1
|
Wang C, Liu Y, Yang Y, Teng M, Wan X, Wu Z, Zhang Z. Splenic proteome profiling in response to Marek's disease virus strain GX0101 infection. BMC Vet Res 2024; 20:10. [PMID: 38183097 PMCID: PMC10768084 DOI: 10.1186/s12917-023-03852-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 12/13/2023] [Indexed: 01/07/2024] Open
Abstract
Marek's disease virus (MDV) strain GX0101 was the first reported field strain of recombinant gallid herpesvirus type 2 (GaHV-2). However, the splenic proteome of MDV-infected chickens remains unclear. In this study, a total of 28 1-day-old SPF chickens were intraperitoneally injected with chicken embryo fibroblast (CEF) containing 2000 PFU GX0101. Additionally, a control group, consisting of four one-day-old SPF chickens, received intraperitoneal equal doses of CEF. Blood and various tissue samples were collected at different intervals (7, 14, 21, 30, 45, 60, and 90 days post-infection; dpi) for histopathological, real-time PCR, and label-free quantitative analyses. The results showed that the serum expressions of MDV-related genes, meq and gB, peaked at 45 dpi. The heart, liver, and spleen were dissected at 30 and 45 dpi, and their hematoxylin-eosin staining indicated that virus infection compromised the normal organizational structure at 45 dpi. Particularly, the spleen structure was severely damaged, and the lymphocytes in the white medulla were significantly reduced. Furthermore, liquid chromatography-mass spectrometry (LC-MS) and label-free techniques were used to analyze the difference in splenic proteome profiles of the experimental and control groups at 30 and 45 dpi. Proteomic analysis identified 1660 and 1244 differentially expressed proteins (DEPs) at 30 and 40 dpi, respectively, compared with the uninfected spleen tissues. According to GO analysis, these DEPs were involved in processes such as organelle organization, cellular component biogenesis, cellular component assembly, anion binding, small molecule binding, metal ion binding, cation binding, cytosol, nuclear part, etc. Additionally, KEGG analysis indicated that the following pathways were linked to MDV-induced inflammation, apoptosis, and tumor: Wnt, Hippo, AMPK, cAMP, Notch, TGF-β, PI3K-Akt, Rap1, Ras, Calcium, NF-κB, PPAR, cGMP-PKG, Apoptosis, VEGF, mTOR, FoxO, TNF, JAK-STAT, MAPK, Prion disease, T cell receptor, and B cell receptor. We finally screened 674 DEPs that were linked to MDV infection in spleen tissue. This study improves our understanding of the MDV response mechanism in the spleen.
Collapse
Affiliation(s)
- Chuan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, PR China.
| | - Yuanzi Liu
- Shaanxi Meili-OH Animal Health Co., Ltd, Xi'an, 712034, PR China
| | - Yuze Yang
- Beijing Animal Husbandry Station, Beijing, 100107, PR China
| | - Man Teng
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, PR China
| | - Xuerui Wan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Zixiang Wu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Zhao Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, PR China.
| |
Collapse
|
2
|
Yun T, Hua J, Ye W, Ni Z, Chen L, Zhu Y, Zhang C. Intergrated Transcriptomic and Proteomic Analysis Revealed the Differential Responses to Novel Duck Reovirus Infection in the Bursa of Fabricius of Cairna moschata. Viruses 2022; 14:v14081615. [PMID: 35893682 PMCID: PMC9332436 DOI: 10.3390/v14081615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 01/25/2023] Open
Abstract
The bursa of Fabricius is an immunologically organ against the invasion of duck reovirus (DRV), which is a fatal bird virus belonging to the Reoviridae family. However, responses of the bursa of Fabricius of Cairna moschata to novel DRV (NDRV) infection are largely unknown. Transcriptomes and proteomes of the samples from control and two NDRV strain (HN10 and JDm10) with different virulence were analyzed. Differentially expressed genes and differential accumulated proteins were enriched in the serine protease system and innate immune response clusters. Most of the immune-related genes were up-regulated under both JDm10/HN10 infections. However, the immune-related proteins were only accumulated under HN10 infection. For the serine protease system, coagulation factor IX, three chains of fibrinogen, and complements C8, C5, and C2s were significantly up-regulated by the HN10 infection, suggesting that the serine protease-mediated immune system might be involved in the resistance to NDRV infection. For the innate and adaptive immune system, RIG-I, MDA5, MAPK20, and IRF3 were significantly up-regulated, indicating their important roles against invaded virus. TLR-3 and IKBKB were only up-regulated in the liver cells, MAPK20 was only up-regulated in the bursa of Fabricius cells, and IRAK2 was only up-regulated in the spleen samples. Coagulation factor IX was increased in the bursa of Fabricius, not in the liver and spleen samples. The data provides a detailed resource for studying the proteins participating in the resistances of the bursa of Fabricius of duck to NDRV infections.
