1
|
Tang Q, Tang J, Chen C, Zhu F, Yu Q, Chen H, Chen L, Ma S, Chen K, Li G. Bombyx mori RPL13 participates in UV-induced DNA damage repair of B. mori nucleopolyhedrovirus through interaction with Bm65. INSECT MOLECULAR BIOLOGY 2024; 33:638-649. [PMID: 38801334 DOI: 10.1111/imb.12928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/01/2024] [Indexed: 05/29/2024]
Abstract
Ribosomal protein L13 (RPL13) is highly conserved in evolution. At present, the properties and functions of RPL13 have not been characterised in insects. In this study, Bombyx mori RPL13 (BmRPL13) was first found to be specifically recruited to the sites of ultraviolet (UV)-induced DNA damage and contributed to UV damage repair. Escherichia coli expressing BmRPL13 showed better resistance to UV radiation. After knocking down the expression of BmRPL13 in BmN cells, the repair speed of UV-damaged DNA slowed down. The further results showed that BmRPL13 interacted with B. mori nucleopolyhedrovirus (BmNPV) ORF65 (Bm65) protein to locate at the UV-induced DNA damage sites of BmNPV and helped repair UV-damaged viral DNA.
Collapse
Affiliation(s)
- Qi Tang
- Department of Biological Sciences, School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Jingjing Tang
- Department of Biological Sciences, School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ceru Chen
- Department of Biological Sciences, School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Feifei Zhu
- Department of Biological Sciences, School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Qian Yu
- Department of Biological Sciences, School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Huiqing Chen
- Department of Biological Sciences, School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Liang Chen
- Department of Biological Sciences, School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Shangshang Ma
- Department of Biological Sciences, School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Keping Chen
- Department of Biological Sciences, School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Guohui Li
- Department of Biological Sciences, School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
2
|
Regulatory Mechanisms, Protein Expression and Biological Activity of Photolyase Gene from Spodoptera littoralis Granulovirus Genome. Mol Biotechnol 2023; 65:433-440. [PMID: 35980593 PMCID: PMC9935652 DOI: 10.1007/s12033-022-00537-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/12/2022] [Indexed: 10/15/2022]
Abstract
One of the most important factor that affects the efficient using of baculoviruses as a biopesticide is their sensitivity to UV irradiation. In this study, a photolyase gene (phr) of 1.4 kbp DNA fragment was cloned and characterized from Spodoptera littoralis granulovirus, an Egyptian isolate (SpliGV-EG1). A sequence of 466 amino acid were deduced when the gene was completely sequenced with a predicted molecular mass of ~ 55 kDa. Transcriptional regulation analyses revealed that phr transcripts were detected early at 6-h post-infection (hpi) and remained detectable until 72 hpi, suggesting their transcriptional regulation from a putative early promoter motif. An approximately ~ 55 kDa protein fragment was expressed from phr-induced bacterial culture and detected by SDS-PAGE and western blotting. In addition, direct exposure to UV irradiation resulted in a twofold decrease in SpliGV-EG1 occlusion bodies activation compared with Spodoptera littoralis nucleopolyhedrovirus (SpliNPV) occlusion bodies which decreased with about 129-fold after exposure to UV irradiation based on median lethal concentration value (LC50). The obtained results suggested that the presence of photolyase gene possibly alters the inactivation of SpliGV-EG1-occluded bodies by UV irradiation. These results support the role and application of the photolyase protein to improve the damaged DNA repair mechanism as well as resistance of SpliGV to UV light inactivation.
Collapse
|
3
|
BmNPV Orf 65 (Bm65) Is Identified as an Endonuclease Directly Facilitating UV-Induced DNA Damage Repair. J Virol 2022; 96:e0055722. [PMID: 35862702 PMCID: PMC9327686 DOI: 10.1128/jvi.00557-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Baculoviruses have been used as biopesticides for the control of Lepidoptera larvae. However, solar UV radiation reduces the activity of baculovirus. In this study, an UV endonuclease, Bm65, was found encoded in the genome of Bombyx mori nuclear polyhedrosis virus (BmNPV). Bm65 (the ortholog of AcMNPV orf79) was guided by a key nuclear localization signal to enter the nucleus and accumulated at UV-induced DNA damage sites. Subsequent results further showed that Bm65-mediated DNA damage repair was not the only UV damage repair pathway of BmNPV. BmNPV also used host DNA repair proteins to repair UV-induced DNA damage. In summary, these results revealed that Bm65 was very important in UV-induced DNA damage repair of BmNPV, and BmNPV repaired UV-damaged DNA through a variety of ways. IMPORTANCE Baculovirus biopesticides are environmentally friendly insecticides and specifically infect invertebrates. UV radiation from the sunlight greatly reduces the activity of baculovirus biopesticides. However, the molecular mechanisms of most baculoviruses to repair UV-induced DNA damage remain unclear. Nucleotide excision repair (NER) is a major DNA repair pathway that removes UV-induced DNA lesions. At present, there are few reports about the nucleotide excision repair pathway in viruses. Here, we showed for the first time that the baculovirus Bm65 endonuclease actually cleaved UV-damaged DNA. Meanwhile, we found that BmNPV used both viral-encoded enzymes and host DNA damage repair proteins to reverse UV-induced DNA damage. These results will provide a reference for the research of UV damage repair of other viruses.
