotypes I-VII; genotypes III and I are the most common among humans. The present work was carried out to identify the genotypes prevalent in children suspected to have acute viral hepatitis (AVH), hospitalized at a tertiary care centre in northwest India. Methods: A total of 1269 blood samples from children (0-15 yr of age) clinically suspected of viral hepatitis were screened for anti-HAV IgM. Acute phase serum was processed for RNA extraction and amplified by nested polymerase chain reaction (PCR) followed by sequencing of representative samples. Results: Among the 1269 samples tested, 642 (50.59%) were positive for anti-HAV IgM; among the positive samples, 171 patients having a history of less than seven days were tested by PCR, of whom 141 (82.45%) were found to be PCR positive. Nucleotide sequencing of a representative 44 samples showed high homology; all the samples were found to be of genotype IIIA. Interpretation & conclusions: Hepatitis A was prevalent during July to September and in predominantly children less than five years age. Only genotype IIIA was detected in all the samples.
Collapse
Affiliation(s)
- Bharti Malhotra
- Advanced Basic Sciences & Clinical Research Laboratory, Department of Microbiology & Immunology, Sawai Man Singh Medical College, Jaipur, India
| | - Anu Kanwar
- Advanced Basic Sciences & Clinical Research Laboratory, Department of Microbiology & Immunology, Sawai Man Singh Medical College, Jaipur, India
| | - P V Janardhan Reddy
- Advanced Basic Sciences & Clinical Research Laboratory, Department of Microbiology & Immunology, Sawai Man Singh Medical College, Jaipur, India
| | - Aradhana Chauhan
- Advanced Basic Sciences & Clinical Research Laboratory, Department of Microbiology & Immunology, Sawai Man Singh Medical College, Jaipur, India
| | - Jitendra Tiwari
- Advanced Basic Sciences & Clinical Research Laboratory, Department of Microbiology & Immunology, Sawai Man Singh Medical College, Jaipur, India
| | - Shipra Bhargava
- Advanced Basic Sciences & Clinical Research Laboratory, Department of Microbiology & Immunology, Sawai Man Singh Medical College, Jaipur, India
| | - H N Verma
- School of Life & Basic Sciences, Jaipur National University, Jaipur, India
| |
Collapse
|
6
|
Full-length genome characterization and quasispecies distribution of hepatitis A virus isolates in China. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.virep.2015.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
7
|
Tsatsralt-Od B, Baasanjav N, Nyamkhuu D, Ohnishi H, Takahashi M, Kobayashi T, Nagashima S, Nishizawa T, Okamoto H. Molecular analysis of hepatitis A virus strains obtained from patients with acute hepatitis A in Mongolia, 2004-2013. J Med Virol 2015; 88:622-30. [PMID: 26369542 DOI: 10.1002/jmv.24380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2015] [Indexed: 01/22/2023]
Abstract
Despite the high endemicity of hepatitis A virus (HAV) in Mongolia, the genetic information on those HAV strains is limited. Serum samples obtained from 935 patients with acute hepatitis in Ulaanbaatar, Mongolia during 2004-2013 were tested for the presence of HAV RNA using reverse transcription-PCR with primers targeting the VP1-2B region (481 nucleotides, primer sequences at both ends excluded). Overall, 180 patients (19.3%) had detectable HAV RNA. These 180 isolates shared 94.6-100% identity and formed four phylogenetic clusters within subgenotype IA. One or three representative HAV isolates from each cluster exhibited 2.6-3.9% difference between clusters over the entire genome. Cluster 1 accounted for 65.0% of the total, followed by Cluster 2 (30.6%), Cluster 3 (3.3%), and Cluster 4 (1.1%). Clusters 1 and 2 were predominant throughout the observation period, whereas Cluster 3 was undetectable in 2009 and 2013 and Cluster 4 became undetectable after 2009. The Mongolian HAV isolates were closest to those of Chinese or Japanese origin (97.7-98.5% identities over the entire genome), suggesting the evolution from a common ancestor with those circulating in China and Japan. Further molecular epidemiological analyses of HAV infection are necessary to investigate the factors underlying the spread of HAV and to implement appropriate prevention measures in Mongolia.