Collapse
Affiliation(s)
- Tao Yun
- Correspondence: (T.Y.); (C.Z.)
| | | | | | | | | | | | | |
Collapse
|
3
|
Marek's disease virus prolongs survival of primary chicken B-cells by inducing a senescence-like phenotype. PLoS Pathog 2021; 17:e1010006. [PMID: 34673841 PMCID: PMC8562793 DOI: 10.1371/journal.ppat.1010006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 11/02/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022] Open
Abstract
Marek’s disease virus (MDV) is an alphaherpesvirus that causes immunosuppression and deadly lymphoma in chickens. Lymphoid organs play a central role in MDV infection in animals. B-cells in the bursa of Fabricius facilitate high levels of MDV replication and contribute to dissemination at early stages of infection. Several studies investigated host responses in bursal tissue of MDV-infected chickens; however, the cellular responses specifically in bursal B-cells has never been investigated. We took advantage of our recently established in vitro infection system to decipher the cellular responses of bursal B-cells to infection with a very virulent MDV strain. Here, we demonstrate that MDV infection extends the survival of bursal B-cells in culture. Microarray analyses revealed that most cytokine/cytokine-receptor-, cell cycle- and apoptosis-associated genes are significantly down-regulated in these cells. Further functional assays validated these strong effects of MDV infections on cell cycle progression and thus, B-cell proliferation. In addition, we confirmed that MDV infections protect B-cells from apoptosis and trigger an accumulation of the autophagy marker Lc3-II. Taken together, our data indicate that MDV-infected bursal B-cells show hallmarks of a senescence-like phenotype, leading to a prolonged B-cell survival. This study provides an in-depth analysis of bursal B-cell responses to MDV infection and important insights into how the virus extends the survival of these cells. Upon MDV entry via the respiratory tract, B-cells are among the first cells to be infected in the lung and allow an efficient amplification of the virus. B-cells ensure the transmission of the virus to activated T-cells in which it replicates and ultimately transforms CD4-positive T-cells. Although playing a pivotal role in the MDV life cycle, the response of B-cells to MDV is currently not fully understood. Here, by using an in vitro infection model of primary bursal B-cells, we show that MDV infection leads to a prolonged B-cell survival resulting from decreased cell proliferation, protection from apoptosis and activation of autophagy. Our study provides new insights into the B-cell response to MDV infection, demonstrating that MDV triggers a senescence-like phenotype in B-cells that could potentiate their role in MDV pathogenesis.
Collapse
|
4
|
Jiang H, Wei L, Wang D, Wang J, Zhu S, She R, Liu T, Tian J, Quan R, Hou L, Li Z, Chu J, Zhou J, Guo Y, Xi Y, Song H, Yuan F, Liu J. ITRAQ-based quantitative proteomics reveals the first proteome profiles of piglets infected with porcine circovirus type 3. J Proteomics 2019; 212:103598. [PMID: 31785380 DOI: 10.1016/j.jprot.2019.103598] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 01/24/2023]
Abstract
Porcine circovirus type 3 (PCV3) infection induces porcine dermatitis and nephropathy syndrome, reproductive failure, and multisystemic inflammatory lesions in piglets and sows. To better understand the host responses to PCV3 infection, isobaric tags for relative and absolute quantification (iTRAQ) labeling combined with LC-MS/MS analysis was used for quantitative determination of differentially regulated cellular proteins in the lungs of specific-pathogen-free piglets after 4 weeks of PCV3 infection. Totally, 3429 proteins were detected in three independent mass spectrometry analyses, of which 242 differential cellular proteins were significantly regulated, consisting of 100 upregulated proteins and 142 downregulated proteins in PCV3-infected group relative to control group. Bioinformatics analysis revealed that these higher or lower abundant proteins involved primarily metabolic processes, innate immune response, MHC-I and MHC-II components, and phagosome pathways. Ten genes encoding differentially regulated proteins were selected for investigation via real-time RT-PCR. The expression levels of six representative proteins, OAS1, Mx1, ISG15, IFIT3, SOD2, and HSP60, were further confirmed by Western blotting and immunohistochemistry. This study attempted for the first time to investigate the protein profile of PCV3-infected piglets using iTRAQ technology; our findings provide valuable information to better understand the mechanisms underlying the host responses to PCV3 infection in piglets. SIGNIFICANCE: Our study identified differentially abundant proteins related to a variety of potential signaling pathways in the lungs of PCV3-infected piglets. These findings provide valuable information to better understand the mechanisms of host responses to PCV3 infection.