Collapse
|
4
|
Mwanza P, Jukes M, Dealtry G, Lee M, Moore S. Selection for and Analysis of UV-Resistant Cryptophlebia Leucotreta Granulovirus-SA as a Biopesticide for Thaumatotibia leucotreta. Viruses 2021; 14:28. [PMID: 35062232 PMCID: PMC8780862 DOI: 10.3390/v14010028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/31/2022] Open
Abstract
Cryptophlebia leucotreta granulovirus-SA (CrleGV-SA) is used as a commercial biopesticide for the false codling moth, Thaumatotibia leucotreta, in citrus and other crops. The virus is sensitive to UV irradiation from sunlight, which reduces its efficacy as a biopesticide in the field. We selected a UV-resistant CrleGV-SA isolate, with more than a thousand-fold improved virulence compared to the wild-type isolate, measured by comparing LC50 values. CrleGV-SA purified from infected T. leucotreta larvae was exposed to UV irradiation under controlled laboratory conditions in a climate chamber mimicking field conditions. Five cycles of UV exposure, followed by propagating the virus that retained infectivity in vivo with re-exposure to UV, were conducted to isolate and select for UV-resistant virus. Serial dilution bioassays were conducted against neonates after each UV exposure cycle. The concentration-responses of the infectious UV-exposed virus populations were compared by probit analysis with those from previous cycles and from the original CrleGV-SA virus population. NGS sequences of CrleGV-SA samples from UV exposure cycle 1 and cycle 5 were compared with the GenBank CrleGV-SA sequence. Changes in the genomes of infective virus from cycles 1 and 5 generated SNPs thought to be responsible for establishing UV tolerance. Additional SNPs, detected only in the cycle 5 sequence, may enhance UV tolerance and improve the virulence of the UV-tolerant population.
Collapse
Affiliation(s)
- Patrick Mwanza
- Department of Physiology, Nelson Mandela University, Gqeberha 6031, South Africa;
| | - Michael Jukes
- Centre for Biological Control, Department of Zoology and Entomology, Rhodes University, Makhanda 6139, South Africa; (M.J.); (S.M.)
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa
| | - Gill Dealtry
- Department of Physiology, Nelson Mandela University, Gqeberha 6031, South Africa;
| | - Michael Lee
- Centre for HRTEM, Nelson Mandela University, Gqeberha 6001, South Africa;
| | - Sean Moore
- Centre for Biological Control, Department of Zoology and Entomology, Rhodes University, Makhanda 6139, South Africa; (M.J.); (S.M.)
- Citrus Research International, Gqeberha 6065, South Africa
| |
Collapse
|
5
|
Tang Q, Chen F, Wu P, Qiu L, Chen H, Chen K, Li G. BmNPV infection correlates with the enhancement of the resistance of Bombyx mori cells to UV radiation. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 102:e21598. [PMID: 31290186 DOI: 10.1002/arch.21598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/31/2019] [Accepted: 06/18/2019] [Indexed: 06/09/2023]
Abstract
At present, the effect of ultraviolet (UV) radiation on the interaction between Bombyx mori nucleopolyhedrovirus (BmNPV) and host remains unclear. In the current study, UV treatment significantly reduced the activity of BmNPV budded viruses (BVs), and UV-damaged BmN cells were not conducive to BmNPV proliferation. BmNPV infection significantly reduced the viability of host cells, but increased the viability of high-dose UV-treated host cells. Furthermore, the quantitative reverse-transcription PCR (qPCR) results suggested that BmNPV and Bombyx mori might mutually use the same DNA repair proteins for repairing UV-induced damage and BmNPV infection promote the ability of host cells to repair UV-induced damage.
