1
|
Asif M, Rayamajhi A, Mahmud MS. Technological Progress Toward Peanut Disease Management: A Review. SENSORS (BASEL, SWITZERLAND) 2025; 25:1255. [PMID: 40006484 PMCID: PMC11860622 DOI: 10.3390/s25041255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/12/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025]
Abstract
Peanut (Arachis hypogea L.) crops in the southeastern U.S. suffer significant yield losses from diseases like leaf spot, southern blight, and stem rot. Traditionally, growers use conventional boom sprayers, which often leads to overuse and wastage of agrochemicals. However, advances in computer technologies have enabled the development of precision or variable-rate sprayers, both ground-based and drone-based, that apply agrochemicals more accurately. Historically, crop disease scouting has been labor-intensive and costly. Recent innovations in computer vision, artificial intelligence (AI), and remote sensing have transformed disease identification and scouting, making the process more efficient and economical. Over the past decade, numerous studies have focused on developing technologies for peanut disease scouting and sprayer technology. The current research trend shows significant advancements in precision spraying technologies, facilitating smart spraying capabilities. These advancements include the use of various platforms, such as ground-based and unmanned aerial vehicle (UAV)-based systems, equipped with sensors like RGB (red-blue-green), multispectral, thermal, hyperspectral, light detection and ranging (LiDAR), and other innovative detection technologies, as highlighted in this review. However, despite the availability of some commercial precision sprayers, their effectiveness is limited in managing certain peanut diseases, such as white mold, because the disease affects the roots, and the chemicals often remain in the canopy, failing to reach the soil where treatment is needed. The review concludes that further advances are necessary to develop more precise sprayers that can meet the needs of large-scale farmers and significantly enhance production outcomes. Overall, this review paper aims to provide a review of smart spraying techniques, estimating the required agrochemicals and applying them precisely in peanut fields.
Collapse
Affiliation(s)
- Muhammad Asif
- Department of Plant Pathology, University of Georgia, Athens, GA 30602, USA
| | - Aleena Rayamajhi
- School of Environmental, Civil, Agricultural, and Mechanical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Md Sultan Mahmud
- Department of Plant Pathology, University of Georgia, Athens, GA 30602, USA
- School of Environmental, Civil, Agricultural, and Mechanical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
2
|
García-Ordóñez L, Pagán I. Vertical and horizontal transmission of plant viruses: two extremes of a continuum? NPJ VIRUSES 2024; 2:18. [PMID: 40295758 PMCID: PMC11721382 DOI: 10.1038/s44298-024-00030-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/14/2024] [Indexed: 04/30/2025]
Abstract
Parasites have a variety of mechanisms to be transmitted to new susceptible hosts, which can be largely grouped in two main modes: vertical (i.e., from parents to the offspring) and horizontal (i.e., between hosts regardless of descent). Because between-host dispersal is a key trait for parasite fitness, scientists studying host-parasite interactions have been long interested in understanding the evolution of their transmission mode(s). Most work in this regard has been theoretical, which resulted in the development of the so-called Continuum hypothesis. This theory states that because vertically transmitted parasites require the host to reproduce, the evolution of this mode of transmission will involve reduced virulence (i.e., the effect of infection on host fecundity) in order to allow maximal host viable progeny production. Conversely, the evolution of horizontal transmission does not have this limitation and parasites with this mode of transmission will evolve higher virulence. Therefore, a trade-off between both modes of transmission across a continuum of virulence values is predicted, with each transmission mode located at the extremes of the continuum. Using plant viruses as a focal parasite, here we review existing theory surrounding the Continuum hypothesis and the experimental work testing the predictions of the theory. Finally, we briefly discuss molecular mechanisms that may explain the existence of vertical-to-horizontal transmission trade-offs and potential implications for the management of virus epidemics.
Collapse
Affiliation(s)
- Lucía García-Ordóñez
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28223, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28223, Spain.
| |
Collapse
|
3
|
Chen YJ, Catto MA, Pandey S, Leal-Bertioli S, Abney M, Hunt BG, Bag S, Culbreath A, Srinivasan R. Characterization of gene expression patterns in response to an orthotospovirus infection between two diploid peanut species and their hybrid. FRONTIERS IN PLANT SCIENCE 2023; 14:1270531. [PMID: 38034554 PMCID: PMC10683084 DOI: 10.3389/fpls.2023.1270531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/11/2023] [Indexed: 12/02/2023]
Abstract
Tomato spotted wilt orthotospovirus (TSWV) transmitted by thrips causes significant yield loss in peanut (Arachis hypogaea L.) production. Use of peanut cultivars with moderate field resistance has been critical for TSWV management. However, current TSWV resistance is often not adequate, and the availability of sources of tetraploid resistance to TSWV is very limited. Allotetraploids derived by crossing wild diploid species could help introgress alleles that confer TSWV resistance into cultivated peanut. Thrips-mediated TSWV screening identified two diploids and their allotetraploid possessing the AA, BB, and AABB genomes Arachis stenosperma V10309, Arachis valida GK30011, and [A. stenosperma × A. valida]4x (ValSten1), respectively. These genotypes had reduced TSWV infection and accumulation in comparison with peanut of pure cultivated pedigree. Transcriptomes from TSWV-infected and non-infected samples from A. stenosperma, A. valida, and ValSten1 were assembled, and differentially expressed genes (DEGs) following TSWV infection were assessed. There were 3,196, 8,380, and 1,312 significant DEGs in A. stenosperma, A. valida, and ValSten1, respectively. A higher proportion of genes decreased in expression following TSWV infection for A. stenosperma and ValSten1, whereas a higher proportion of genes increased in expression following infection in A. valida. The number of DEGs previously annotated as defense-related in relation to abiotic and biotic stress was highest in A. valida followed by ValSten1 and A. stenosperma. Plant phytohormone and photosynthesis genes also were differentially expressed in greater numbers in A. valida followed by ValSten1 and A. stenosperma, with over half of those exhibiting decreases in expression.
Collapse
Affiliation(s)
- Yi-Ju Chen
- Entomology Department, University of Georgia, Griffin, GA, United States
| | - Michael A. Catto
- Entomology Department, University of Georgia, Griffin, GA, United States
| | - Sudeep Pandey
- Entomology Department, University of Georgia, Griffin, GA, United States
| | - Soraya Leal-Bertioli
- Plant Pathology Department, University of Georgia, Athens, GA, United States
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, United States
| | - Mark Abney
- Entomology Department, University of Georgia, Tifton, GA, United States
| | - Brendan G. Hunt
- Entomology Department, University of Georgia, Griffin, GA, United States
| | - Sudeep Bag
- Plant Pathology Department, University of Georgia, Tifton, GA, United States
| | - Albert Culbreath
- Plant Pathology Department, University of Georgia, Tifton, GA, United States
| | | |
Collapse
|
4
|
Gutiérrez-Sánchez Á, Cobos A, López-Herranz M, Canto T, Pagán I. Environmental Conditions Modulate Plant Virus Vertical Transmission and Survival of Infected Seeds. PHYTOPATHOLOGY 2023; 113:1773-1787. [PMID: 36880795 DOI: 10.1094/phyto-11-22-0448-v] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Seed transmission is a major mode for plant virus persistence and dispersal, as it allows for virus survival within the seed in unfavorable conditions and facilitates spread when they become more favorable. To access these benefits, viruses require infected seeds to remain viable and germinate in altered environmental conditions, which may also be advantageous for the plant. However, how environmental conditions and virus infection affect seed viability, and whether these effects modulate seed transmission rate and plant fitness, is unknown. To address these questions, we utilized turnip mosaic virus, cucumber mosaic virus, and Arabidopsis thaliana as model systems. Using seeds from plants infected by these viruses, we analyzed seed germination rates, as a proxy of seed viability, and virus seed transmission rate under standard and altered temperature, CO2, and light intensity. With these data, we developed and parameterized a mathematical epidemiological model to explore the consequences of the observed alterations on virus prevalence and persistence. Altered conditions generally reduced overall seed viability and increased virus transmission rate compared with standard conditions, which indicated that under environmental stress, infected seeds are more viable. Hence, virus presence may be beneficial for the host. Subsequent simulations predicted that enhanced viability of infected seeds and higher virus transmission rate may increase virus prevalence and persistence in the host population under altered conditions. This work provides novel information on the influence of the environment in plant virus epidemics. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Álvaro Gutiérrez-Sánchez
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28223, Spain
| | - Alberto Cobos
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28223, Spain
| | - Marisa López-Herranz
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28223, Spain
| | - Tomás Canto
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Madrid, 28040, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28223, Spain
| |
Collapse
|
5
|
Chen YJ, Pandey S, Catto M, Leal-Bertioli S, Abney MR, Bag S, Hopkins M, Culbreath A, Srinivasan R. Evaluation of Wild Peanut Species and Their Allotetraploids for Resistance against Thrips and Thrips-Transmitted Tomato Spotted Wilt Orthotospovirus (TSWV). Pathogens 2023; 12:1102. [PMID: 37764910 PMCID: PMC10536083 DOI: 10.3390/pathogens12091102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Thrips-transmitted tomato spotted wilt orthotospovirus (TSWV) causes spotted wilt disease in peanut (Arachis hypogaea L.) and limits yield. Breeding programs have been developing TSWV-resistant cultivars, but availability of sources of resistance against TSWV in cultivated germplasm is extremely limited. Diploid wild Arachis species can serve as important sources of resistance, and despite ploidy barriers (cultivated peanut is tetraploid), their usage in breeding programs is now possible because of the knowledge and development of induced interspecific allotetraploid hybrids. This study screened 10 wild diploid Arachis and six induced allotetraploid genotypes via thrips-mediated TSWV transmission assays and thrips' feeding assays in the greenhouse. Three parameters were evaluated: percent TSWV infection, virus accumulation, and temporal severity of thrips feeding injury. Results indicated that the diploid A. stenosperma accession V10309 and its derivative-induced allotetraploid ValSten1 had the lowest TSWV infection incidences among the evaluated genotypes. Allotetraploid BatDur1 had the lowest thrips-inflicted damage at each week post thrips release, while diploid A. batizocoi accession K9484 and A. duranensis accession V14167 had reduced feeding damage one week post thrips release, and diploids A. valida accession GK30011 and A. batizocoi had reduced feeding damage three weeks post thrips releasethan the others. Overall, plausible TSWV resistance in diploid species and their allotetraploid hybrids was characterized by reduced percent TSWV infection, virus accumulation, and feeding severity. Furthermore, a few diploids and tetraploid hybrids displayed antibiosis against thrips. These results document evidence for resistance against TSWV and thrips in wild diploid Arachis species and peanut-compatible-induced allotetraploids.