Collapse
Affiliation(s)
- Bira Tsatsralt-Od
- National Institute of Medicine, Ministry of Health and Ministry of Science Education, Ulaanbaatar, Mongolia.,National Center for Communicable Diseases, Ministry of Health, Ulaanbaatar, Mongolia
| | - Nachin Baasanjav
- National Institute of Medicine, Ministry of Health and Ministry of Science Education, Ulaanbaatar, Mongolia
| | - Dulmaa Nyamkhuu
- National Center for Communicable Diseases, Ministry of Health, Ulaanbaatar, Mongolia
| | - Hiroshi Ohnishi
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Masaharu Takahashi
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Tominari Kobayashi
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Shigeo Nagashima
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Tsutomu Nishizawa
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi, Japan
| |
Collapse
|
8
|
Suzuki K, Kataoka K, Miyamoto Y, Miyasaka A, Kumagai I, Takikawa Y, Takahashi M, Okamoto H. Clinical and molecular analyses of sporadic acute hepatitis A and E and the specific viral genotypes isolated in Iwate and three neighboring prefectures in the northern part of Honshu, Japan, between 2004 and 2013. Hepatol Res 2015; 45:714-727. [PMID: 25146162 DOI: 10.1111/hepr.12406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 07/31/2014] [Accepted: 08/19/2014] [Indexed: 02/08/2023]
Abstract
AIM To examine the prevalence and characteristics of hepatitis A virus (HAV) and hepatitis E virus (HEV) infections in the northern part of Honshu, Japan, during the last decade. METHODS Using the registration system of a prospective cohort study for acute liver injury (ALI) in Iwate and three neighboring prefectures, we examined the prevalence of sporadic acute hepatitis (AH) with HAV (AH-A) and HEV (AH-E) and the distribution of viral genotypes in 487 patients diagnosed with ALI between 2004 and 2013. RESULTS Among all 487 patients, 135 (28%) had ALI with viral infection. In the cases with viral ALI, the prevalence of hepatitis B virus-related AH was highest (55.6%). AH-E was seen in 23 patients (17.0%) and its prevalence was higher than that of AH-A (10 patients, 7.4%). There were no appreciable differences in the prevalence of AH-A and AH-E between 2004-2008 and 2009-2013. However, subgenotype IIIA HAV homologous to Korean strains has recently emerged, and the number of AH-E cases seems to be increasing. HEV genotype 3 was predominant throughout the observation period, but HEV genotype 4 was found in three patients after 2010. The transmission routes of HAV and HEV infections were unknown in approximately 60% of the patients. CONCLUSION In the northern part of Honshu, Japan, HEV has been more frequently implicated in the development of AH than HAV, and HEV genotype 4 has been recently increasing. To provide an effective prophylactic management for HAV and HEV infections, further clarification of the transmission routes is needed.
Collapse
Affiliation(s)
- Kazuyuki Suzuki
- Department of Nutritional Science, Morioka University, Morioka, Japan.,Division of Hepatology, Department of Internal Medicine, Iwate Medical University, Morioka, Japan
| | - Kojiro Kataoka
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University, Morioka, Japan
| | - Yasuhiro Miyamoto
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University, Morioka, Japan
| | - Akio Miyasaka
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University, Morioka, Japan
| | - Ichiro Kumagai
- Department of Internal Medicine, Morioka City Hospital, Morioka, Japan
| | - Yasuhiro Takikawa
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University, Morioka, Japan
| | - Masaharu Takahashi
- Division of Virology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| |
Collapse
|
9
|
Lee GC, Kim MJ, Nam S, Lee CH. Incidence and molecular characterization of hepatitis A viruses in Korean surface water between 2007 and 2010. Microbiol Immunol 2014; 58:342-51. [DOI: 10.1111/1348-0421.12151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 04/01/2014] [Accepted: 04/14/2014] [Indexed: 01/30/2023]
Affiliation(s)
- Gyu-Cheol Lee
- Water Analysis and Research Center; K-water, 200 Sintanjin-ro Daedeok-gu Daejeon 306-711 Korea
| | - Min-Jeong Kim
- Water Analysis and Research Center; K-water, 200 Sintanjin-ro Daedeok-gu Daejeon 306-711 Korea
| | - Sehee Nam
