1
|
Li B, Jiang AY, Raji I, Atyeo C, Raimondo TM, Gordon AGR, Rhym LH, Samad T, MacIsaac C, Witten J, Mughal H, Chicz TM, Xu Y, McNamara RP, Bhatia S, Alter G, Langer R, Anderson DG. Enhancing the immunogenicity of lipid-nanoparticle mRNA vaccines by adjuvanting the ionizable lipid and the mRNA. Nat Biomed Eng 2025; 9:167-184. [PMID: 37679571 DOI: 10.1038/s41551-023-01082-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/27/2023] [Indexed: 09/09/2023]
Abstract
To elicit optimal immune responses, messenger RNA vaccines require intracellular delivery of the mRNA and the careful use of adjuvants. Here we report a multiply adjuvanted mRNA vaccine consisting of lipid nanoparticles encapsulating an mRNA-encoded antigen, optimized for efficient mRNA delivery and for the enhanced activation of innate and adaptive responses. We optimized the vaccine by screening a library of 480 biodegradable ionizable lipids with headgroups adjuvanted with cyclic amines and by adjuvanting the mRNA-encoded antigen by fusing it with a natural adjuvant derived from the C3 complement protein. In mice, intramuscular or intranasal administration of nanoparticles with the lead ionizable lipid and with mRNA encoding for the fusion protein (either the spike protein or the receptor-binding domain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)) increased the titres of antibodies against SARS-CoV-2 tenfold with respect to the vaccine encoding for the unadjuvanted antigen. Multiply adjuvanted mRNA vaccines may improve the efficacy, safety and ease of administration of mRNA-based immunization.
Collapse
MESH Headings
- Animals
- Mice
- Nanoparticles/chemistry
- SARS-CoV-2/immunology
- SARS-CoV-2/genetics
- RNA, Messenger/immunology
- RNA, Messenger/genetics
- RNA, Messenger/administration & dosage
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- COVID-19/prevention & control
- COVID-19/immunology
- Lipids/chemistry
- Adjuvants, Immunologic
- Female
- mRNA Vaccines/immunology
- Antibodies, Viral/immunology
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Humans
- Mice, Inbred BALB C
- Immunogenicity, Vaccine
- Adjuvants, Vaccine
- Liposomes
Collapse
Affiliation(s)
- Bowen Li
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Allen Yujie Jiang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Idris Raji
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Caroline Atyeo
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Division of Medical Sciences, Harvard University, Boston, MA, USA
| | - Theresa M Raimondo
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Akiva G R Gordon
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Luke H Rhym
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tahoura Samad
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Corina MacIsaac
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jacob Witten
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Haseeb Mughal
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Taras M Chicz
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Yue Xu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Ryan P McNamara
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Sangeeta Bhatia
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Wyss Institute at Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
2
|
Mellors J, Tipton T, Longet S, Carroll M. Viral Evasion of the Complement System and Its Importance for Vaccines and Therapeutics. Front Immunol 2020; 11:1450. [PMID: 32733480 PMCID: PMC7363932 DOI: 10.3389/fimmu.2020.01450] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022] Open
Abstract
The complement system is a key component of innate immunity which readily responds to invading microorganisms. Activation of the complement system typically occurs via three main pathways and can induce various antimicrobial effects, including: neutralization of pathogens, regulation of inflammatory responses, promotion of chemotaxis, and enhancement of the adaptive immune response. These can be vital host responses to protect against acute, chronic, and recurrent viral infections. Consequently, many viruses (including dengue virus, West Nile virus and Nipah virus) have evolved mechanisms for evasion or dysregulation of the complement system to enhance viral infectivity and even exacerbate disease symptoms. The complement system has multifaceted roles in both innate and adaptive immunity, with both intracellular and extracellular functions, that can be relevant to all stages of viral infection. A better understanding of this virus-host interplay and its contribution to pathogenesis has previously led to: the identification of genetic factors which influence viral infection and disease outcome, the development of novel antivirals, and the production of safer, more effective vaccines. This review will discuss the antiviral effects of the complement system against numerous viruses, the mechanisms employed by these viruses to then evade or manipulate this system, and how these interactions have informed vaccine/therapeutic development. Where relevant, conflicting findings and current research gaps are highlighted to aid future developments in virology and immunology, with potential applications to the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Jack Mellors
- Public Health England, National Infection Service, Salisbury, United Kingdom.,Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Tom Tipton
- Public Health England, National Infection Service, Salisbury, United Kingdom
| | - Stephanie Longet
- Public Health England, National Infection Service, Salisbury, United Kingdom
| | - Miles Carroll
- Public Health England, National Infection Service, Salisbury, United Kingdom
| |
Collapse
|
3
|
Lung T, Sakem B, Risch L, Würzner R, Colucci G, Cerny A, Nydegger U. The complement system in liver diseases: Evidence-based approach and therapeutic options. J Transl Autoimmun 2019; 2:100017. [PMID: 32743505 PMCID: PMC7388403 DOI: 10.1016/j.jtauto.2019.100017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022] Open
Abstract
Complement is usually seen to largely originate from the liver to accomplish its tasks systemically - its return to the production site has long been underestimated. Recent progress in genomics, therapeutic effects on complement, standardised possibilities in medical laboratory tests and involvement of complosome brings the complement system with its three major functions of opsonization, cytolysis and phagocytosis back to liver biology and pathology. The LOINC™ system features 20 entries for the C3 component of complement to anticipate the application of artificial intelligence data banks algorythms of which are fed with patient-specific data connected to standard lab assays for liver function. These advancements now lead to increased vigilance by clinicians. This reassessment article will further elucidate the distribution of synthesis sites to the three germ layer-derived cell systems and the role complement now known to play in embryogenesis, senescence, allotransplantation and autoimmune disease. This establishes the liver as part of the gastro-intestinal system in connection with nosological entities never thought of, such as the microbiota-liver-brain axis. In neurological disease etiology infectious and autoimmune hepatitis play an important role in the context of causative viz reactive complement activation. The mosaic of autoimmunity, i.e. multiple combinations of the many factors producing varying clinical pictures, leads to the manifold facets of liver autoimmunity.