Collapse
Affiliation(s)
- Haijun Jiang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Li Wei
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Dan Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Jing Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Shanshan Zhu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Ruiping She
- College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, China
| | - Tianlong Liu
- College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, China
| | - Jijing Tian
- College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, China
| | - Rong Quan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Lei Hou
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Zixuan Li
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Jun Chu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Jiyong Zhou
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Yuxin Guo
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Yanyang Xi
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Huiqi Song
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Feng Yuan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Jue Liu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China.
| |
Collapse
|
5
|
Pauker VI, Bertzbach LD, Hohmann A, Kheimar A, Teifke JP, Mettenleiter TC, Karger A, Kaufer BB. Imaging Mass Spectrometry and Proteome Analysis of Marek's Disease Virus-Induced Tumors. mSphere 2019; 4:e00569-18. [PMID: 30651403 PMCID: PMC6336081 DOI: 10.1128/msphere.00569-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/19/2018] [Indexed: 12/17/2022] Open
Abstract
The highly oncogenic alphaherpesvirus Marek's disease virus (MDV) causes immense economic losses in the poultry industry. MDV induces a variety of symptoms in infected chickens, including neurological disorders and immunosuppression. Most notably, MDV induces transformation of lymphocytes, leading to T cell lymphomas in visceral organs with a mortality of up to 100%. While several factors involved in MDV tumorigenesis have been identified, the transformation process and tumor composition remain poorly understood. Here we developed an imaging mass spectrometry (IMS) approach that allows sensitive visualization of MDV-induced lymphoma with a specific mass profile and precise differentiation from the surrounding tissue. To identify potential tumor markers in tumors derived from a very virulent wild-type virus and a telomerase RNA-deficient mutant, we performed laser capture microdissection (LCM) and thereby obtained tumor samples with no or minimal contamination from surrounding nontumor tissue. The proteomes of the LCM samples were subsequently analyzed by quantitative mass spectrometry based on stable isotope labeling. Several proteins, like interferon gamma-inducible protein 30 and a 70-kDa heat shock protein, were identified that are differentially expressed in tumor tissue compared to surrounding tissue and naive T cells. Taken together, our results demonstrate for the first time that MDV-induced tumors can be visualized using IMS, and we identified potential MDV tumor markers by analyzing the proteomes of virus-induced tumors.IMPORTANCE Marek's disease virus (MDV) is an oncogenic alphaherpesvirus that infects chickens and causes the most frequent clinically diagnosed cancer in the animal kingdom. Not only is MDV an important pathogen that threatens the poultry industry but it is also used as a natural virus-host model for herpesvirus-induced tumor formation. In order to visualize MDV-induced lymphoma and to identify potential biomarkers in an unbiased approach, we performed imaging mass spectrometry (IMS) and noncontact laser capture microdissection. This study provides a first description of the visualization of MDV-induced tumors by IMS that could be applied also for diagnostic purposes. In addition, we identified and validated potential biomarkers for MDV-induced tumors that could provide the basis for future research on pathogenesis and tumorigenesis of this malignancy.