Collapse
Affiliation(s)
- Yi-Ju Chen
- Department of Entomology, University of Georgia, Griffin, GA 30223, USA; (Y.-J.C.); (S.P.)
| | - Sudeep Pandey
- Department of Entomology, University of Georgia, Griffin, GA 30223, USA; (Y.-J.C.); (S.P.)
| | - Michael Catto
- Department of Entomology, University of Georgia, Athens, GA 30602, USA;
| | - Soraya Leal-Bertioli
- Department of Plant Pathology, Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA;
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA;
| | - Mark R. Abney
- Department of Entomology, University of Georgia, Tifton, GA 31794, USA;
| | - Sudeep Bag
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA; (S.B.); (A.C.)
| | - Mark Hopkins
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA;
| | - Albert Culbreath
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA; (S.B.); (A.C.)
| | | |
Collapse
|
6
|
Huang R, Li H, Gao C, Yu W, Zhang S. Advances in omics research on peanut response to biotic stresses. FRONTIERS IN PLANT SCIENCE 2023; 14:1101994. [PMID: 37284721 PMCID: PMC10239885 DOI: 10.3389/fpls.2023.1101994] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/18/2023] [Indexed: 06/08/2023]
Abstract
Peanut growth, development, and eventual production are constrained by biotic and abiotic stresses resulting in serious economic losses. To understand the response and tolerance mechanism of peanut to biotic and abiotic stresses, high-throughput Omics approaches have been applied in peanut research. Integrated Omics approaches are essential for elucidating the temporal and spatial changes that occur in peanut facing different stresses. The integration of functional genomics with other Omics highlights the relationships between peanut genomes and phenotypes under specific stress conditions. In this review, we focus on research on peanut biotic stresses. Here we review the primary types of biotic stresses that threaten sustainable peanut production, the multi-Omics technologies for peanut research and breeding, and the recent advances in various peanut Omics under biotic stresses, including genomics, transcriptomics, proteomics, metabolomics, miRNAomics, epigenomics and phenomics, for identification of biotic stress-related genes, proteins, metabolites and their networks as well as the development of potential traits. We also discuss the challenges, opportunities, and future directions for peanut Omics under biotic stresses, aiming sustainable food production. The Omics knowledge is instrumental for improving peanut tolerance to cope with various biotic stresses and for meeting the food demands of the exponentially growing global population.
Collapse
Affiliation(s)
- Ruihua Huang
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, China
| | - Hongqing Li
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, China
| | - Caiji Gao
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, China
| | - Weichang Yu
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Liaoning Peanut Research Institute, Liaoning Academy of Agricultural Sciences, Fuxing, China
- China Good Crop Company (Shenzhen) Limited, Shenzhen, China
| | - Shengchun Zhang
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
7
|
Montes N, Pagán I. Challenges and opportunities for plant viruses under a climate change scenario. Adv Virus Res 2022; 114:1-66. [PMID: 39492212 DOI: 10.1016/bs.aivir.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There is an increasing societal awareness on the enormous threat that climate change may pose for human, animal and plant welfare. Although direct effects due to exposure to heat, drought or elevated greenhouse gasses seem to be progressively more obvious, indirect effects remain debatable. A relevant aspect to be clarified relates to the relationship between altered environmental conditions and pathogen-induced diseases. In the particular case of plant viruses, it is still unclear whether climate change will primarily represent an opportunity for the emergence of new infections in previously uncolonized areas and hosts, or if it will mostly be a strong constrain reducing the impact of plant virus diseases and challenging the pathogen's adaptive capacity. This review focuses on current knowledge on the relationship between climate change and the outcome plant-virus interactions. We summarize work done on how this relationship modulates plant virus pathogenicity, between-host transmission (which include the triple interaction plant-virus-vector), ecology, evolution and management of the epidemics they cause. Considering these studies, we propose avenues for future research on this subject.
Collapse
Affiliation(s)
- Nuria Montes
- Fisiología Vegetal, Departamento Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU Universities, Madrid, Spain; Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria (IIS-IP), Madrid, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain.
| |
Collapse
|
8
|
Discrepancies in Serology-Based and Nucleic Acid-Based Detection and Quantitation of Tomato Spotted Wilt Orthotospovirus in Leaf and Root Tissues from Symptomatic and Asymptomatic Peanut Plants. Pathogens 2021; 10:pathogens10111476. [PMID: 34832630 PMCID: PMC8624541 DOI: 10.3390/pathogens10111476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Thrips-transmitted tomato spotted wilt orthotospovirus (TSWV) causes spotted wilt disease in peanuts. A serological test (DAS-ELISA) is often used to detect TSWV in peanut leaf samples. However, in a few studies, DAS-ELISA detected more TSWV infection in root than leaf samples. It was not clear if the increased detection was due to increased TSWV accumulation in root tissue or merely an overestimation. Additionally, it was unclear if TSWV detection in asymptomatic plants would be affected by the detection technique. TSWV infection in leaf and root tissue from symptomatic and asymptomatic plants was compared via DAS-ELISA, RT-PCR, and RT-qPCR. TSWV incidence did not vary by DAS-ELISA, RT-PCR, and RT-qPCR in leaf and root samples of symptomatic plants or in leaf samples of asymptomatic plants. In contrast, significantly more TSWV infection and virus load were detected in root samples of asymptomatic plants via DAS-ELISA than other techniques suggesting that DAS-ELISA overestimated TSWV incidence and load. TSWV loads from symptomatic plants via RT-qPCR were higher in leaf than root samples, while TSWV loads in leaf and root samples from asymptomatic plants were not different but were lower than those in symptomatic plants. These findings suggested that peanut tissue type and detection technique could affect accurate TSWV detection and/or quantitation.
Collapse
|
9
|
Impact of Host Resistance to Tomato Spotted Wilt Orthotospovirus in Peanut Cultivars on Virus Population Genetics and Thrips Fitness. Pathogens 2021; 10:pathogens10111418. [PMID: 34832574 PMCID: PMC8625697 DOI: 10.3390/pathogens10111418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/25/2022] Open
Abstract
Thrips-transmitted tomato spotted wilt orthotospovirus (TSWV) is a major constraint to peanut production in the southeastern United States. Peanut cultivars with resistance to TSWV have been widely used for over twenty years. Intensive usage of resistant cultivars has raised concerns about possible selection pressure against TSWV and a likelihood of resistance breakdown. Population genetics of TSWV isolates collected from cultivars with varying levels of TSWV resistance was investigated using five TSWV genes. Phylogenetic trees of genes did not indicate host resistance-based clustering of TSWV isolates. Genetic variation in TSWV isolates and neutrality tests suggested recent population expansion. Mutation and purifying selection seem to be the major forces driving TSWV evolution. Positive selection was found in N and RdRp genes but was not influenced by TSWV resistance. Population differentiation occurred between isolates collected from 1998 and 2010 and from 2016 to 2019 but not between isolates from susceptible and resistant cultivars. Evaluated TSWV-resistant cultivars differed, albeit not substantially, in their susceptibility to thrips. Thrips oviposition was reduced, and development was delayed in some cultivars. Overall, no evidence was found to support exertion of selection pressure on TSWV by host resistance in peanut cultivars, and some cultivars differentially affected thrips fitness than others.
Collapse
|
10
|
Defense-Related Gene Expression Following an Orthotospovirus Infection Is Influenced by Host Resistance in Arachis hypogaea. Viruses 2021; 13:v13071303. [PMID: 34372510 PMCID: PMC8310252 DOI: 10.3390/v13071303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 12/13/2022] Open
Abstract
Planting resistant cultivars is the most effective tactic to manage the thrips-transmitted tomato spotted wilt orthotospovirus (TSWV) in peanut plants. However, molecular mechanisms conferring resistance to TSWV in resistant cultivars are unknown. In this study, transcriptomes of TSWV-susceptible (SunOleic 97R) and field-resistant (Tifguard) peanut cultivars with and without TSWV infection were assembled and differentially expressed genes (DEGs) were compared. There were 4605 and 2579 significant DEGs in SunOleic 97R and Tifguard, respectively. Despite the lower number of DEGs in Tifguard, an increased proportion of defense-related genes were upregulated in Tifguard than in the susceptible cultivar. Examples included disease resistance (R) proteins, leucine-rich repeats, stilbene synthase, dicer, and calmodulin. Pathway analysis revealed the increased downregulation of genes associated with defense and photosynthesis in the susceptible cultivar rather than in the resistant cultivar. These results suggest that essential physiological functions were less perturbed in the resistant cultivar than in the susceptible cultivar and that the defense response following TSWV infection was more robust in the resistant cultivar than in the susceptible cultivar.