Collapse
Affiliation(s)
- Thomas Lung
- Labormedizinisches Zentrum Dr. Risch, Lagerstrasse 30, CH-9470, Buchs, Switzerland
| | - Benjamin Sakem
- Labormedizinisches Zentrum Dr. Risch, Waldeggstrasse 37, CH-3097, Liebefeld bei Bern, Switzerland
| | - Lorenz Risch
- Labormedizinisches Zentrum Dr. Risch, Waldeggstrasse 37, CH-3097, Liebefeld bei Bern, Switzerland
| | - Reinhard Würzner
- Medical University Innsbruck, Division of Hygiene & Medical Microbiology, Department of Hygiene, Microbiology and Public Health, Schöpfstrasse 41, A-6020, Innsbruck, Austria
| | - Giuseppe Colucci
- Clinica Luganese Moncucco, Lugano, Via Moncucco, CH-6900, Lugano, Switzerland
- Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Andreas Cerny
- Epatocentro Ticino, Via Soldino 5, CH-6900, Lugano, Switzerland
| | - Urs Nydegger
- Labormedizinisches Zentrum Dr. Risch, Waldeggstrasse 37, CH-3097, Liebefeld bei Bern, Switzerland
| |
Collapse
|
4
|
Hou Z, Wang H, Feng Y, Li Q, Li J. A candidate DNA vaccine encoding a fusion protein of porcine complement C3d-P28 and ORF2 of porcine circovirus type 2 induces cross-protective immunity against PCV2b and PCV2d in pigs. Virol J 2019; 16:57. [PMID: 31046793 PMCID: PMC6498589 DOI: 10.1186/s12985-019-1156-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/28/2019] [Indexed: 12/16/2022] Open
Abstract
Background Porcine circovirus type 2 (PCV2) is an economically important viral pathogen for swine industry worldwide. However, current PCV2 vaccines provide incomplete protection against the PCV2d, which has recently emerged as the predominant pathogenic form of PCV2. Methods To develop a novel DNA vaccine with high efficacy against PCV2d virus, we fused the ORF2 of PCV2d to three copies of the minimum-binding domain of the complement C3 cascade terminal component, C3d-P28. Expression of ORF2 alone (pVO) or fused C3d-P28 (pVOC3) were verified by immunofluorescent assay. Vaccine efficacy was tested by measured the DNA copy and T and B cell immune response. Results Vaccination with pVOC3 reduced the levels of PCV2 genomic DNA after pigs were infected with either PCV2b or PCV2d genotypes, produced potent antibodies against PCV2, and stimulated PCV2-specific interferon-γ secreting cells. Conclusion Results suggested pVOC3 would be a safe and effective DNA vaccine to confer cross-protection against both PCV2b and PCV2d genotypes in pigs.
Collapse
Affiliation(s)
- Zhumei Hou
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.,College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Honghua Wang
- Qingdao Vland Biotech Group Co.Ltd, Qingdao, 266061, China
| | - Yanni Feng
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qingwang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Junwei Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
6
|
Hou J, Liu Y, Liu Y, Shao Y. The MSHA strain of Pseudomonas aeruginosa activated TLR pathway and enhanced HIV-1 DNA vaccine immunoreactivity. PLoS One 2012; 7:e47724. [PMID: 23077664 PMCID: PMC3471878 DOI: 10.1371/journal.pone.0047724] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 09/14/2012] [Indexed: 12/27/2022] Open
Abstract
The mannose-sensitive hemagglutination pilus strain of Pseudomonas aeruginosa (PA-MSHA) has been shown to trigger naïve immune responses through the activation of monocytes, macrophages, natural killer cells (NK cells) and antigen presenting cells (APCs). Based on the hypothesis that PA-MSHA activates natural immunity through the Toll-like receptor (TLR) pathway, we scanned several critical TLR pathway molecules in mouse splenocytes using high-throughput real-time QRT-PCR and co-stimulatory molecule in bone marrow-derived dendritic cells (BMDCs) following in vitro stimulation by PA-MSHA. PA-MSHA enabled activation of the TLR pathway mediated by NF-κB and JNK signaling in splenocytes, and the co-stimulatory molecule CD86 was up-regulated in BMDCs. We then assessed the adjuvant effect of PA-MSHA for HIV-1 DNA vaccines. In comparison to DNA inoculation alone, co-inoculation with low dosage of PA-MSHA enhanced specific immunoreactivity against HIV-1 Env in both cellular and humoral responses, and promoted antibody avidity maturation. However, high doses of adjuvant resulted in an immunosuppressive effect; a two- or three-inoculation regimen yielded low antibody responses and the two-inoculation regimen exhibited only a slight cellular immunity response. To our knowledge, this is the first report demonstrating the utility of PA-MSHA as an adjuvant to a DNA vaccine. Further research is needed to investigate the exact mechanisms through which PA-MSHA achieves its adjuvant effects on innate immune responses, especially on dendritic cells.
Collapse
Affiliation(s)
- Jue Hou
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yong Liu
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ying Liu
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yiming Shao
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- * E-mail:
| |
Collapse
|