Collapse
Affiliation(s)
- Qi Tang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Fangying Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Peng Wu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Lipeng Qiu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Huiqing Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Guohui Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
6
|
Harrison RL, Rowley DL, Mowery JD, Bauchan GR, Burand JP. The Operophtera brumata Nucleopolyhedrovirus (OpbuNPV) Represents an Early, Divergent Lineage within Genus Alphabaculovirus. Viruses 2017; 9:v9100307. [PMID: 29065456 PMCID: PMC5691658 DOI: 10.3390/v9100307] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/12/2017] [Accepted: 10/17/2017] [Indexed: 12/16/2022] Open
Abstract
Operophtera brumata nucleopolyhedrovirus (OpbuNPV) infects the larvae of the winter moth, Operophtera brumata. As part of an effort to explore the pesticidal potential of OpbuNPV, an isolate of this virus from Massachusetts (USA)-OpbuNPV-MA-was characterized by electron microscopy of OpbuNPV occlusion bodies (OBs) and by sequencing of the viral genome. The OBs of OpbuNPV-MA consisted of irregular polyhedra and contained virions consisting of a single rod-shaped nucleocapsid within each envelope. Presumptive cypovirus OBs were also detected in sections of the OB preparation. The OpbuNPV-MA genome assembly yielded a circular contig of 119,054 bp and was found to contain little genetic variation, with most polymorphisms occurring at a frequency of < 6%. A total of 130 open reading frames (ORFs) were annotated, including the 38 core genes of Baculoviridae, along with five homologous repeat (hr) regions. The results of BLASTp and phylogenetic analysis with selected ORFs indicated that OpbuNPV-MA is not closely related to other alphabaculoviruses. Phylogenies based on concatenated core gene amino acid sequence alignments placed OpbuNPV-MA on a basal branch lying outside other alphabaculovirus clades. These results indicate that OpbuNPV-MA represents a divergent baculovirus lineage that appeared early during the diversification of genus Alphabaculovirus.
Collapse
Affiliation(s)
- Robert L Harrison
- Invasive Insect Biocontrol and Behavior Laboratory, Beltsville Agricultural Research Center, USDA Agricultural Research Service, Beltsville, MD 20705, USA.
| | - Daniel L Rowley
- Invasive Insect Biocontrol and Behavior Laboratory, Beltsville Agricultural Research Center, USDA Agricultural Research Service, Beltsville, MD 20705, USA.
| | - Joseph D Mowery
- Electron and Confocal Microscopy Unit, Beltsville Agricultural Research Center, USDA Agricultural Research Service, Beltsville, MD 20705, USA.
| | - Gary R Bauchan
- Electron and Confocal Microscopy Unit, Beltsville Agricultural Research Center, USDA Agricultural Research Service, Beltsville, MD 20705, USA.
| | - John P Burand
- Department of Microbiology, University of Massachusetts-Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
7
|
Tang Q, Wu P, Hu Z, Yang Y, Qiu L, Liu H, Zhu S, Guo Z, Xia H, Chen K, Li G. Evidence for the role of BmNPV Bm65 protein in the repair of ultraviolet-induced DNA damage. J Invertebr Pathol 2017; 149:82-86. [PMID: 28797905 DOI: 10.1016/j.jip.2017.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/31/2017] [Accepted: 08/05/2017] [Indexed: 12/13/2022]
Abstract
It is unclear how, or to what extent, baculovirus DNA that has been damaged by ultraviolet (UV) light is repaired during infection and replication. In our previous study, expression of Bombyx mori nucleopolyhedrovirus (BmNPV) ORF Bm65, a homolog of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ac79, correlated with decreased inactivation of virus by UV irradiation. In the current study, we accumulated more evidence pointing to a role for Bm65 in repair of UV-induced DNA damage. The localization of Bm65 was studied using enhanced green fluorescent protein (EGFP) fusion constructs expressed in BmN cells transfected with a Bm65 expression plasmid. The results indicate that Bm65-EGFP accumulates in the nucleus. A host cell reactivation assay showed that Bm65 significantly increased the expression of UV-damaged mCherry reporter gene. An assay measuring cyclobutane pyrimidine dimers (CPDs) in UV-irradiated BmN cells found that CPD quantity was decreased in cells transfected with a Bm65 expression plasmid. We also showed that after UVC treatment, the viability of Bm65-transfected cells was higher than that of egfp-transfected cells. These results suggest that Bm65 may be involved in the repair of baculovirus DNA that has been damaged by UV light.