Collapse
Affiliation(s)
- V I Pauker
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - L D Bertzbach
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
| | - A Hohmann
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - A Kheimar
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | - J P Teifke
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - T C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - A Karger
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - B B Kaufer
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
6
|
Khan S, Mao Y, Gao D, Riaz S, Niaz Z, Tang L, Khan S, Wang D. Identification of proteins responding to pathogen-infection in the red alga Pyropia yezoensis using iTRAQ quantitative proteomics. BMC Genomics 2018; 19:842. [PMID: 30482156 PMCID: PMC6260746 DOI: 10.1186/s12864-018-5229-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/07/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Pyropia yezoensis is an important marine crop which, due to its high protein content, is widely used as a seafood in China. Unfortunately, red rot disease, caused by Pythium porphyrae, seriously damages P. yezoensis farms every year in China, Japan, and Korea. Proteomic methods are often used to study the interactions between hosts and pathogens. Therefore, an iTRAQ-based proteomic analysis was used to identify pathogen-responsive proteins following the artificial infection of P. yezoensis with P. porphyrae spores. RESULTS A total of 762 differentially expressed proteins were identified, of which 378 were up-regulated and 384 were down-regulated following infection. A large amount of these proteins were involved in disease stress, carbohydrate metabolism, cell signaling, chaperone activity, photosynthesis, and energy metabolism, as annotated in the KEGG database. Overall, the data showed that P. yezoensis resists infection by inhibiting photosynthesis, and energy and carbohydrate metabolism pathways, as supported by changes in the expression levels of related proteins. The expression data are available via ProteomeXchange with the identifier PXD009363. CONCLUSIONS The current data provide an overall summary of the red algae responses to pathogen infection. This study improves our understanding of infection resistance in P. yezoensis, and may help in increasing the breeding of P. porphyrae-infection tolerant macroalgae.
Collapse
Affiliation(s)
- Sohrab Khan
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Yunxiang Mao
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Dong Gao
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Sadaf Riaz
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Zeeshan Niaz
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Lei Tang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Sohaib Khan
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Dongmei Wang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| |
Collapse
|
7
|
Liu H, Liu J, Zhang T, Li L, Wang J, Han C, He H. The Gene Ontology Differs in Bursa of Fabricius Between Two Breeds of Ducks Post Hatching by Enriching the Differentially Expressed Genes. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2018. [DOI: 10.1590/1806-9061-2016-0416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- H Liu
- Sichuan Agricultural University, China
| | - J Liu
- Sichuan Agricultural University, China
| | - T Zhang
- Sichuan Agricultural University, China
| | - L Li
- Sichuan Agricultural University, China
| | - J Wang
- Sichuan Agricultural University, China
| | - C Han
- Sichuan Agricultural University, China
| | - H He
- Sichuan Agricultural University, China
| |
Collapse
|
8
|
iTRAQ-based quantitative proteomics analysis of molecular mechanisms associated with Bombyx mori (Lepidoptera) larval midgut response to BmNPV in susceptible and near-isogenic strains. J Proteomics 2017. [PMID: 28624519 DOI: 10.1016/j.jprot.2017.06.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) has been identified as a major pathogen responsible for severe economic loss. Most silkworm strains are susceptible to BmNPV, with only a few highly resistant strains thus far identified. Here we investigated the molecular basis of silkworm resistance to BmNPV using susceptible (the recurrent parent P50) and resistant (near-isogenic line BC9) strains and a combination of iTRAQ-based quantitative proteomics, reverse-transcription quantitative PCR and Western blotting. By comparing the proteomes of infected and non-infected P50 and BC9 silkworms, we identified 793 differentially expressed proteins (DEPs). By gene ontology and KEGG enrichment analyses, we found that these DEPs are preferentially involved in metabolism, catalytic activity, amino sugar and nucleotide sugar metabolism and carbon metabolism. 114 (14.38%) DEPs were associated with the cytoskeleton, immune response, apoptosis, ubiquitination, translation, ion transport, endocytosis and endopeptidase activity. After removing the genetic background and individual immune stress response proteins, we identified 84 DEPs were found that are potentially involved in resistance to BmNPV. Further studies showed that a serine protease was down-regulated in P50 and up-regulated in BC9 after BmNPV infection. Taken together, these results provide insights into the molecular mechanism of silkworm response to BmNPV. BIOLOGICAL SIGNIFICANCE Bombyx mori nucleopolyhedrovirus (BmNPV) is highly pathogenic, causing serious losses in sericulture every year. However, the molecular mechanisms of BmNPV infection and host defence remain unclear. Here we combined quantitative proteomic, bioinformatics, RT-qPCR and Western blotting analyses and found that BmNPV invasion causes complex protein alterations in the larval midgut, and that these changes are related to cytoskeleton, immune response, apoptosis, ubiquitination, translation, ion transport, endocytosis and endopeptidase activity. Five important differentially expression proteins were validation by independent approaches. These finding will help address the molecular mechanisms of silkworm resistance to BmNPV and provide a molecular target for resisting BmNPV.