Collapse
|
11
|
Anco DJ, Thomas JS, Wright DL, Dufault NS, Small IM. Sixty-One Years Following Registration, Phorate Applied In-Furrow at Planting Suppresses Development of Late Leaf Spot on Peanut. PLANT DISEASE 2020; 104:PDIS03200547RE. [PMID: 32900292 DOI: 10.1094/pdis-03-20-0547-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Late and early leaf spot are caused by Nothopassalora personata and Passalora arachidicola, respectively, and are damaging diseases of peanut (Arachis hypogaea L.) capable of defoliation and yield loss. Management of these diseases is most effective through the integration of tactics that reduce starting inoculum and prevent infection. The insecticide phorate was first registered in 1959 and has been used in peanut production for decades in-furrow at planting to suppress thrips. Phorate further provides significant suppression of Tomato spotted wilt virus infection beyond suppression of its thrips vector alone by activating defense-related responses in the peanut plant. From six experiments conducted from 2017 to 2019 in Blackville, SC, Reddick, FL, and Quincy, FL, significantly less leaf spot defoliation was exhibited on peanuts treated with phorate in-furrow at planting (26%) compared with nontreated checks (48%). In-season fungicides were excluded from five of the experiments, whereas the 2018 Quincy, FL, experiment included eight applications on a 15-day interval. Across individual experiments, significant suppression of defoliation caused by late leaf spot was observed from 64 to 147 days after planting. Although more variable within location-years, pod yield following phorate treatment was overall significantly greater than for nontreated peanut (2,330 compared with 2,030 kg/ha; P = 0.0794). The consistent defoliation suppression potential was estimated to confer an average potential net economic yield savings of $90 to $120 per hectare under analogous leaf spot defoliation. To our knowledge, these are the first data in the 61 years since its registration demonstrating significant suppression of leaf spot on peanut following application of phorate in-furrow at planting. Results support phorate use in peanut as an effective and economical tactic to incorporate to manage late and early leaf spot infections and development of fungicide resistance.
Collapse
Affiliation(s)
- Daniel J Anco
- Department of Plant and Environmental Sciences, Clemson University, Edisto Research and Education Center, Blackville, SC 29817
| | - James S Thomas
- Department of Plant and Environmental Sciences, Clemson University, Edisto Research and Education Center, Blackville, SC 29817
| | - David L Wright
- North Florida Research and Education Center, University of Florida, Quincy, FL 32351
| | - Nicholas S Dufault
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Ian M Small
- North Florida Research and Education Center, University of Florida, Quincy, FL 32351
| |
Collapse
|
12
|
Batuman O, Turini TA, LeStrange M, Stoddard S, Miyao G, Aegerter BJ, Chen LF, McRoberts N, Ullman DE, Gilbertson RL. Development of an IPM Strategy for Thrips and Tomato spotted wilt virus in Processing Tomatoes in the Central Valley of California. Pathogens 2020; 9:E636. [PMID: 32764311 PMCID: PMC7459483 DOI: 10.3390/pathogens9080636] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 11/18/2022] Open
Abstract
Tomato spotted wilt virus (TSWV; species Tomato spotted wilt orthotospovirus; genus Orthotospovirus; family Tospoviridae) is a thrips-transmitted virus that can cause substantial economic losses to many crops, including tomato (Solanum lycopersicum). Since 2005, TSWV emerged as an economically important virus of processing tomatoes in the Central Valley of California, in part due to increased populations of the primary thrips vector, western flower thrips (WFT; Frankliniella occidentalis). To develop an understanding of the epidemiology of TSWV in this region, population densities of WFT and incidence of TSWV were monitored in California's processing tomato transplant-producing greenhouses and associated open fields from 2007 to 2013. Thrips were monitored with yellow sticky cards and in tomato flowers, whereas TSWV incidence was assessed with indicator plants and field surveys for virus symptoms. All thrips identified from processing tomato fields were WFT, and females were three-fold more abundant on sticky cards than males. Symptoms of TSWV infection were observed in all monitored processing tomato fields. Incidences of TSWV ranged from 1 to 20%, with highest incidence found in late-planted fields. There was no single primary inoculum source, and inoculum sources for thrips/TSWV varied depending on the production region. These results allowed us to develop a model for TSWV infection of processing tomatoes in the Central Valley of California. The model predicts that low levels of primary TSWV inoculum are amplified in early-planted tomatoes and other susceptible crops leading to highest levels of infection in later-planted fields, especially those with high thrips populations. Based upon these findings, an integrated pest management (IPM) strategy for TSWV in processing tomatoes in California was devised. This IPM strategy focuses on strategic field placement (identification of high-risk situations), planting TSWV- and thrips-free transplants, planting resistant varieties, monitoring for TSWV symptoms and thrips, roguing infected plants, thrips management targeting early generations, extensive sanitation after harvest, and strategic cropping to avoid overlap with winter bridge crops.
Collapse
Affiliation(s)
- Ozgur Batuman
- Department of Plant Pathology, University of Florida-IFAS, Immokalee, FL 34142, USA
| | - Thomas A. Turini
- University of California Cooperative Extension, Fresno, CA 93710, USA;
| | | | - Scott Stoddard
- University of California Cooperative Extension, Merced, CA 95341, USA;
| | - Gene Miyao
- University of California Cooperative Extension, Woodland, CA 95695, USA;
| | - Brenna J. Aegerter
- University of California Cooperative Extension, Stockton, CA 95206, USA;
| | | | - Neil McRoberts
- Department of Plant Pathology, University of California-Davis, Davis, CA 95616, USA; (N.M.); (R.L.G.)
| | - Diane E. Ullman
- Department of Entomology, University of California-Davis, Davis, CA 95616, USA;
| | - Robert L. Gilbertson
- Department of Plant Pathology, University of California-Davis, Davis, CA 95616, USA; (N.M.); (R.L.G.)
| |
Collapse
|
13
|
Chappell TM, Codod CB, Williams BW, Kemerait RC, Culbreath AK, Kennedy GG. Adding Epidemiologically Important Meteorological Data to Peanut Rx, the Risk Assessment Framework for Spotted Wilt of Peanut. PHYTOPATHOLOGY 2020; 110:1199-1207. [PMID: 32133919 DOI: 10.1094/phyto-11-19-0438-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Management of disease affecting peanut in the southeastern United States has benefited from extensive field research identifying disease-associated risk factors since the 1990s. An assessment of risk factors associated with tomato spotted wilt (TSW), caused by tomato spotted wilt virus and spread exclusively by thrips, is available to growers through Peanut Rx, a tool developed to inform peanut management decisions. Peanut Rx provides an assessment of relative TSW risk as an index. The assessment provides information about the relative degree to which a field characterized by a specified suite of practices is at risk of crop loss caused by TSW. Loss results when infection occurs, and infection rates are determined, in part, by factors outside a grower's control, primarily the abundance of dispersing, viruliferous thrips. In this study, we incorporated meteorological variables useful for predicting thrips dispersal, increasing the robustness of the Peanut Rx framework in relation to variation in the weather. We used data from field experiments and a large grower survey to estimate the relationships between weather and TSW risk mediated by thrips vectors, and developed an addition to Peanut Rx that proved informative and easy to implement. The expected temporal occurrence of major thrips flights, as a function of heat and precipitation, was translated into the existing risk-point system of Peanut Rx. Results from the grower survey further demonstrated the validity of Peanut Rx for guiding growers' decisions to minimize risk of TSW.
Collapse
Affiliation(s)
- Thomas M Chappell
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, U.S.A
| | - Clarence B Codod
- Department of Plant Pathology, College of Agricultural and Environmental Science, University of Georgia, Tifton, GA 31793, U.S.A
| | - Blake W Williams
- Department of Plant Pathology, College of Agricultural and Environmental Science, University of Georgia, Tifton, GA 31793, U.S.A
| | - Robert C Kemerait
- Department of Plant Pathology, College of Agricultural and Environmental Science, University of Georgia, Tifton, GA 31793, U.S.A
| | - Albert K Culbreath
- Department of Plant Pathology, College of Agricultural and Environmental Science, University of Georgia, Tifton, GA 31793, U.S.A
| | - George G Kennedy
- Department of Entomology and Plant Pathology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695-7630, U.S.A
| |
Collapse
|
14
|
Anco DJ, Thomas JS, Monfort WS. Efficacy and Profitability of Insecticide Treatments for Tomato Spotted Wilt Management on Peanut in South Carolina. PLANT DISEASE 2020; 104:1096-1104. [PMID: 32031909 DOI: 10.1094/pdis-09-19-1829-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tomato spotted wilt (TSW) is a common and serious disease of peanut (Arachis hypogaea L.) caused by Tomato spotted wilt virus (TSWV; family Tospoviridae, genus Orthotospovirus). Management frequently uses an integrated approach, with cultivar resistance and application of in-furrow insecticide as two critical components. In-furrow insecticides help suppress thrips, which can injure and stunt young growing plants and transmit TSWV, with postemergent application of acephate capable of providing additional thrips control. To examine effects of systemic insecticides (imidacloprid, imidacloprid plus fluopyram, phorate, and acephate) on TSW management, yield, and economic return across cultivar susceptibilities (susceptible, moderately susceptible, and resistant) in South Carolina, a meta-analysis was used to synthesize results from 32 studies conducted between 2009 and 2018. Although efficacy and magnitude of individual treatments varied with susceptibility, imidacloprid increased, whereas phorate generally decreased TSW incidence relative to nontreated controls. In-furrow treatments followed by acephate further reduced TSW incidence and increased profitability. All examined treatments improved yield compared with untreated peanuts except for susceptible cultivars treated with imidacloprid. Imidacloprid plus fluopyram increased yield more than imidacloprid alone for the susceptible group, although there was little difference between these treatments in association with moderately susceptible cultivars. When comparing individual applications, phorate was overall the most profitable option across susceptibilities, although imidacloprid plus fluopyram exhibited analogous profitability for susceptible cultivars. Results from this study can be used to assist producer selection of management options for TSW in peanut.