Collapse
Affiliation(s)
- Qi Tang
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China
| | - Peng Wu
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China
| | - Zhaoyang Hu
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China
| | - Yanhua Yang
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China
| | - Lipeng Qiu
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China
| | - Hanqing Liu
- Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China
| | - Shanying Zhu
- School of the Environment and Safety Engineering, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China
| | - Zhongjian Guo
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China
| | - Hengchuan Xia
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China.
| | - Guohui Li
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China.
| |
Collapse
|
8
|
Rabalski L, Krejmer-Rabalska M, Skrzecz I, Wasag B, Szewczyk B. An alphabaculovirus isolated from dead Lymantria dispar larvae shows high genetic similarity to baculovirus previously isolated from Lymantria monacha - An example of adaptation to a new host. J Invertebr Pathol 2016; 139:56-66. [PMID: 27451947 DOI: 10.1016/j.jip.2016.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/19/2016] [Accepted: 07/21/2016] [Indexed: 12/20/2022]
Abstract
A new isolate of baculovirus, Lymantria dispar multiple nucleopolyhedrovirus-BNP (LdMNPV-BNP), was found in dead gypsy moth (L. dispar) caterpillars collected in the Biebrzanski National Park in Poland. Here, we examined its biological activity, structure, genetic content and phylogeny. Multiple nucleocapsids of LdMNPV-BNP are enveloped together in 2-26 virions embedded in occluded bodies (OBs) very similar to the OBs previously described in viruses infecting Lymantriinae. This isolate kills pest larvae in a relatively short time (LT50 of approximately 9days for a dose of 2×10(7)OBs/ml), highlighting the possibility for its use as a biopesticide. Next-generation sequencing of LdMNPV-BNP revealed gene content (e.g. DNA photolyase) that is not present in any LdMNPV isolate sequenced to date. The genome is 157,270 base pairs long and has a notably lower G+C content in comparison to other LdMNPVs (50.3% G+C content compared to an average of 57.4% among other LdMNPVs). According to our phylogenetic analysis based on 37 core genes, LdMNPV-BNP is a member of group II alphabaculoviruses, which are closely related to LdMNPV and LyxyMNPV (Lymantria xylina multiple nucleopolyhedrovirus). Molecular evolution inference based on the partial sequence of lef-8, lef-9 and polh genes shows that LdMNPV-BNP and isolates of Lymantria monacha nucleopolyhedrovirus (LymoNPV) may share a very recent common ancestor or be isolates of the same virus species. LdMNPV-BNP, like other baculoviruses, could be beneficial as an active component of biopesticides that can be used during forest integrated pest management.
Collapse
Affiliation(s)
- Lukasz Rabalski
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Laboratory of Recombinant Vaccines, Abrahama Str. 58, 80-307 Gdansk, Poland.
| | - Martyna Krejmer-Rabalska
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Laboratory of Recombinant Vaccines, Abrahama Str. 58, 80-307 Gdansk, Poland.
| | - Iwona Skrzecz
- Forest Research Institute, Department of Forest Protection, Raszyn Braci Lesnej Str. 3, 05-090 Sekocin Stary, Poland.
| | - Bartosz Wasag
- Medical University of Gdansk, Department of Biology and Genetics, Debinki Str. 1, 80-211 Gdansk, Poland.
| | - Boguslaw Szewczyk
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Laboratory of Recombinant Vaccines, Abrahama Str. 58, 80-307 Gdansk, Poland.
| |
Collapse
|
9
|
Physiology, Biochemistry, and Applications of F420- and Fo-Dependent Redox Reactions. Microbiol Mol Biol Rev 2016; 80:451-93. [PMID: 27122598 DOI: 10.1128/mmbr.00070-15] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
5-Deazaflavin cofactors enhance the metabolic flexibility of microorganisms by catalyzing a wide range of challenging enzymatic redox reactions. While structurally similar to riboflavin, 5-deazaflavins have distinctive and biologically useful electrochemical and photochemical properties as a result of the substitution of N-5 of the isoalloxazine ring for a carbon. 8-Hydroxy-5-deazaflavin (Fo) appears to be used for a single function: as a light-harvesting chromophore for DNA photolyases across the three domains of life. In contrast, its oligoglutamyl derivative F420 is a taxonomically restricted but functionally versatile cofactor that facilitates many low-potential two-electron redox reactions. It serves as an essential catabolic cofactor in methanogenic, sulfate-reducing, and likely methanotrophic archaea. It also transforms a wide range of exogenous substrates and endogenous metabolites in aerobic actinobacteria, for example mycobacteria and streptomycetes. In this review, we discuss the physiological roles of F420 in microorganisms and the biochemistry of the various oxidoreductases that mediate these roles. Particular focus is placed on the central roles of F420 in methanogenic archaea in processes such as substrate oxidation, C1 pathways, respiration, and oxygen detoxification. We also describe how two F420-dependent oxidoreductase superfamilies mediate many environmentally and medically important reactions in bacteria, including biosynthesis of tetracycline and pyrrolobenzodiazepine antibiotics by streptomycetes, activation of the prodrugs pretomanid and delamanid by Mycobacterium tuberculosis, and degradation of environmental contaminants such as picrate, aflatoxin, and malachite green. The biosynthesis pathways of Fo and F420 are also detailed. We conclude by considering opportunities to exploit deazaflavin-dependent processes in tuberculosis treatment, methane mitigation, bioremediation, and industrial biocatalysis.