Collapse
|
9
|
Comparative Subcellular Proteomics Analysis of Susceptible and Near-isogenic Resistant Bombyx mori (Lepidoptera) Larval Midgut Response to BmNPV infection. Sci Rep 2017; 7:45690. [PMID: 28361957 PMCID: PMC5374506 DOI: 10.1038/srep45690] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 03/03/2017] [Indexed: 02/01/2023] Open
Abstract
The molecular mechanism of silkworm resistance to Bombyx mori nucleopolyhedrovirus (BmNPV) infection remains largely unclear. Accumulating evidence suggests that subcellular fractionation combined with proteomics is an ideal technique to analyse host antiviral mechanisms. To clarify the anti-BmNPV mechanism of the silkworm, the near-isogenic line BC9 (resistant strain) and the recurrent parent P50 (susceptible strain) were used in a comparative subcellular proteomics study. Two-dimensional gel electrophoresis (2-DE) combined with mass spectrometry (MS) was conducted on proteins extracted from the cytosol, mitochondria, and microsomes of BmNPV-infected and control larval midguts. A total of 87 proteins were successfully identified from the three subcellular fractions. These proteins were primarily involved in energy metabolism, protein metabolism, signalling pathways, disease, and transport. In particular, disease-relevant proteins were especially changed in microsomes. After infection with BmNPV, differentially expressed proteins (DEPs) primarily appeared in the cytosolic and microsomal fractions, which indicated that these two fractions might play a more important role in the response to BmNPV infection. After removing genetic background and individual immune stress response proteins, 16 proteins were identified as potentially involved in repressing BmNPV infection. Of these proteins, the differential expression patterns of 8 proteins according to reverse transcription quantitative PCR (RT-qPCR) analyses were consistent with the 2-DE results.
Collapse
|
10
|
El-Borai F, Killiny N, Duncan LW. Concilience in Entomopathogenic Nematode Responses to Water Potential and Their Geospatial Patterns in Florida. Front Microbiol 2016; 7:356. [PMID: 27064422 PMCID: PMC4814458 DOI: 10.3389/fmicb.2016.00356] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/07/2016] [Indexed: 02/01/2023] Open
Abstract
The geospatial patterns of four species of native entomopathogenic nematodes in Florida were previously shown to be related to soil properties that affect soil water potential. Here we compared the responses to water potential of third stage, infective juvenile (IJ), Steinernema sp. (Sx), and Steinernema diaprepesi (Sd) in controlled conditions. The two species were selected because they are closely related (Steinernema glaseri-group), but tend to occupy different habitats. In columns of sandy soil with moisture gradients ranging from field capacity (6% w:w) to saturated (18%), Sx migrated toward wetter soil whereas Sd migrated toward drier soil. Survival of two isolates each of Sx and Sd for 7 days in the absence of food was greatest at 18 and 6% soil moisture, respectively. After three cycles of migration through soil to infect insect larvae 10 cm distant, Sd dominated EPN communities when soil columns were maintained at 6% moisture, whereas Sx was dominant in soil maintained at 18% moisture. When rehydrated after 24 h on filter paper at 90% RH, 50% of Sd survived compared to no Sx. Two isolates of Sd also survived better than two isolates of Sx during up to 24 h in a hypertonic solution (30% glycerol). The behavioral responses of both species to water potential and osmotic gradients were consistent with surveys in which Sx was recovered only from flatwoods ecoregions with shallow water tables and poorly drained soils, whereas Sd most frequently inhabited the central ridge ecoregion comprising well-drained soils and deeper water tables. Comparative proteomic analysis revealed differential expression of proteins involved in thermo-sensation (guanylyl cyclase and F13E6-4) and mechano-sensation and movement (paramyosin, Actin 3, LET-99, CCT-2), depending on whether Sd was in soil at 6 or 18% moisture. Proteins involved in metabolism, lectin detoxification, gene regulation, and cell division also differed between the two conditions. Our data suggest the plausibility of modifying soil moisture conditions in flatwoods orchards in ways that favor more desirable (effective) EPN species. Similarly, these particular behavioral traits are likely to be useful in guiding the selection or engineering of EPN species for use in different ecoregions.