- Water Analysis and Research Center; K-water, 200 Sintanjin-ro Daedeok-gu Daejeon 306-711 Korea
| | - Chan Hee Lee
- Department of Microbiology; College of Natural Sciences; Chungbuk National University; 52 Naesudong-ro Heungdeok-gu Cheongju Chungbuk 361-763 Korea
| |
Collapse
|
10
|
Watanabe S, Isoda N, Ohtake T, Hirosawa T, Morimoto N, Aoki K, Ohnishi H, Takahashi M, Sugano K, Okamoto H. Full genome analysis of Philippine indigenous subgenotype IA hepatitis A virus strains from Japanese patients with imported acute hepatitis A. Hepatol Res 2014; 44:270-279. [PMID: 23607583 DOI: 10.1111/hepr.12124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 02/08/2023]
Abstract
AIM Hepatitis A virus (HAV) is the most common cause of infectious hepatitis worldwide. Although hepatitis A cases imported from South-East Asian countries, including the Philippines, have been reported in Japan, the molecular epidemiological data have been limited for these HAV-endemic countries. METHODS The full-length genomic sequences of HAV isolates were determined and subjected to the phylogenetic analyses. RESULTS The HAV isolates (HA12-0796 and HA12-0938) obtained from two Japanese patients who developed acute hepatitis A in July 2012, 1 month after traveling to the Philippines, where they consumed undercooked shellfish, differed by only one nucleotide (nt) over the entire genome. These HAV isolates of genotype IA were 99.1-99.5% identical within 228-237 nt to those recovered from river water in the Philippines, suggesting that the HA12-0796 and HA12-0938 isolates represent HAV circulating in the Philippines. HAV isolates belonging to one of the two IA sublineages (IA-2) which were implicated in some of the mini-epidemics in 2010 in Japan are hypothesized to be connected with the Philippines. In support of this speculation, the present IA isolates (HA12-0796 and HA12-0938) shared 98.8% identity over the entire genome with one IA-2 isolate (HAJIH-Fukuo10) recovered from a Japanese female who developed a domestic HAV infection during the mini-epidemics. In the phylogenetic tree constructed based on the entire genome, these three isolates (HA12-0796, HA12-0938 and HAJIH-Fukuo10) segregated into a cluster with a bootstrap value of 100%. CONCLUSION These results indicate that HAV isolates belonging to the IA-2 lineage might have been imported from the Philippines.
Collapse
Affiliation(s)
- Shunji Watanabe
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Vaughan G, Goncalves Rossi LM, Forbi JC, de Paula VS, Purdy MA, Xia G, Khudyakov YE. Hepatitis A virus: host interactions, molecular epidemiology and evolution. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2014; 21:227-243. [PMID: 24200587 DOI: 10.1016/j.meegid.2013.10.023] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 10/25/2013] [Accepted: 10/26/2013] [Indexed: 12/16/2022]
Abstract
Infection with hepatitis A virus (HAV) is the commonest viral cause of liver disease and presents an important public health problem worldwide. Several unique HAV properties and molecular mechanisms of its interaction with host were recently discovered and should aid in clarifying the pathogenesis of hepatitis A. Genetic characterization of HAV strains have resulted in the identification of different genotypes and subtypes, which exhibit a characteristic worldwide distribution. Shifts in HAV endemicity occurring in different parts of the world, introduction of genetically diverse strains from geographically distant regions, genotype displacement observed in some countries and population expansion detected in the last decades of the 20th century using phylogenetic analysis are important factors contributing to the complex dynamics of HAV infections worldwide. Strong selection pressures, some of which, like usage of deoptimized codons, are unique to HAV, limit genetic variability of the virus. Analysis of subgenomic regions has been proven useful for outbreak investigations. However, sharing short sequences among epidemiologically unrelated strains indicates that specific identification of HAV strains for molecular surveillance can be achieved only using whole-genome sequences. Here, we present up-to-date information on the HAV molecular epidemiology and evolution, and highlight the most relevant features of the HAV-host interactions.