Collapse
|
10
|
Craveiro SR, Inglis PW, Togawa RC, Grynberg P, Melo FL, Ribeiro ZMA, Ribeiro BM, Báo SN, Castro MEB. The genome sequence of Pseudoplusia includens single nucleopolyhedrovirus and an analysis of p26 gene evolution in the baculoviruses. BMC Genomics 2015; 16:127. [PMID: 25765042 PMCID: PMC4346127 DOI: 10.1186/s12864-015-1323-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 02/04/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pseudoplusia includens single nucleopolyhedrovirus (PsinSNPV-IE) is a baculovirus recently identified in our laboratory, with high pathogenicity to the soybean looper, Chrysodeixis includens (Lepidoptera: Noctuidae) (Walker, 1858). In Brazil, the C. includens caterpillar is an emerging pest and has caused significant losses in soybean and cotton crops. The PsinSNPV genome was determined and the phylogeny of the p26 gene within the family Baculoviridae was investigated. RESULTS The complete genome of PsinSNPV was sequenced (Roche 454 GS FLX - Titanium platform), annotated and compared with other Alphabaculoviruses, displaying a genome apparently different from other baculoviruses so far sequenced. The circular double-stranded DNA genome is 139,132 bp in length, with a GC content of 39.3 % and contains 141 open reading frames (ORFs). PsinSNPV possesses the 37 conserved baculovirus core genes, 102 genes found in other baculoviruses and 2 unique ORFs. Two baculovirus repeat ORFs (bro) homologs, bro-a (Psin33) and bro-b (Psin69), were identified and compared with Chrysodeixis chalcites nucleopolyhedrovirus (ChchNPV) and Trichoplusia ni single nucleopolyhedrovirus (TnSNPV) bro genes and showed high similarity, suggesting that these genes may be derived from an ancestor common to these viruses. The homologous repeats (hrs) are absent from the PsinSNPV genome, which is also the case in ChchNPV and TnSNPV. Two p26 gene homologs (p26a and p26b) were found in the PsinSNPV genome. P26 is thought to be required for optimal virion occlusion in the occlusion bodies (OBs), but its function is not well characterized. The P26 phylogenetic tree suggests that this gene was obtained from three independent acquisition events within the Baculoviridae family. The presence of a signal peptide only in the PsinSNPV p26a/ORF-20 homolog indicates distinct function between the two P26 proteins. CONCLUSIONS PsinSNPV has a genomic sequence apparently different from other baculoviruses sequenced so far. The complete genome sequence of PsinSNPV will provide a valuable resource, contributing to studies on its molecular biology and functional genomics, and will promote the development of this virus as an effective bioinsecticide.
Collapse
Affiliation(s)
- Saluana R Craveiro
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, W5 Norte Final, 70770-917, Brasília, DF, Brazil.
- Departamento de Biologia Celular, Universidade de Brasília-UnB, Brasília, DF, Brazil.
| | - Peter W Inglis
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, W5 Norte Final, 70770-917, Brasília, DF, Brazil.
| | - Roberto C Togawa
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, W5 Norte Final, 70770-917, Brasília, DF, Brazil.
| | - Priscila Grynberg
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, W5 Norte Final, 70770-917, Brasília, DF, Brazil.
| | - Fernando L Melo
- Departamento de Biologia Celular, Universidade de Brasília-UnB, Brasília, DF, Brazil.
| | - Zilda Maria A Ribeiro
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, W5 Norte Final, 70770-917, Brasília, DF, Brazil.
| | - Bergmann M Ribeiro
- Departamento de Biologia Celular, Universidade de Brasília-UnB, Brasília, DF, Brazil.
| | - Sônia N Báo
- Departamento de Biologia Celular, Universidade de Brasília-UnB, Brasília, DF, Brazil.