Collapse
Affiliation(s)
- Fahiem El-Borai
- Citrus Research and Education Center, University of FloridaLake Alfred, FL, USA; Plant Protection Department, Faculty of Agriculture, Zagazig UniversityZagazig, Egypt
| | - Nabil Killiny
- Citrus Research and Education Center, University of Florida Lake Alfred, FL, USA
| | - Larry W Duncan
- Citrus Research and Education Center, University of Florida Lake Alfred, FL, USA
| |
Collapse
|
11
|
Han K, Zhao D, Liu Y, Liu Q, Huang X, Yang J, An F, Li Y. Quantitative Proteomic Analysis of Duck Ovarian Follicles Infected with Duck Tembusu Virus by Label-Free LC-MS. Front Microbiol 2016; 7:463. [PMID: 27066001 PMCID: PMC4815560 DOI: 10.3389/fmicb.2016.00463] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 03/21/2016] [Indexed: 12/15/2022] Open
Abstract
Duck Tembusu virus (DTMUV) is a newly emerging pathogenic flavivirus that has caused massive economic losses to the duck industry in China. DTMUV infection mainly results in significant decreases in egg production in egg-laying ducks within 1–2 weeks post infection. However, information on the comparative protein expression of host tissues in response to DTMUV infection is limited. In the present study, the cellular protein response to DTMUV infection in duck ovarian follicles was analyzed using nano-flow high-performance liquid chromatography-electrospray tandem mass spectrometry. Quantitative proteomic analysis revealed 131 differentially expressed proteins, among which 53 were up regulated and 78 were down regulated. The identified proteins were involved in the regulation of essential processes such as cellular structure and integrity, RNA processing, protein biosynthesis and modification, vesicle transport, signal transduction, and mitochondrial pathway. Some selected proteins that were found to be regulated in DTMUV-infected tissues were screened by quantitative real-time PCR to examine their regulation at the transcriptional level, western blot analysis was used to validate the changes of some selected proteins on translational level. To our knowledge, this study is the first to analyze the proteomic changes in duck ovarian follicles following DTMUV infection. The protein-related information obtained in this study may be useful to understand the host response to DTMUV infection and the inherent mechanism of DTMUV replication and pathogenicity.
Collapse
Affiliation(s)
- Kaikai Han
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural SciencesNanjing, China; Jiangsu Key Lab of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| | - Dongmin Zhao
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural SciencesNanjing, China; Jiangsu Key Lab of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| | - Yuzhuo Liu
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural SciencesNanjing, China; Jiangsu Key Lab of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| | - Qingtao Liu
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural SciencesNanjing, China; Jiangsu Key Lab of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| | - Xinmei Huang
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural SciencesNanjing, China; Jiangsu Key Lab of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| | - Jing Yang
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural SciencesNanjing, China; Jiangsu Key Lab of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| | - Fengjiao An
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural SciencesNanjing, China; Jiangsu Key Lab of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| | - Yin Li
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural SciencesNanjing, China; Jiangsu Key Lab of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| |
Collapse
|
12
|
Heidari M, Fitzgerald SD, Zhang H. Immune Responses in Cecal Tonsils of Marek's Disease Virus-Infected Chickens. Avian Dis 2015; 59:213-26. [PMID: 26473671 DOI: 10.1637/10950-093014-reg.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Marek's disease (MD) is a lymphoproliferative disease of domestic chickens that is caused by a highly cell-associated oncogenic α-herpesvirus, Marek's disease virus (MDV). MDV replicates in chicken lymphocytes and establishes a latent infection within CD4+ T cells. Clinical signs of MD include depression, crippling, weight loss, bursal/thymic atrophy, neurologic disorders, and rapid onset of T cell lymphomas that infiltrate lymphoid tissues, visceral organs, and peripheral nerves. The cecal tonsils (CTs) are considered the largest lymphoid aggregates of avian gut-associated lymphoid tissue. Along with Peyer's patches, CTs elicit protective immune responses against bacterial and viral pathogens in the intestinal tract of avian species. In this study, we investigated the effect of MDV infection on toll-like receptor (TLR) gene expression in CTs of MD-susceptible (72) and resistant (63) chicken lines. Real-time PCR gene expression profiling revealed that of the 10 TLRs tested, TLR2A, TLR3, TLR5, and TLR15 displayed significant differential expression patterns at different time points postinoculation. The expression levels of the remaining six genes were minimally affected by MDV infection in either line. Immunohistochemical analysis showed a severe depletion of B cells and CD4+ T cells in the CTs of susceptible line at 5 days postinfection (dpi), which recovered by 21 dpi. The destruction of B and T cells in the CTs of the resistant line was minimal at 5 dpi, which also recovered by 21 dpi. A significant infiltration of macrophages was observed after the depletion of B and T cells in the infected birds of both lines that could account for the differential TLR gene expression in the infected birds. The data presented provide further insight into the mechanism of MDV pathogenesis and tissue-specific immunologic responses to viral infection.