Collapse
Affiliation(s)
- Daniel J Anco
- Department of Plant and Environmental Sciences, Edisto Research and Education Center, Clemson University, Blackville, SC 29817
| | - James S Thomas
- Department of Plant and Environmental Sciences, Edisto Research and Education Center, Clemson University, Blackville, SC 29817
| | - Walter S Monfort
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA 31793
| |
Collapse
|
15
|
Montes N, Pagán I. Light Intensity Modulates the Efficiency of Virus Seed Transmission through Modifications of Plant Tolerance. PLANTS (BASEL, SWITZERLAND) 2019; 8:E304. [PMID: 31461899 PMCID: PMC6783938 DOI: 10.3390/plants8090304] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/19/2019] [Accepted: 08/23/2019] [Indexed: 12/14/2022]
Abstract
Increased light intensity has been predicted as a major consequence of climate change. Light intensity is a critical resource involved in many plant processes, including the interaction with viruses. A central question to plant-virus interactions is understanding the determinants of virus dispersal among plants. However, very little is known on the effect of environmental factors on virus transmission, particularly through seeds. The fitness of seed-transmitted viruses is highly dependent on host reproductive potential, and requires higher virus multiplication in reproductive organs. Thus, environmental conditions that favor reduced virus virulence without controlling its level of within-plant multiplication (i.e., tolerance) may enhance seed transmission. We tested the hypothesis that light intensity conditions that enhance plant tolerance promote virus seed transmission. To do so, we challenged 18 Arabidopsis thaliana accessions with Turnip mosaic virus (TuMV) and Cucumber mosaic virus (CMV) under high and low light intensity. Results indicated that higher light intensity increased TuMV multiplication and/or plant tolerance, which was associated with more efficient seed transmission. Conversely, higher light intensity reduced plant tolerance and CMV multiplication, and had no effect on seed transmission. This work provides novel insights on how environmental factors modulate plant virus transmission and contributes to understand the underlying processes.
Collapse
Affiliation(s)
- Nuria Montes
- Fisiología Vegetal, Departamento Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU Universities, 28668, Boadilla del Monte (Madrid), Spain and Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria (IIS-IP), 28006 Madrid, Spain.
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Departamento de Biotecnología-Biología Vegetal, Universidad Politécnica de Madrid, 28223 Madrid, Spain.
| |
Collapse
|
16
|
Abstract
Viral diseases provide a major challenge to twenty-first century agriculture worldwide. Climate change and human population pressures are driving rapid alterations in agricultural practices and cropping systems that favor destructive viral disease outbreaks. Such outbreaks are strikingly apparent in subsistence agriculture in food-insecure regions. Agricultural globalization and international trade are spreading viruses and their vectors to new geographical regions with unexpected consequences for food production and natural ecosystems. Due to the varying epidemiological characteristics of diverent viral pathosystems, there is no one-size-fits-all approach toward mitigating negative viral disease impacts on diverse agroecological production systems. Advances in scientific understanding of virus pathosystems, rapid technological innovation, innovative communication strategies, and global scientific networks provide opportunities to build epidemiologic intelligence of virus threats to crop production and global food security. A paradigm shift toward deploying integrated, smart, and eco-friendly strategies is required to advance virus disease management in diverse agricultural cropping systems.
Collapse
Affiliation(s)
- Roger A C Jones
- Institute of Agriculture, University of Western Australia, Crawley, Western Australia 6009, Australia; .,Department of Primary Industries and Regional Development, South Perth, Western Australia 6151, Australia
| | - Rayapati A Naidu
- Department of Plant Pathology, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, Washington 99350, USA;
| |
Collapse
|
17
|
Jordan BS, Culbreath AK, Brenneman TB, Kemerait RC, Stevenson KL. Effect of Planting Date and Peanut Cultivar on Epidemics of Late Leaf Spot in Georgia. PLANT DISEASE 2019; 103:990-995. [PMID: 30893024 DOI: 10.1094/pdis-06-18-0954-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Field trials were conducted in 2015 and 2016 in Tifton, GA to determine the effects of planting dates (24 and 27 April, 4, 11, 19, and 26 May 2015; and 11, 18, and 25 April and 2, 9, and 16 May 2016), peanut (Arachis hypogaea) cultivar (Georgia-06G and Georgia-12Y), and seed treatment (nontreated and treated with azoxystrobin, fludioxonil, and mefenoxam) on epidemics of late leaf spot (Nothopassalora personata), plant populations, and peanut yield. Final severity and AUDPC of late leaf spot increased with later planting dates in both years. For most planting dates in 2015 and the final planting date in 2016, final leaf spot severity and AUDPC were lower for Georgia-12Y than for Georgia-06G. Seed treatment increased plant populations for the 27 April and 4 May planting dates in 2015 and across all other treatments in 2016. Yields were higher for Georgia-12Y than for Georgia-06G in both years. In 2015, yields of both cultivars decreased according to linear functions of day of year of planting date, but there was no effect of planting date on yield in 2016. The combination of early planting with Georgia-12Y shows potential utility for management of leaf spot in situations such as organic production where fungicide use is minimal.
Collapse
Affiliation(s)
- Brian S Jordan
- Department of Plant Pathology, The University of Georgia, Tifton, GA 31793-5766
| | - Albert K Culbreath
- Department of Plant Pathology, The University of Georgia, Tifton, GA 31793-5766
| | - Timothy B Brenneman
- Department of Plant Pathology, The University of Georgia, Tifton, GA 31793-5766
| | - Robert C Kemerait
- Department of Plant Pathology, The University of Georgia, Tifton, GA 31793-5766
| | | |
Collapse
|
18
|
Chitturi A, Conner K, Sikora EJ, Jacobson AL. Monitoring Seasonal Distribution of Thrips Vectors of Soybean Vein Necrosis Virus in Alabama Soybeans. JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:2562-2569. [PMID: 30124887 PMCID: PMC6294239 DOI: 10.1093/jee/toy237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Indexed: 06/08/2023]
Abstract
Soybean vein necrosis virus (SVNV), a new virus in the genus Orthotospovirus, has been found in all soybean-growing regions in the United States and Ontario, Canada. Soybean thrips, Neohydatothrips variabilis (Beach) (Thysanoptera: Thripidae), tobacco thrips, Frankliniella fusca (Hinds) (Thysanoptera: Thripidae), and eastern flower thrips, Frankliniella tritici (Fitch) (Thysanoptera: Thripidae) are reported vectors of this virus, but there are no reports on their distribution in Alabama. A monitoring study was conducted in 2015 and 2016 to determine thrips species composition and abundance in Alabama soybean agroecosystems. Thrips were monitored weekly by collecting them on yellow sticky traps and soybean plant parts including foliage and reproductive structures. All three reported vectors of SVNV were identified in Alabama, with N. variabilis and F. tritici as the predominant species, while F. fusca was not consistently collected from soybean plants. Four additional thrips species were collected, of which Echinothrips americanus (Morgan) (Thysanoptera: Thripidae) was commonly found on soybean at all three locations. Results presented in this study provide new information about seasonal thrips species abundance in soybean agroecosystems in Alabama, and is an important first step to understanding thrips vector species of epidemiological importance in the Southern United States.