| | - Maria Elita B Castro
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, W5 Norte Final, 70770-917, Brasília, DF, Brazil.
| |
Collapse
|
11
|
Yang YT, Lee DY, Wang Y, Hu JM, Li WH, Leu JH, Chang GD, Ke HM, Kang ST, Lin SS, Kou GH, Lo CF. The genome and occlusion bodies of marine Penaeus monodon nudivirus (PmNV, also known as MBV and PemoNPV) suggest that it should be assigned to a new nudivirus genus that is distinct from the terrestrial nudiviruses. BMC Genomics 2014; 15:628. [PMID: 25063321 PMCID: PMC4132918 DOI: 10.1186/1471-2164-15-628] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/03/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Penaeus monodon nudivirus (PmNV) is the causative agent of spherical baculovirosis in shrimp (Penaeus monodon). This disease causes significant mortalities at the larval stage and early postlarval (PL) stage and may suppress growth and reduce survival and production in aquaculture. The nomenclature and classification status of PmNV has been changed several times due to morphological observation and phylogenetic analysis of its partial genome sequence. In this study, we therefore completed the genome sequence and constructed phylogenetic trees to clarify PmNV's taxonomic position. To better understand the characteristics of the occlusion bodies formed by this marine occluded virus, we also compared the chemical properties of the polyhedrin produced by PmNV and the baculovirus AcMNPV (Autographa californica nucleopolyhedrovirus). RESULTS We used next generation sequencing and traditional PCR methods to obtain the complete PmNV genome sequence of 119,638 bp encoding 115 putative ORFs. Phylogenetic tree analysis showed that several PmNV genes and sequences clustered with the non-occluded nudiviruses and not with the baculoviruses. We also investigated the characteristics of PmNV polyhedrin, which is a functionally important protein and the major component of the viral OBs (occlusion bodies). We found that both recombinant PmNV polyhedrin and wild-type PmNV OBs were sensitive to acid conditions, but unlike the baculoviral OBs, they were not susceptible to alkali treatment. CONCLUSIONS From the viral genome features and phylogenetic analysis we conclude that PmNV is not a baculovirus, and that it should be assigned to the proposed Nudiviridae family with the other nudiviruses, but into a distinct new genus (Gammanudivirus).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Guang-Hsiung Kou
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.
| | | |
Collapse
|
12
|
Craveiro SR, Melo FL, Ribeiro ZMA, Ribeiro BM, Báo SN, Inglis PW, Castro MEB. Pseudoplusia includens single nucleopolyhedrovirus: genetic diversity, phylogeny and hypervariability of the pif-2 gene. J Invertebr Pathol 2013; 114:258-67. [PMID: 24012501 DOI: 10.1016/j.jip.2013.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 08/16/2013] [Accepted: 08/22/2013] [Indexed: 11/30/2022]
Abstract
The soybean looper (Pseudoplusia includens Walker, 1857) has become a major pest of soybean crops in Brazil. In order to determine the genetic diversity and phylogeny of variants of Pseudoplusia includens single nucleopolyhedrovirus (PsinSNPV-IA to -IG), partial sequences of the genes lef-8, lef-9, pif-2, phr and polh were obtained following degenerate PCR and phylogenetic trees constructed using maximum parsimony and Bayesian methods. The aligned sequences showed polymorphisms among the isolates, where the pif-2 gene was by far the most variable and is predicted to be under positive selection. Furthermore, some of the pif-2 DNA sequence mutations are predicted to result in significant amino acid substitutions, possibly leading to changes in oral infectivity of this baculovirus. Cladistic analysis revealed two closely related monophyletic groups, one containing PsinNPV isolates IB, IC and ID and another containing isolates IA, IE, IF and IG. The phylogeny of PsinSNPV in relation to 56 other baculoviruses was also determined from the concatenated partial LEF-8, LEF-9, PIF-2 and POLH/GRAN deduced amino acid sequences, using maximum-parsimony and Bayesian methods. This analysis clearly places PsinSNPV with the Group II Alphabaculovirus, where PsinSNPV is most closely related to Chrysodeixis chalcites NPV and Trichoplusia ni SNPV.