Collapse
Affiliation(s)
- Mohammad Heidari
- A United States Department of Agriculture, Agriculture Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI 48823
| | - Scott D Fitzgerald
- B Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - Huanmin Zhang
- A United States Department of Agriculture, Agriculture Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI 48823
| |
Collapse
|
13
|
Heidari M, Fitzgerald SD, Zhang H. Marek's Disease Virus-Induced Transient Cecal Tonsil Atrophy. Avian Dis 2014; 58:262-70. [DOI: 10.1637/10673-092013-reg.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Expression kinetics of chicken β2-microglobulin and Class I MHC in vitro and in vivo during Marek’s disease viral infections. Vet Res Commun 2013; 37:277-83. [DOI: 10.1007/s11259-013-9572-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2013] [Indexed: 01/12/2023]
|
15
|
Microsatellite instability in chicken lymphoma induced by gallid herpesvirus 2. PLoS One 2013; 8:e68058. [PMID: 23844155 PMCID: PMC3699484 DOI: 10.1371/journal.pone.0068058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 05/24/2013] [Indexed: 11/19/2022] Open
Abstract
Microsatellite instability (MSI) has been found in a range of human tumors, and little is known of the links between MSI and herpesvirus. In order to investigate the relationship between MSI and Gallid herpesvirus 2 (GaHV-2)-induced lymphoma, fifteen Marek’s disease (MD) lymphomas were analyzed through using 46 microsatellite markers, which were amplified by PCR from DNA specimens of lymphoma and normal muscular tissues from the same chicken. PCR products were evaluated by denaturing polyacrylamide gel electrophoresis for MSI analysis. MSI was proved in all lymphomas, at least in one locus. Thirty of the 46 microsatellite markers had microsatellite alterations. These results suggested that GaHV-2-induced lymphoma in chickens is related to MSI, and this is the first report to demonstrate that MSI is associated with the GaHV-2 induced lymphoma in chicken.
Collapse
|
16
|
Hu X, Qin A, Miao J, Xu W, Yu C, Qian K, Shao H. Transcriptional profile of Marek’s disease virus genes in chicken thymus during different phases of MDV infection. Arch Virol 2013; 158:1787-93. [DOI: 10.1007/s00705-013-1665-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 02/05/2013] [Indexed: 10/27/2022]
|
17
|
Hu X, Qin A, Qian K, Shao H, Yu C, Xu W, Miao J. Analysis of protein expression profiles in the thymus of chickens infected with Marek's disease virus. Virol J 2012; 9:256. [PMID: 23116199 PMCID: PMC3545960 DOI: 10.1186/1743-422x-9-256] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 10/29/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Marek's disease virus (MDV) is a highly cell-associated oncogenic α-herpesvirus that causes a disease characterised by T-cell lymphomas. The pathogenesis, or the nature of the interaction of the virus and the host, in the thymus are still unclear. RESULTS In this study, we identified 119 differentially expressed proteins using two-dimensional electrophoresis and mass spectrometry from the thymuses of chickens infected with the RB1B strain of MDV. These differentially expressed proteins were found mainly at 21, 28 and 35 days post-infection. More than 20 of the differentially expressed proteins were directly associated with immunity, apoptosis, tumour development and viral infection and replication. Five of these proteins, ANXA1, MIF, NPM1, OP18 and VIM, were further confirmed using real-time PCR. The functional associations and roles in oncogenesis of these proteins are discussed. CONCLUSIONS This work provides a proteomic profiling of host responses to MDV in the thymus of chickens and further characterises proteins related to the mechanisms of MDV oncogenesis and pathogenesis.