Collapse
Affiliation(s)
- Anitha Chitturi
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL
| | - Kassie Conner
- Department of Entomology and Plant Pathology, Alabama Cooperative Extension System, Auburn University, Auburn, AL
| | - Edward J Sikora
- Department of Entomology and Plant Pathology, Alabama Cooperative Extension System, Auburn University, Auburn, AL
| | - Alana L Jacobson
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL
| |
Collapse
|
19
|
Srinivasan R, Abney MR, Lai PC, Culbreath AK, Tallury S, Leal-Bertioli SCM. Resistance to Thrips in Peanut and Implications for Management of Thrips and Thrips-Transmitted Orthotospoviruses in Peanut. FRONTIERS IN PLANT SCIENCE 2018; 9:1604. [PMID: 30459792 PMCID: PMC6232880 DOI: 10.3389/fpls.2018.01604] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/17/2018] [Indexed: 05/31/2023]
Abstract
Thrips are major pests of peanut (Arachis hypogaea L.) worldwide, and they serve as vectors of devastating orthotospoviruses such as Tomato spotted wilt virus (TSWV) and Groundnut bud necrosis virus (GBNV). A tremendous effort has been devoted to developing peanut cultivars with resistance to orthotospoviruses. Consequently, cultivars with moderate field resistance to viruses exist, but not much is known about host resistance to thrips. Integrating host plant resistance to thrips in peanut could suppress thrips feeding damage and reduce virus transmission, will decrease insecticide usage, and enhance sustainability in the production system. This review focuses on details of thrips resistance in peanut and identifies future directions for incorporating thrips resistance in peanut cultivars. Research on thrips-host interactions in peanut is predominantly limited to field evaluations of feeding damage, though, laboratory studies have revealed that peanut cultivars could differentially affect thrips feeding and thrips biology. Many runner type cultivars, field resistant to TSWV, representing diverse pedigrees evaluated against thrips in the greenhouse revealed that thrips preferred some cultivars over others, suggesting that antixenosis "non-preference" could contribute to thrips resistance in peanut. In other crops, morphological traits such as leaf architecture and waxiness and spectral reflectance have been associated with thrips non-preference. It is not clear if foliar morphological traits in peanut are associated with reduced preference or non-preference of thrips and need to be evaluated. Besides thrips non-preference, thrips larval survival to adulthood and median developmental time were negatively affected in some peanut cultivars and in a diploid peanut species Arachis diogoi (Hoehne) and its hybrids with a Virginia type cultivar, indicating that antibiosis (negative effects on biology) could also be a factor influencing thrips resistance in peanut. Available field resistance to orthotospoviruses in peanut is not complete, and cultivars can suffer substantial yield loss under high thrips and virus pressure. Integrating thrips resistance with available virus resistance would be ideal to limit losses. A discussion of modern technologies such as transgenic resistance, marker assisted selection and RNA interference, and future directions that could be undertaken to integrate resistance to thrips and to orthotospoviruses in peanut cultivars is included in this article.
Collapse
Affiliation(s)
| | - Mark R. Abney
- Department of Entomology, University of Georgia, Tifton, GA, United States
| | - Pin-Chu Lai
- Department of Entomology, University of Georgia, Griffin, GA, United States
| | - Albert K. Culbreath
- Department of Plant Pathology, University of Georgia, Tifton, GA, United States
| | - Shyam Tallury
- United States Department of Agriculture – Agricultural Research Service, Griffin, GA, United States
| | | |
Collapse
|
20
|
Arthurs SP, Heinz KM, Mitchell FL. Comparison of Frankliniella fusca and Frankliniella occidentalis (Thysanoptera: Thripidae) as Vectors for a Peanut Strain of Tomato Spotted Wilt Orthotospovirus. ENVIRONMENTAL ENTOMOLOGY 2018; 47:623-628. [PMID: 29596611 DOI: 10.1093/ee/nvy037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Indexed: 06/08/2023]
Abstract
Tomato spotted wilt orthotospovirus (TSWV) is a major disease in peanut, Arachis hypogaea L., across peanut producing regions of the United States and elsewhere. Two thrips, Frankliniella fusca Hinds and Frankliniella occidentalis Pergande (Thysanoptera: Thripidae), are considered important vectors of TSWV in peanut in the Southeast. We compared the efficiency of acquisition (by larvae) and transmission (adults) of both thrips species for TSWV (Texas peanut-strain) to leaf disks of peanut (Florunner), as well as to Impatiens walleriana Hook. f. (Dwarf White Baby) and Petunia hybrida Juss. 'Fire Chief' using double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA). Both species were competent TSWV vectors in peanut and Impatiens, although F. fusca was the more efficient vector overall, i.e., virus acquisition and transmission rates for F. fusca averaged over several bioassays were 51.7 and 26.6%, respectively, compared with 20.0 and 15.3% for F. occidentalis. Neither species effectively transmitted this TSWV strain to Petunia (i.e., ≤3.6% transmission). We found statistically similar virus acquisition and transmission rates between both sexes for each species. We also detected no differences in TSWV-acquisition and transmission frequency between macropterous and brachypterous (short-wing) forms of F. fusca collected from a field population in south Texas. DAS-ELISA failed to detect low levels of TSWV in a few thrips that subsequently proved to be competent vectors.
Collapse
Affiliation(s)
- Steven P Arthurs
- Department of Entomology, Texas A&M University, College Station, TX
| | - Kevin M Heinz
- Department of Entomology, Texas A&M University, College Station, TX
| | | |
Collapse
|
21
|
Marasigan K, Toews M, Kemerait R, Abney MR, Culbreath A, Srinivasan R. Evaluation of Alternatives to an Organophosphate Insecticide with Selected Cultural Practices: Effects on Thrips, Frankliniella fusca, and Incidence of Spotted Wilt in Peanut Farmscapes. JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:1030-1041. [PMID: 29635299 DOI: 10.1093/jee/toy079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Indexed: 06/08/2023]
Abstract
Peanut growers use a combination of tactics to manage spotted wilt disease caused by thrips-transmitted Tomato spotted wilt virus (TSWV). They include planting TSWV-resistant cultivars, application of insecticides, and various cultural practices. Two commonly used insecticides against thrips are aldicarb and phorate. Both insecticides exhibit broad-spectrum toxicity. Recent research has led to the identification of potential alternatives to aldicarb and phorate. In this study, along with reduced-risk, alternative insecticides, we evaluated the effect of conventional versus strip tillage; single versus twin row seeding pattern; and 13 seed/m versus 20 seed/m on thips density, feeding injury, and spotted wilt incidence. Three field trials were conducted in Georgia in 2012 and 2013. Thrips counts, thrips feeding injuriy, and incidence of spotted wilt were less under strip tillage than under conventional tillage. Reduced feeding injury from thrips was observed on twin-row plots compared with single-row plots. Thrips counts, thrips feeding injury, and incidence of spotted wilt did not vary by seeding rate. Yield from twin-row plots was greater than yield from single-row plots only in 2012. Yield was not affected by other cultural practices. Alternative insecticides, including imidacloprid and spinetoram, were as effective as phorate in suppressing thrips and reducing incidence of spotted wilt in conjunction with cultural practices. Results suggest that cultural practices and reduced-risk insecticides (alternatives to aldicarb and phorate) can effectively suppress thrips and incidence of spotted wilt in peanut.
Collapse
Affiliation(s)
- K Marasigan
- Department of Entomology, University of Georgia, Tifton, GA
| | - M Toews
- Department of Entomology, University of Georgia, Tifton, GA
| | - R Kemerait
- Department of Plant Pathology, University of Georgia, Tifton, GA
| | - M R Abney
- Department of Entomology, University of Georgia, Tifton, GA
| | - A Culbreath
- Department of Plant Pathology, University of Georgia, Tifton, GA
| | - R Srinivasan
- Department of Entomology, University of Georgia, Tifton, GA
| |
Collapse
|
22
|
Jeger MJ, Madden LV, van den Bosch F. Plant Virus Epidemiology: Applications and Prospects for Mathematical Modeling and Analysis to Improve Understanding and Disease Control. PLANT DISEASE 2018; 102:837-854. [PMID: 30673389 DOI: 10.1094/pdis-04-17-0612-fe] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In recent years, mathematical modeling has increasingly been used to complement experimental and observational studies of biological phenomena across different levels of organization. In this article, we consider the contribution of mathematical models developed using a wide range of techniques and uses to the study of plant virus disease epidemics. Our emphasis is on the extent to which models have contributed to answering biological questions and indeed raised questions related to the epidemiology and ecology of plant viruses and the diseases caused. In some cases, models have led to direct applications in disease control, but arguably their impact is better judged through their influence in guiding research direction and improving understanding across the characteristic spatiotemporal scales of plant virus epidemics. We restrict this article to plant virus diseases for reasons of length and to maintain focus even though we recognize that modeling has played a major and perhaps greater part in the epidemiology of other plant pathogen taxa, including vector-borne bacteria and phytoplasmas.
Collapse
Affiliation(s)
- M J Jeger
- Centre for Environmental Policy, Imperial College London, Silwood Park, Ascot SL5 7PY, United Kingdom
| | - L V Madden
- Department of Plant Pathology, Ohio State University, Wooster, OH 44691
| | - F van den Bosch
- Computational and Systems Biology, Rothamsted Research, Harpenden AL5 2JQ, United Kingdom
| |
Collapse
|
23
|
Tantiwanich Y, Chiemsombat P, Naidu RA, Adkins S. Integrating Local Lesion Assays with Conventional RT-PCR for Detection of Interspecies Tospovirus Reassortants and Mixed Tospovirus Infections. PLANT DISEASE 2018; 102:715-719. [PMID: 30673408 DOI: 10.1094/pdis-09-17-1450-sr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tomato spotted wilt virus (TSWV) has historically been the major tospovirus present in North America. Recent emergence of Groundnut ringspot virus (GRSV) and Tomato chlorotic spot virus (TCSV) in Florida and the Caribbean has complicated reliable identification of tospoviruses in this region. Field symptoms of these three tospoviruses are indistinguishable in most host plants, and commercially available TSWV lateral-flow immunoassay reagents cross react with GRSV and TCSV, leading to incorrect diagnoses of GRSV or TCSV as TSWV. Reliable diagnosis of TSWV, GRSV, and TCSV is further confounded by the fact that all currently known isolates of GRSV in the United States are reassortants containing one genomic RNA segment derived from TCSV. To address these practical challenges, we developed and validated genome segment-specific primers for conventional reverse-transcription polymerase chain reaction (RT-PCR) detection of the large, medium, and small RNA segments of TSWV, GRSV, and TCSV. When used in conjunction with local lesion-passaged virus isolates, the genome segment-specific RT-PCR assays developed in this study will facilitate high-throughput screening of plant or thrips samples for interspecies reassortants in epidemiological studies and reliable identification of these three tospoviruses in mixed infections commonly observed in the field.