Collapse
Affiliation(s)
- Saluana R Craveiro
- Departamento de Biologia Celular, Universidade de Brasília-UnB, Brasília, DF, Brazil; Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, W5 Norte Final, 70770-917 Brasília, DF, Brazil
| | | | | | | | | | | | | |
Collapse
|
13
|
Biernat MA, Ros VID, Vlak JM, van Oers MM. Baculovirus cyclobutane pyrimidine dimer photolyases show a close relationship with lepidopteran host homologues. INSECT MOLECULAR BIOLOGY 2011; 20:457-464. [PMID: 21477200 DOI: 10.1111/j.1365-2583.2011.01076.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Cyclobutane pyrimidine dimer (CPD) photolyases repair ultraviolet (UV)-induced DNA damage using blue light. To get insight in the origin of baculovirus CPD photolyase (phr) genes, homologues in the lepidopteran insects Chrysodeixis chalcites, Spodoptera exigua and Trichoplusia ni were identified and characterized. Lepidopteran and baculovirus phr genes each form a monophyletic group, and together form a well-supported clade within the insect photolyases. This suggests that baculoviruses obtained their phr genes from an ancestral lepidopteran insect host. A likely evolutionary scenario is that a granulovirus, Spodoptera litura GV or a direct ancestor, obtained a phr gene. Subsequently, it was horizontally transferred from this granulovirus to several group II nucleopolyhedroviruses (NPVs), including those that infect noctuids of the Plusiinae subfamily.
Collapse
Affiliation(s)
- M A Biernat
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | | | | | | |
Collapse
|
14
|
Rowley DL, Popham HJ, Harrison RL. Genetic variation and virulence of nucleopolyhedroviruses isolated worldwide from the heliothine pests Helicoverpa armigera, Helicoverpa zea, and Heliothis virescens. J Invertebr Pathol 2011; 107:112-26. [DOI: 10.1016/j.jip.2011.03.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 03/07/2011] [Accepted: 03/17/2011] [Indexed: 10/18/2022]
|
15
|
Xu F, Ince IA, Boeren S, Vlak JM, van Oers MM. Protein composition of the occlusion derived virus of Chrysodeixis chalcites nucleopolyhedrovirus. Virus Res 2011; 158:1-7. [PMID: 21354223 DOI: 10.1016/j.virusres.2011.02.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 02/17/2011] [Accepted: 02/17/2011] [Indexed: 11/27/2022]
Abstract
Chrysodeixis chalcites nucleopolyhedrovirus (ChchNPV) is a group II NPV and its genome has 151 predicted open reading frames. In this study, the protein composition of ChchNPV occlusion derived virus (ODV) was determined by LC-MS/MS. Fifty-three proteins were identified in ChchNPV ODV particles. One ODV-protein is encoded by a gene so far unique to ChchNPV (Chch105). The two DNA photolyases PHR1 and PHR2, which are characteristic for ChchNPV and thought to be involved in repairing UV damage in viral DNA, were not detected in the ODVs. Comparison of the ODV proteins identified in ChchNPV and in three other baculoviruses enabled the identification of ten conserved ODV proteins (ODV-E18, ODV-E56, ODV-EC27, ODV-EC43, P6.9, P33, P49, P74, GP41, and VP39). In addition, the baculovirus per os infectivity factors PIF1, PIF2 and PIF3 were all detected in ChchNPV and these should be considered as conserved ODV proteins as well as they are absolutely required for oral infection. With the LC-MS/MS method used 22 viral proteins were detected, which were not identified as ODV proteins in previous studies.
Collapse
Affiliation(s)
- Fang Xu
- Laboratory of Virology, Wageningen University, P.O. Box 629, 6700 AP Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
16
|
Nalcacioglu R, Dizman YA, Vlak JM, Demirbag Z, van Oers MM. Amsacta moorei entomopoxvirus encodes a functional DNA photolyase (AMV025). J Invertebr Pathol 2010; 105:363-5. [DOI: 10.1016/j.jip.2010.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 06/22/2010] [Accepted: 06/25/2010] [Indexed: 10/19/2022]
|
17
|
Xu F, Lynn DE, Roode EC, Muñoz D, van Lent JW, Vlak JM, van Oers MM. Establishment of a cell line from Chrysodeixis chalcites permissive for Chrysodeixis chalcites and Trichoplusia ni nucleopolyhedrovirus. J Invertebr Pathol 2010; 105:56-62. [DOI: 10.1016/j.jip.2010.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 05/04/2010] [Accepted: 05/10/2010] [Indexed: 11/25/2022]
|
18
|
Xu F, Vlak JM, Eker APM, van Oers MM. DNA photolyases of Chrysodeixis chalcites nucleopolyhedrovirus are targeted to the nucleus and interact with chromosomes and mitotic spindle structures. J Gen Virol 2009; 91:907-14. [PMID: 19955559 DOI: 10.1099/vir.0.018044-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cyclobutane pyrimidine dimer (CPD) photolyases convert UV-induced CPDs in DNA into monomers using visible light as the energy source. Two phr genes encoding class II CPD photolyases PHR1 and PHR2 have been identified in Chrysodeixis chalcites nucleopolyhedrovirus (ChchNPV). Transient expression assays in insect cells showed that PHR1-EGFP fusion protein was localized in the nucleus. Early after transfection, PHR2-EGFP was distributed over the cytoplasm and nucleus but, over time, it became localized predominantly in the nucleus. Immunofluorescence analysis with anti-PHR2 antiserum showed that, early after transfection, non-fused PHR2 was already present mainly in the nucleus, suggesting that the fusion of PHR2 to EGFP hindered its nuclear import. Both PHR-EGFP fusion proteins strongly colocalized with chromosomes and spindle, aster and midbody structures during host-cell mitosis. When PHR2-EGFP-transfected cells were superinfected with Autographa californica multiple-nucleocapsid NPV (AcMNPV), the protein colocalized with virogenic stroma, the replication factories of baculovirus DNA. The collective data support the supposition that the PHR2 protein plays a role in baculovirus DNA repair.