Collapse
Affiliation(s)
- Xuming Hu
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No,12 East Wenhui Road, Yangzhou, Jiangsu 225009, P,R,China
| | | | | | | | | | | | | |
Collapse
|
18
|
Proteomics of DF-1 cells infected with avian leukosis virus subgroup J. Virus Res 2012; 167:314-21. [DOI: 10.1016/j.virusres.2012.05.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 05/21/2012] [Accepted: 05/22/2012] [Indexed: 02/05/2023]
|
19
|
Lippé R. Deciphering novel host-herpesvirus interactions by virion proteomics. Front Microbiol 2012; 3:181. [PMID: 22783234 PMCID: PMC3390586 DOI: 10.3389/fmicb.2012.00181] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 04/27/2012] [Indexed: 12/15/2022] Open
Abstract
Over the years, a vast array of information concerning the interactions of viruses with their hosts has been collected. However, recent advances in proteomics and other system biology techniques suggest these interactions are far more complex than anticipated. One particularly interesting and novel aspect is the analysis of cellular proteins incorporated into mature virions. Though sometimes considered purification contaminants in the past, their repeated detection by different laboratories suggests that a number of these proteins are bona fide viral components, some of which likely contribute to the viral life cycles. The present mini review focuses on cellular proteins detected in herpesviruses. It highlights the common cellular functions of these proteins, their potential implications for host–pathogen interactions, discusses technical limitations, the need for complementing methods and probes potential future research avenues.
Collapse
Affiliation(s)
- Roger Lippé
- Department of Pathology and Cell biology, University of Montreal Montreal, QC, Canada
| |
Collapse
|
20
|
Chen C, Li H, Xie Q, Shang H, Ji J, Bai S, Cao Y, Ma Y, Bi Y. Transcriptional profiling of host gene expression in chicken liver tissues infected with oncogenic Marek's disease virus. J Gen Virol 2011; 92:2724-2733. [PMID: 21832007 DOI: 10.1099/vir.0.034066-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Marek's disease virus (MDV), one of the most potent oncogenic herpesviruses, leads to highly contagious immunosuppressive and neoplastic disease in susceptible chickens. Previous studies mainly focused on the roles of host genes modulated by MDV in the virological rather than the neoplastic stage of disease. To investigate the molecular mechanisms of tumorigenesis in Marek's disease further, a microarray analysis with Affymetrix Gene-Chip Chicken Genome Arrays was performed in a non-lymphoid tissue liver during the neoplastic stage. Of the 32 773 chicken transcriptions arrayed on a chip, 269 genes were significantly differentially expressed during the neoplastic stage caused by MDV infection (upregulated, 175; downregulated, 94). The altered genomic expression of 15 randomly selected genes was confirmed by real-time RT-PCR. Biological functions and pathways of the group of 269 differentially expressed genes were analysed by using a bioinformatics tool (ipa, Ingenuity Pathway Analysis). The results revealed that 19 possible gene networks with intermolecular connections and 22 significant metabolic and signalling pathways (P≤0.05) among 137 differentially expressed genes. These 137 genes were classified into a number of functional groups that included genetic disorder, cancer, cellular growth and proliferation, and cell death. In summary, the investigation of global host-gene expression, providing the biological functions of differentially expressed genes in lymphoid tumours of the liver in response to MDV infections, may contribute to a basic understanding of the molecular mechanisms involved in tumorigenesis following MDV infection.
Collapse
Affiliation(s)
- Cuiying Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Hongmei Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Qingmei Xie
- College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Huiqin Shang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Jun Ji
- College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Siwei Bai
- College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Yulin Ma
- Department of Animal and Food Science, University of Kentucky, Lexington, KY 40546, USA
| | - Yingzuo Bi
- College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| |
Collapse
|