Collapse
Affiliation(s)
- Yaowapa Tantiwanich
- Plant Pathology Research Group, Plant Protection Research and Development Office, Department of Agriculture, Ministry of Agriculture and Cooperatives, Chatuchuk, Bangkok, 10900, Thailand
| | - Pissawan Chiemsombat
- Department of Plant Pathology, Faculty of Agriculture at Kamphaengsaen, Kasetsart University, Kamphaengsaen, Nakhon Pathom, 73140, Thailand
| | - Rayapati A Naidu
- Department of Plant Pathology, Washington State University, Irrigated Agriculture Research and Extension Center, Prosser 99350
| | - Scott Adkins
- United States Department of Agriculture-Agricultural Research Service, U.S. Horticultural Research Laboratory, Fort Pierce, FL 34945
| |
Collapse
|
24
|
Jordan BS, Culbreath AK, Brenneman TB, Kemerait RC, Branch WD. Late Leaf Spot Severity and Yield of New Peanut Breeding Lines and Cultivars Grown Without Fungicides. PLANT DISEASE 2017; 101:1843-1850. [PMID: 30677310 DOI: 10.1094/pdis-02-17-0165-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Peanut (Arachis hypogaea) cultivars with resistance or tolerance to Cercospora arachidicola and/or Cercosporidium personatum, the causes of early and late leaf spot, respectively, are needed for organic production in the southeastern U.S. To determine the potential of new breeding lines for use in such production systems, field experiments were conducted in Tifton, GA, in 2014 and 2015 in which nine breeding lines and two cultivars, Georgia-06G and Georgia-12Y, were grown without foliar fungicide applications. In one set of trials, cultivar Georgia-12Y and most of the breeding lines evaluated had early season vigor ratings, early-season canopy width measurements, final plant populations, and pod yield that were greater than those of standard cultivar Georgia-06G. In those trials, final late leaf spot Florida scale ratings were lower and canopy reflectance measured as the normalized difference vegetation index (NDVI), was higher all the breeding lines than those of Georgia-06G. In another set of trials, two of those same breeding lines had final late leaf spot ratings similar to those of Georgia-12Y in 2014, whereas in 2015, six of those breeding lines had final leaf spot ratings that were lower than those of Georgia-12Y. Yields were similar for Georgia-12Y and all the breeding lines in the Gibbs Farm trials. Across years and breeding lines at the Lang Farm, the relationship between visual estimates of defoliation and NDVI was described by a two sector piecewise regression with NDVI decreasing more rapidly with increasing defoliation above approximately 89%. The utility of NDVI for spot comparisons among breeding lines appears to be limited to situations where there are differences in defoliation. Georgia-12Y and multiple breeding lines evaluated show potential for use in situations such as organic production where acceptable fungicides available for seed treatment and leaf spot control are limited.
Collapse
Affiliation(s)
- Brian S Jordan
- Department of Plant Pathology, The University of Georgia, Tifton, 31793-5766
| | - Albert K Culbreath
- Department of Plant Pathology, The University of Georgia, Tifton, 31793-5766
| | - Timothy B Brenneman
- Department of Plant Pathology, The University of Georgia, Tifton, 31793-5766
| | - Robert C Kemerait
- Department of Plant Pathology, The University of Georgia, Tifton, 31793-5766
| | - William D Branch
- Department of Crop and Soil Sciences, The University of Georgia, Tifton, 31793-5766
| |
Collapse
|
25
|
Shrestha A, Champagne DE, Culbreath AK, Rotenberg D, Whitfield AE, Srinivasan R. Transcriptome changes associated with Tomato spotted wilt virus infection in various life stages of its thrips vector, Frankliniella fusca (Hinds). J Gen Virol 2017; 98:2156-2170. [DOI: 10.1099/jgv.0.000874] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Anita Shrestha
- Department of Entomology, University of Georgia, Tifton, GA 31793, USA
| | | | | | - Dorith Rotenberg
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Anna E. Whitfield
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | | |
Collapse
|
26
|
Srinivasan R, Abney MR, Culbreath AK, Kemerait RC, Tubbs RS, Monfort WS, Pappu HR. Three decades of managing Tomato spotted wilt virus in peanut in southeastern United States. Virus Res 2017; 241:203-212. [PMID: 28549856 DOI: 10.1016/j.virusres.2017.05.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 05/19/2017] [Accepted: 05/21/2017] [Indexed: 11/30/2022]
Abstract
Southeastern states namely Georgia, Florida, and Alabama produce two-thirds of the peanuts in the United States. Thrips-transmitted Tomato spotted wilt virus (TSWV), which causes spotted wilt disease, has been a major impediment to peanut production for the past three decades. The cultivars grown in the 1980s were extremely susceptible to TSWV. Early yield losses extended to tens of millions of dollars each year (up to 100% loss in many fields). This situation led to the creation of an interdisciplinary team known as "SWAT: Spotted Wilt Action Team". Initial efforts focused on risk mitigation using a combination of chemical and cultural management practices along with a strong investment in breeding programs. Beginning in the mid 1990s, cultivars with field resistance were developed and integrated with cultural and chemical management options. A Risk Mitigation Index (Peanut Rx) was made available to growers to assess risks, and provide options for mitigating risks such as planting field resistant cultivars with in-furrow insecticides, planting after peak thrips incidence, planting in twin rows, and increasing seeding rates. These efforts helped curtail losses due to spotted wilt. The Peanut Rx continues to be refined every year based on new research findings. Breeding efforts, predominantly in Georgia and Florida, continue to develop cultivars with incremental field resistance. The present-day cultivars (third-generation TSWV-resistant cultivars released after 2010) possess substantially greater field resistance than second-generation (cultivars released from 2000 to 2010) and first-generation (cultivars released from 1994 to 2000) TSWV resistant cultivars. Despite increased field resistance, these cultivars are not immune to TSWV and succumb under high thrips and TSWV pressure. Therefore, field resistant cultivars cannot serve as a 'stand-alone' option and have to be integrated with other management options. The mechanism of resistance is also unknown in field resistant cultivars. Recent research in our laboratory evaluated field resistant cultivars against thrips and TSWV. Results revealed that some resistant cultivars suppressed thrips feeding and development, and they accumulated fewer viral copies than susceptible cultivars. Transcriptomes developed with the aid of Next Generation Sequencing revealed differential gene expression patterns following TSWV infection in susceptible than field resistant cultivars. Results revealed that the upregulation of transcripts pertaining to constitutive and induced plant defense proteins in TSWV resistant cultivars was more robust over susceptible cultivars. On the flipside, the long-term effects of using such resistant cultivars on TSWV were assessed by virus population genetics studies. Initial results suggest lack of positive selection pressure on TSWV, and that the sustainable use of resistant cultivars is not threatened. Follow up research is being conducted. Improvements in TSWV management have enhanced sustainability and contributed to increased yields from <2800kg/ha before 1995 to ∼5000kg/ha in 2015.
Collapse
Affiliation(s)
- R Srinivasan
- University of Georgia, 2360 Rainwater Road, Tifton, GA 31793, USA.
| | - M R Abney
- University of Georgia, 2360 Rainwater Road, Tifton, GA 31793, USA
| | - A K Culbreath
- University of Georgia, 2360 Rainwater Road, Tifton, GA 31793, USA
| | - R C Kemerait
- University of Georgia, 2360 Rainwater Road, Tifton, GA 31793, USA
| | - R S Tubbs
- University of Georgia, 2360 Rainwater Road, Tifton, GA 31793, USA
| | - W S Monfort
- University of Georgia, 2360 Rainwater Road, Tifton, GA 31793, USA
| | - H R Pappu
- Washington State University, 345 Johnson hall, Pullman, WA 99164, USA
| |
Collapse
|
27
|
Clevenger J, Chu Y, Chavarro C, Agarwal G, Bertioli DJ, Leal-Bertioli SCM, Pandey MK, Vaughn J, Abernathy B, Barkley NA, Hovav R, Burow M, Nayak SN, Chitikineni A, Isleib TG, Holbrook CC, Jackson SA, Varshney RK, Ozias-Akins P. Genome-wide SNP Genotyping Resolves Signatures of Selection and Tetrasomic Recombination in Peanut. MOLECULAR PLANT 2017; 10:309-322. [PMID: 27993622 PMCID: PMC5315502 DOI: 10.1016/j.molp.2016.11.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/07/2016] [Accepted: 11/21/2016] [Indexed: 05/19/2023]
Abstract
Peanut (Arachis hypogaea; 2n = 4x = 40) is a nutritious food and a good source of vitamins, minerals, and healthy fats. Expansion of genetic and genomic resources for genetic enhancement of cultivated peanut has gained momentum from the sequenced genomes of the diploid ancestors of cultivated peanut. To facilitate high-throughput genotyping of Arachis species, 20 genotypes were re-sequenced and genome-wide single nucleotide polymorphisms (SNPs) were selected to develop a large-scale SNP genotyping array. For flexibility in genotyping applications, SNPs polymorphic between tetraploid and diploid species were included for use in cultivated and interspecific populations. A set of 384 accessions was used to test the array resulting in 54 564 markers that produced high-quality polymorphic clusters between diploid species, 47 116 polymorphic markers between cultivated and interspecific hybrids, and 15 897 polymorphic markers within A. hypogaea germplasm. An additional 1193 markers were identified that illuminated genomic regions exhibiting tetrasomic recombination. Furthermore, a set of elite cultivars that make up the pedigree of US runner germplasm were genotyped and used to identify genomic regions that have undergone positive selection. These observations provide key insights on the inclusion of new genetic diversity in cultivated peanut and will inform the development of high-resolution mapping populations. Due to its efficiency, scope, and flexibility, the newly developed SNP array will be very useful for further genetic and breeding applications in Arachis.