Collapse
Affiliation(s)
- Fang Xu
- Laboratory of Virology, Wageningen University, PO Box 629, 6700 AP Wageningen, The Netherlands
| | | | | | | |
Collapse
|
19
|
The archaeal cofactor F0 is a light-harvesting antenna chromophore in eukaryotes. Proc Natl Acad Sci U S A 2009; 106:11540-5. [PMID: 19570997 DOI: 10.1073/pnas.0812665106] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Archae possess unique biochemical systems quite distinct from the pathways present in eukaryotes and eubacteria. 7,8-Dimethyl-8-hydroxy-5deazaflavin (F(0)) and F(420) are unique deazaflavin-containing coenzyme and methanogenic signature molecules, essential for a variety of biochemical transformations associated with methane biosynthesis and light-dependent DNA repair. The deazaflavin cofactor system functions during methane biosynthesis as a low-potential hydrid shuttle F(420)/F(420)H(2). In DNA photolyase repair proteins, the deazaflavin cofactor is in the deprotonated state active as a light-collecting energy transfer pigment. As such, it converts blue sunlight into energy used by the proteins to drive an essential repair process. Analysis of a eukaryotic (6-4) DNA photolyase from Drosophila melanogaster revealed a binding pocket, which tightly binds F(0). Residues in the pocket activate the cofactor by deprotonation so that light absorption and energy transfer are switched on. The crystal structure of F(0) in complex with the D. melanogaster protein shows the atomic details of F(0) binding and activation, allowing characterization of the residues involved in F(0) activation. The results show that the F(0)/F(420) coenzyme system, so far believed to be strictly limited to the archael kingdom of life, is far more widespread than anticipated. Analysis of a D. melanogaster extract and of a DNA photolyase from the primitive eukaryote Ostreococcus tauri provided direct proof for the presence of the F(0) cofactor also in higher eukaryotes.
Collapse
|
20
|
Active DNA photolyase encoded by a baculovirus from the insect Chrysodeixis chalcites. DNA Repair (Amst) 2008; 7:1309-18. [PMID: 18547877 DOI: 10.1016/j.dnarep.2008.04.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 04/21/2008] [Accepted: 04/21/2008] [Indexed: 10/22/2022]
Abstract
The genome of Chrysodeixis chalcites nucleopolyhedrovirus (ChchNPV) contains two open reading frames, Cc-phr1 and Cc-phr2, which encode putative class II CPD-DNA photolyases. CPD-photolyases repair UV-induced pyrimidine cyclobutane dimers using visible light as an energy source. Expression of Cc-phr2 provided photolyase deficient Escherichia coli cells with photoreactivating activity indicating that Cc-phr2 encodes an active photolyase. In contrast, Cc-phr1 did not rescue the photolyase deficiency. Cc-phr2 was overexpressed in E. coli and the resulting photolyase was purified till apparent homogeneity. Spectral measurements indicated the presence of FAD, but a second chromophore appeared to be absent. Recombinant Cc-phr2 photolyase was found to bind specifically F0 (8-hydroxy-7,8-didemethyl-5-deazariboflavin), which is an antenna chromophore present in various photolyases.. After reconstitution, FAD and F0 were present in approximately equimolar amounts. In reconstituted photolyase the F0 chromophore is functionally active as judged from the increase in the in vitro repair activity. This study demonstrates for the first time that a functional photolyase is encoded by an insect virus, which may have implications for the design of a new generation of baculoviruses with improved performance in insect pest control.
Collapse
|