Collapse
Affiliation(s)
- Gilberto Vaughan
- Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, GA, United States.
| | | | - Joseph C Forbi
- Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Vanessa S de Paula
- Laboratory of Viral Hepatitis, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Michael A Purdy
- Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Guoliang Xia
- Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Yury E Khudyakov
- Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|
12
|
Mulyanto, Wibawa IDN, Suparyatmo JB, Amirudin R, Ohnishi H, Takahashi M, Nishizawa T, Okamoto H. The complete genomes of subgenotype IA hepatitis A virus strains from four different islands in Indonesia form a phylogenetic cluster. Arch Virol 2013; 159:935-45. [PMID: 24212885 DOI: 10.1007/s00705-013-1874-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 08/30/2013] [Indexed: 10/26/2022]
Abstract
Despite the high endemicity of hepatitis A virus (HAV) in Indonesia, genetic information on those HAV strains is limited. Serum samples obtained from 76 individuals during outbreaks of hepatitis A in Jember (East Java) in 2006 and Tangerang (West Java) in 2007 and those from 82 patients with acute hepatitis in Solo (Central Java), Denpasar on Bali Island, Mataram on Lombok Island, and Makassar on Sulawesi Island in 2003 or 2007 were tested for the presence of HAV RNA by reverse transcription PCR with primers targeting the VP1-2B region (481 nucleotides, primer sequences at both ends excluded). Overall, 34 serum samples had detectable HAV RNA, including at least one viremic sample from each of the six regions. These 34 strains were 96.3-100 % identical to each other and formed a phylogenetic cluster within genotype IA. Six representative HAV isolates from each region shared 98.3-98.9 % identity over the entire genome and constituted a IA sublineage with a bootstrap value of 100 %, consisting of only Indonesian strains. HAV strains recovered from Japanese patients who were presumed to have contracted HAV infection while visiting Indonesia were closest to the Indonesian IA HAV strains obtained in the present study, with a high identity of 99.5-99.7 %, supporting the Indonesian origin of the imported strains. These results indicate that genetic analysis of HAV strains indigenous to HAV-endemic countries, including Indonesia, are useful for tracing infectious sources in imported cases of acute hepatitis A and for defining the epidemiological features of HAV infection in that country.
Collapse
Affiliation(s)
- Mulyanto
- Immunobiology Laboratory, Faculty of Medicine, University of Mataram, Mataram, Indonesia
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Picornaviruses have some of the highest nucleotide substitution rates among viruses, but there have been no comparisons of evolutionary rates within this broad family. We combined our own Bayesian coalescent analyses of VP1 regions from four picornaviruses with 22 published VP1 rates to produce the first within-family meta-analysis of viral evolutionary rates. Similarly, we compared our rate estimates for the RNA polymerase 3D(pol) gene from five viruses to four published 3D(pol) rates. Both a structural and a nonstructural gene show that enteroviruses are evolving, on average, a half order of magnitude faster than members of other genera within the Picornaviridae family.
Collapse
|
14
|
Cao J, Bi S, Meng Q, Shen L, Zheng H, Zhang Y. Genotyping of acute hepatitis a virus isolates from China, 2003-2008. J Med Virol 2011; 83:1134-41. [PMID: 21520140 DOI: 10.1002/jmv.22086] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2011] [Indexed: 11/12/2022]
Abstract
Hepatitis A virus (HAV) is usually transmitted by an oral-fecal route and is prevalent not only in developing countries but also in developed countries. In the present study, the phylogenetic characterization of the VP1/2A junction region (321 nucleotides) of China HAV isolates was examined. Anti-HAV IgM-positive serum samples were collected from 8 provinces, including 20 cities or counties in China from 2003 to 2008; 337 isolates from 406 HAV patients' serum samples were amplified by RT-PCR, sequenced at the VP1/2A junction region and aligned with the published sequences from GenBank to establish phylogenetic analysis. All China HAV isolates in this study belonged to genotype I, with 98.8% (333/337) of samples clustering in sub-genotype IA and 1.2% (4/337) in sub-genotype IB. In addition, sub-genotype IA isolates clustered into four groups (92.7-100% nucleotide identity), and the samples collected from all China HAV isolates in this investigation showed 87.5-100% nucleotide identity, but the amino acids in this region were more conserved (95.2-100% identity). Few unique amino acid changes could be deduced (VP1-253: Glu → Gly; 2A-34: Pro → Ala; 2A-33: Leu → Phe). Genetically identical or similar HAV strains existed in some investigated areas in China during different years, suggesting that an indigenous strain has been circulating in those regions. This report provides new data on the genetic relatedness and molecular epidemiology of HAV isolates from China as well as the distribution of sub-genotype IA and IB in this part of the world.