Collapse
Affiliation(s)
- Josh Clevenger
- Department of Horticulture and Institute of Plant Breeding, Genetics & Genomics, The University of Georgia, 2356 Rainwater Road, Tifton, GA 31793, USA
| | - Ye Chu
- Department of Horticulture and Institute of Plant Breeding, Genetics & Genomics, The University of Georgia, 2356 Rainwater Road, Tifton, GA 31793, USA
| | - Carolina Chavarro
- Center for Applied Genetic Technologies and Institute of Plant Breeding, Genetics & Genomics, The University of Georgia, Athens, GA 30602, USA
| | - Gaurav Agarwal
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India
| | - David J Bertioli
- Center for Applied Genetic Technologies and Institute of Plant Breeding, Genetics & Genomics, The University of Georgia, Athens, GA 30602, USA; University of Brasília, Institute of Biological Sciences, Campus Darcy Ribeiro, 70910-900 Brasília, DF, Brazil
| | - Soraya C M Leal-Bertioli
- Center for Applied Genetic Technologies and Institute of Plant Breeding, Genetics & Genomics, The University of Georgia, Athens, GA 30602, USA; Embrapa Genetic Resources and Biotechnology, 70770-917 Brasília, DF, Brazil
| | - Manish K Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India
| | - Justin Vaughn
- Center for Applied Genetic Technologies and Institute of Plant Breeding, Genetics & Genomics, The University of Georgia, Athens, GA 30602, USA
| | - Brian Abernathy
- Center for Applied Genetic Technologies and Institute of Plant Breeding, Genetics & Genomics, The University of Georgia, Athens, GA 30602, USA
| | | | - Ran Hovav
- Agricultural Research Organization, Plant Sciences Institute, 7528809 Rishon LeZion, Israel
| | - Mark Burow
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409-2122, USA
| | - Spurthi N Nayak
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India
| | - Annapurna Chitikineni
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India
| | - Thomas G Isleib
- Department of Crop and Soil Sciences, North Carolina State University, Box 7629, Raleigh, NC 28695-7629, USA
| | | | - Scott A Jackson
- Center for Applied Genetic Technologies and Institute of Plant Breeding, Genetics & Genomics, The University of Georgia, Athens, GA 30602, USA
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India
| | - Peggy Ozias-Akins
- Department of Horticulture and Institute of Plant Breeding, Genetics & Genomics, The University of Georgia, 2356 Rainwater Road, Tifton, GA 31793, USA.
| |
Collapse
|
28
|
Pandey MK, Wang H, Khera P, Vishwakarma MK, Kale SM, Culbreath AK, Holbrook CC, Wang X, Varshney RK, Guo B. Genetic Dissection of Novel QTLs for Resistance to Leaf Spots and Tomato Spotted Wilt Virus in Peanut ( Arachis hypogaea L.). FRONTIERS IN PLANT SCIENCE 2017; 8:25. [PMID: 28197153 PMCID: PMC5281592 DOI: 10.3389/fpls.2017.00025] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/05/2017] [Indexed: 05/20/2023]
Abstract
Peanut is an important crop, economically and nutritiously, but high production cost is a serious challenge to peanut farmers as exemplified by chemical spray to control foliar diseases such as leaf spots and thrips, the vectors of tomato spotted wilt virus (TSWV). The objective of this research was to map the quantitative trait loci (QTLs) for resistance to leaf spots and TSWV in one recombinant inbred line (RIL) mapping population of "Tifrunner × GT-C20" for identification of linked markers for marker-assisted breeding. Here, we report the improved genetic linkage map with 418 marker loci with a marker density of 5.3 cM/loci and QTLs associated with multi-year (2010-2013) field phenotypes of foliar disease traits, including early leaf spot (ELS), late leaf spot (LLS), and TSWV. A total of 42 QTLs were identified with phenotypic variation explained (PVE) from 6.36 to 15.6%. There were nine QTLs for resistance to ELS, 22 QTLs for LLS, and 11 QTLs for TSWV, including six, five, and one major QTLs with PVE higher than 10% for resistance to each disease, respectively. Of the total 42 QTLs, 34 were mapped on the A sub-genome and eight mapped on the B sub-genome suggesting that the A sub-genome harbors more resistance genes than the B sub-genome. This genetic linkage map was also compared with two diploid peanut physical maps, and the overall co-linearity was 48.4% with an average co-linearity of 51.7% for the A sub-genome and 46.4% for the B sub-genome. The identified QTLs associated markers and potential candidate genes will be studied further for possible application in molecular breeding in peanut genetic improvement for disease resistance.
Collapse
Affiliation(s)
- Manish K. Pandey
- Crop Protection and Management Research Unit, United States Department of Agriculture, Agricultural Research ServiceTifton, GA, USA
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
- Department of Plant Pathology, University of GeorgiaTifton, GA, USA
| | - Hui Wang
- Crop Protection and Management Research Unit, United States Department of Agriculture, Agricultural Research ServiceTifton, GA, USA
- Department of Plant Pathology, University of GeorgiaTifton, GA, USA
| | - Pawan Khera
- Crop Protection and Management Research Unit, United States Department of Agriculture, Agricultural Research ServiceTifton, GA, USA
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
- Department of Plant Pathology, University of GeorgiaTifton, GA, USA
| | | | - Sandip M. Kale
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | | | - C. Corley Holbrook
- Crop Genetics and Breeding Research Unit, United States Department of Agriculture, Agricultural Research ServiceTifton, GA, USA
| | - Xingjun Wang
- Biotechnology Research Center, Shandong Academy of Agricultural SciencesJinan, China
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | - Baozhu Guo
- Crop Protection and Management Research Unit, United States Department of Agriculture, Agricultural Research ServiceTifton, GA, USA
- Department of Plant Pathology, University of GeorgiaTifton, GA, USA
| |
Collapse
|
29
|
Fletcher SJ, Shrestha A, Peters JR, Carroll BJ, Srinivasan R, Pappu HR, Mitter N. The Tomato Spotted Wilt Virus Genome Is Processed Differentially in its Plant Host Arachis hypogaea and its Thrips Vector Frankliniella fusca. FRONTIERS IN PLANT SCIENCE 2016; 7:1349. [PMID: 27656190 PMCID: PMC5013717 DOI: 10.3389/fpls.2016.01349] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/22/2016] [Indexed: 06/06/2023]
Abstract
Thrips-transmitted tospoviruses are economically important viruses affecting a wide range of field and horticultural crops worldwide. Tomato spotted wilt virus (TSWV) is the type member of the Tospovirus genus with a broad host range of more than 900 plant species. Interactions between these viruses and their plant hosts and insect vectors via RNAi pathways are likely a key determinant of pathogenicity. The current investigation, for the first time, compares biogenesis of small RNAs between the plant host and insect vector in the presence or absence of TSWV. Unique viral small interfering RNA (vsiRNA) profiles are evident for Arachis hypogaea (peanut) and Frankliniella fusca (thrips vector) following infection with TSWV. Differences between vsiRNA profiles for these plant and insect species, such as the relative abundance of 21 and 22 nt vsiRNAs and locations of alignment hotspots, reflect the diverse siRNA biosynthesis pathways of their respective kingdoms. The presence of unique vsiRNAs in F. fusca samples indicates that vsiRNA generation takes place within the thrips, and not solely through uptake via feeding on vsiRNAs produced in infected A. hypogaea. The study also shows key vsiRNA profile differences for TSWV among plant families, which are evident in the case of A. hypogaea, a legume, and members of Solanaceae (S. lycopersicum and Nicotiana benthamiana). Distinctively, overall small RNA (sRNA) biogenesis in A. hypogaea is markedly affected with an absence of the 24 nt sRNAs in TSWV-infected plants, possibly leading to wide-spread molecular and phenotypic perturbations specific to this species. These findings add significant information on the host-virus-vector interaction in terms of RNAi pathways and may lead to better crop and vector specific control strategies.