Collapse
Affiliation(s)
- Jingyuan Cao
- State Key Laboratory for Molecular Virology & Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping Qu, Beijing, PR China.
| | | | | | | | | | | |
Collapse
|
15
|
Belalov IS, Isaeva OV, Lukashev AN. Recombination in hepatitis A virus: evidence for reproductive isolation of genotypes. J Gen Virol 2011; 92:860-72. [DOI: 10.1099/vir.0.024786-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
16
|
Desbois D, Couturier E, Graube A, Letort MJ, Dussaix E, Roque-Afonso AM. [Genetic diversity of a rare hepatitis A virus genotype]. ACTA ACUST UNITED AC 2010; 59:57-65. [PMID: 20822864 DOI: 10.1016/j.patbio.2010.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 08/02/2010] [Indexed: 11/19/2022]
Abstract
PURPOSE OF THE STUDY Very few is known on genotype II hepatitis A virus (HAV) since it is rarely isolated. From 2002 to 2007, the French observatory of HAV identified six sub-genotype IIA strains of which one from a patient having travelled to West Africa. To investigate the possible African origin of sub-genotype IIA, we determined its prevalence among French travellers in 2008 and characterised its genetic variability. PATIENTS AND METHODS The 2008 mandatory notification records were screened for travel to Africa. Viral genotype was determined on the nucleotide sequencing of the VP1/2A junction region. The P1 region coding for capsid proteins was used to compare the genetic diversity of IIA isolates to those of other genotypes. RESULTS In 2008, five out of 54 patients returning from West Africa were infected by IIA strains and an additional "autochthonous" case was identified. Two more African cases were identified in 2009. A total of 14 IIA isolates (eight African and six "autochthonous") were analysed. Nucleotide and amino-acid variability of IIA sequences was lower than that of the other genotypes. Phylogenetic analysis revealed the clustering of two "autochthonous" cases with African isolates whereas the other ones belonged to a different lineage. CONCLUSION Most IIA strains isolated in France are imported by travellers returning from West Africa. However, the unexplained contamination mode of some "autochthonous" cases suggests another geographical origin to discover or a French reservoir to explore.
Collapse
Affiliation(s)
- D Desbois
- Laboratoire de virologie, centre national de Référence pour les virus des hépatites à transmission entérique, hôpital Paul-Brousse, AP-HP, 94804 Villejuif, France.
| | | | | | | | | | | |
Collapse
|
17
|
Epidemiology and genetic characterization of hepatitis A virus genotype IIA. J Clin Microbiol 2010; 48:3306-15. [PMID: 20592136 DOI: 10.1128/jcm.00667-10] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Three hepatitis A virus (HAV) genotypes, I, II, and III, divided into subtypes A and B, infect humans. Genotype I is the most frequently reported, while genotype II is hardly ever isolated, and its genetic diversity is unknown. From 2002 to 2007, a French epidemiological survey of HAV identified 6 IIA isolates, mostly from patients who did not travel abroad. The possible African origin of IIA strains was investigated by screening the 2008 mandatory notification records of HAV infection: 171 HAV strains from travelers to West Africa and Morocco were identified. Genotyping was performed by sequencing of the VP1/2A junction in 68 available sera. Entire P1 and 5' untranslated regions of IIA strains were compared to reference sequences of other genotypes. The screening retrieved 5 imported IIA isolates. An additional autochthonous case and 2 more African cases were identified in 2008 and 2009, respectively. A total of 14 IIA isolates (8 African and 6 autochthonous) were analyzed. IIA sequences presented lower nucleotide and amino acid variability than other genotypes. The highest variability was observed in the N-terminal region of VP1, while for other genotypes the highest variability was observed at the VP1/2A junction. Phylogenetic analysis identified 2 clusters, one gathering all African and two autochthonous cases and a second including only autochthonous isolates. In conclusion, most IIA strains isolated in France are imported by travelers returning from West Africa. However, the unexplained contamination mode of autochthonous cases suggests another, still to be discovered geographical origin or a French reservoir to be explored.
Collapse
|
18
|
Rapid detection of anti-hepatitis A virus neutralizing antibodies in a microplate enzyme immunoassay. J Med Microbiol 2009; 58:1433-1436. [DOI: 10.1099/jmm.0.012203-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The slow growth of hepatitis A virus (HAV) in cell culture is one of the primary pitfalls in the development of sensitive and rapid methods for the detection and quantification of HAV and associated neutralizing antibodies. Currently, in vitro assays frequently require 8 days or more to detect and quantify the presence of HAV neutralizing antibodies. This study describes a rapid immunoassay that allowed the detection of anti-HAV neutralizing antibodies in only 3 days. This microplate-based enzymic assay may be applicable in virological diagnostics, in evaluating the immunogenicity of HAV vaccines and in quantifying neutralizing antibodies during the course of HAV infection.
Collapse
|
19
|
Kulkarni MA, Walimbe AM, Cherian S, Arankalle VA. Full length genomes of genotype IIIA Hepatitis A Virus strains (1995-2008) from India and estimates of the evolutionary rates and ages. INFECTION GENETICS AND EVOLUTION 2009; 9:1287-94. [PMID: 19723592 DOI: 10.1016/j.meegid.2009.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 08/21/2009] [Accepted: 08/24/2009] [Indexed: 10/20/2022]
Abstract
With the changing epidemiology, outbreaks of Hepatitis A Virus (HAV) have been reported from different parts of India. To characterize HAV strains circulating in India (1995-2008), 6 full genome sequences of the predominant genotype, IIIA, were determined. Further, applying the Bayesian Markov Chain Monte Carlo (MCMC) framework to the full genomes of Indian HAV strains as well as other global strains (human as well as simian), we derived the mean nucleotide substitution rate and evolutionary timescales with emphasis on the age of genotype III and IIIA strains. The genomic length of all the 6 HAV isolates was 7464 nt excluding the poly A tract. Phylogenetic analysis confirmed that all the Indian isolates were close to Nor-21 (AJ299464) and HMH (AY644337) of subgenotype IIIA. The ORF of the isolates when compared within genotype III at amino acid level showed a highly conserved pattern. Under the best fit expansion population relaxed molecular clock model, the estimated mean substitution rate of the HAV full genomes (human and simian strains) was 1.73 x 10(-4) substitutions/site/year based on which the earliest transmission of HAV from simian to humans is estimated to have occurred about 3564 years ago. The mean substitution rate within human HAV full genomes under the same model was estimated to be 1.99 x 10(-4) substitutions/site/year. With this the mean age of genotype III strains was estimated to be 592 years while that of genotype IIIA was estimated to be 202 years. The time to the most common recent ancestor (tMRCA) of the Indian genotype IIIA isolates was calculated to be 116 years.
Collapse
Affiliation(s)
- M A Kulkarni
- National Institute of Virology, 130/1, Sus Road, Pashan, Pune 411021, India
| | | | | | | |
Collapse
|
20
|
Analysis of the full-length genome of hepatitis A virus isolated in South America: heterogeneity and evolutionary constraints. Arch Virol 2008; 153:1473-8. [PMID: 18594941 DOI: 10.1007/s00705-008-0151-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 05/26/2008] [Indexed: 01/19/2023]
Abstract
Hepatitis A virus (HAV) is a hepatotropic member of the family Picornaviridae. Currently, the entire nucleotide sequence is available for only 26 HAV isolates. The complete genome sequence of genotype IA HAV from strains isolated in South America, where genotype IA is the most prevalent genotype, remains unknown. In this study, the complete nucleotide sequence was determined for a genotype IA HAV isolate recovered from a Uruguayan patient (HAV5). Phylogenetic analysis performed using HAV5 and all available full-length IA genotype HAV strains revealed a high synonymous substitution rate throughout the HAV polyprotein. The results of these studies revealed strong selection against amino acid replacements along the HAV polyprotein and may explain, at least in part, the presence of a single HAV serotype.
Collapse
|