Collapse
Affiliation(s)
- Stephen J. Fletcher
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. LuciaQLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. LuciaQLD, Australia
| | - Anita Shrestha
- Department of Entomology, College of Agricultural and Environmental Sciences, University of Georgia, TiftonGA, USA
| | - Jonathan R. Peters
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. LuciaQLD, Australia
| | - Bernard J. Carroll
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. LuciaQLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. LuciaQLD, Australia
| | - Rajagopalbabu Srinivasan
- Department of Entomology, College of Agricultural and Environmental Sciences, University of Georgia, TiftonGA, USA
| | - Hanu R. Pappu
- Department of Plant Pathology, Washington State University, PullmanWA, USA
| | - Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. LuciaQLD, Australia
| |
Collapse
|
30
|
Tseng YC, Tillman BL, Peng Z, Wang J. Identification of major QTLs underlying tomato spotted wilt virus resistance in peanut cultivar Florida-EP(TM) '113'. BMC Genet 2016; 17:128. [PMID: 27600750 PMCID: PMC5012072 DOI: 10.1186/s12863-016-0435-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/25/2016] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Spotted wilt caused by tomato spotted wilt virus (TSWV) is one of the major peanut (Arachis hypogaea L.) diseases in the southeastern United States. Occurrence, severity, and symptoms of spotted wilt disease are highly variable from season to season, making it difficult to efficiently evaluate breeding populations for resistance. Molecular markers linked to spotted wilt resistance could overcome this problem and allow selection of resistant lines regardless of environmental conditions. Florida-EP(TM) '113' is a spotted wilt resistant cultivar with a significantly lower infection frequency. However, the genetic basis is still unknown. The objective of this study is to map the major quantitative trait loci (QTLs) linked to spotted wilt resistance in Florida-EP(TM) '113'. RESULTS Among 2,431 SSR markers located across the whole peanut genome screened between the two parental lines, 329 were polymorphic. Those polymorphic markers were used to further genotype a representative set of individuals in a segregating population. Only polymorphic markers on chromosome A01 showed co-segregation between genotype and phenotype. Genotyping by sequencing (GBS) of the representative set of individuals in the segregating population also depicted a strong association between several SNPs on chromosome A01 and the trait, indicating a major QTL on chromosome A01. Therefore marker density was enriched on the A01 chromosome. A linkage map with 23 makers on chromosome A01 was constructed, showing collinearity with the physical map. Combined with phenotypic data, a major QTL flanked by marker AHGS4584 and GM672 was identified on chromosome A01, with up to 22.7 % PVE and 9.0 LOD value. CONCLUSION A major QTL controlling the spotted wilt resistance in Florida-EP(TM) '113' was identified. The resistance is most likely contributed by PI 576638, a hirsuta botanical-type line, introduced from Mexico with spotted wilt resistance. The flanking markers of this QTL can be used for further fine mapping and marker assisted selection in peanut breeding programs.
Collapse
Affiliation(s)
- Yu-Chien Tseng
- Agronomy Department, University of Florida, 2033 Mowry Road, Room 337 Cancer/Genetics Research Complex, Gainesville, FL 32610 USA
- North Florida Research and Education Center, University of Florida, Marianna, FL 32446 USA
| | - Barry L. Tillman
- Agronomy Department, University of Florida, 2033 Mowry Road, Room 337 Cancer/Genetics Research Complex, Gainesville, FL 32610 USA
- North Florida Research and Education Center, University of Florida, Marianna, FL 32446 USA
| | - Ze Peng
- Agronomy Department, University of Florida, 2033 Mowry Road, Room 337 Cancer/Genetics Research Complex, Gainesville, FL 32610 USA
| | - Jianping Wang
- Agronomy Department, University of Florida, 2033 Mowry Road, Room 337 Cancer/Genetics Research Complex, Gainesville, FL 32610 USA
- Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610 USA
| |
Collapse
|
31
|
Marasigan K, Toews M, Kemerait R, Abney MR, Culbreath A, Srinivasan R. Evaluation of Alternatives to Carbamate and Organophosphate Insecticides Against Thrips and Tomato Spotted Wilt Virus in Peanut Production. JOURNAL OF ECONOMIC ENTOMOLOGY 2016; 109:544-57. [PMID: 26637534 DOI: 10.1093/jee/tov336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Thrips are important pests of peanut. They cause severe feeding injuries on peanut foliage in the early season. They also transmit Tomato spotted wilt virus (TSWV), which causes spotted wilt disease. At-plant insecticides and cultivars that exhibit field resistance to TSWV are often used to manage thrips and spotted wilt disease. Historically, peanut growers used the broad-spectrum insecticides aldicarb (IRAC class 1A; Temik) and phorate (IRAC class 1B; Thimet) for managing thrips and thereby reducing TSWV transmission. Aldicarb has not been produced since 2011 and its usage in peanut will be legally phased out in 2018; therefore, identification of alternative chemistries is critical for thrips and spotted wilt management. Here, eight alternative insecticides, with known thrips activity, were evaluated in field trials conducted from 2011 through 2013. In addition, different application methods of alternatives were also evaluated. Imidacloprid (Admire Pro), thiamethoxam (Actara), spinetoram (Radiant), and cyantraniliprole (Exirel) were as effective as aldicarb and phorate in suppressing thrips, but none of the insecticides significantly suppressed spotted wilt incidence. Nevertheless, greenhouse assays demonstrated that the same alternative insecticides were effective in suppressing thrips feeding and reducing TSWV transmission. Spotted wilt incidence in the greenhouse was more severe (∼80%) than in the field (5–25%). In general, field resistance to TSWV in cultivars only marginally influenced spotted wilt incidence. Results suggest that effective management of thrips using alternative insecticides and subsequent feeding reduction could improve yields under low to moderate virus pressure.
Collapse
|
32
|
Zhao W, Wan Y, Xie W, Xu B, Zhang Y, Wang S, Wei G, Zhou X, Wu Q. Effect of Spinosad Resistance on Transmission of Tomato Spotted Wilt Virus by the Western Flower Thrips (Thysanoptera: Thripidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2016; 109:62-69. [PMID: 26377766 DOI: 10.1093/jee/tov278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/28/2015] [Indexed: 06/05/2023]
Abstract
Tomato spotted wilt virus (TSWV) is transmitted by Frankliniella occidentalis (Pergande) in a persistent-propagative manner. We previously observed significant results in terms of feeding behavior of spinosad-susceptible (Ivf03) and -resistant (Spin-R) strains of F. occidentalis using electrical penetration graph. TSWV transmission by the two strains was compared in the present study. The results showed that the titer of TSWV-N RNA (a part of S RNA of TSWV and encoding the nucleocapsid protein) in Ivf03 and Spin-R strains was not significantly different after a 48-h inoculation access period. The TSWV transmission rate did not significantly differ between the two strains and was 51.0% for Ivf03 and 44.4% for Spin-R. The virus transmission rate was significantly higher for males than females of both strains. The virus transmission rate for males and females of Ivf03 was 68.1 and 33.8%, respectively; however, in case of Spin-R, it was 60 and 28.8% for males and females, respectively. Additionally, number of probes and duration of probes were generally greater for viruliferous females of Ivf03 than for viruliferous females of Spin-R but the total number and duration of noningestion probes did not significantly differ between males of the two strains. The latter finding behavior may help explain the similar transmission rates for the susceptible and resistant strains.
Collapse
Affiliation(s)
- Weiwei Zhao
- Institute of Pesticide Science, Agriculture University of Hunan, Changsha, P. R. China (; ), Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China (; ; ; ; ; ), These authors contributed equally to this work and should be considered co-first authors (; )
| | - Yanran Wan
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China (; ; ; ; ; ), These authors contributed equally to this work and should be considered co-first authors (; ), Department of Plant Protection, Hebei Agricultural University, Baoding, P. R. China (; ) and
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China (; ; ; ; ; )
| | - Baoyun Xu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China (; ; ; ; ; )
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China (; ; ; ; ; )
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China (; ; ; ; ; )
| | - Guoshu Wei
- Department of Plant Protection, Hebei Agricultural University, Baoding, P. R. China (; ) and
| | - Xiaomao Zhou
- Institute of Pesticide Science, Agriculture University of Hunan, Changsha, P. R. China (; )
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China (; ; ; ; ; ),
| |
Collapse
|
33
|
French JM, Goldberg NP, Randall JJ, Hanson SF. New Mexico and the southwestern US are affected by a unique population of tomato spotted wilt virus (TSWV) strains. Arch Virol 2016; 161:993-8. [PMID: 26721573 DOI: 10.1007/s00705-015-2707-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/29/2015] [Indexed: 11/30/2022]
Abstract
Tomato spotted wilt virus (TSWV) is an important pathogen of many ornamental, greenhouse and agronomic crops worldwide. TSWV also causes sporadic problems in a number of crops in New Mexico (NM). Nucleocapsid gene sequences obtained from six different crop species across the state over four different years were used to characterize the NM TSWV population. This analysis shows that NM is affected by a unique TSWV population that is part of larger independent population present in the southwestern US. This population likely arose due to geographic isolation and is related to other TSWV populations from the US, Spain, and Italy.
Collapse
Affiliation(s)
- J M French
- Extension Plant Sciences Department, New Mexico State University, Las Cruces, NM, 88003, USA
| | - N P Goldberg
- Extension Plant Sciences Department, New Mexico State University, Las Cruces, NM, 88003, USA
| | - J J Randall
- Department of Entomology Plant Pathology and Weed Science, New Mexico State University, Las Cruces, NM, 88003, USA
| | - S F Hanson
- Department of Entomology Plant Pathology and Weed Science, New Mexico State University, Las Cruces, NM, 88003, USA.
| |
Collapse
|
34
|
Gilbertson RL, Batuman O, Webster CG, Adkins S. Role of the Insect SupervectorsBemisia tabaciandFrankliniella occidentalisin the Emergence and Global Spread of Plant Viruses. Annu Rev Virol 2015; 2:67-93. [DOI: 10.1146/annurev-virology-031413-085410] [Citation(s) in RCA: 247] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Robert L. Gilbertson
- Department of Plant Pathology, University of California, Davis, California 95616; ,
| | - Ozgur Batuman
- Department of Plant Pathology, University of California, Davis, California 95616; ,
| | - Craig G. Webster
- US Horticultural Research Laboratory, Agricultural Research Service, US Department of Agriculture, Fort Pierce, Florida 34945; ,
| | - Scott Adkins
- US Horticultural Research Laboratory, Agricultural Research Service, US Department of Agriculture, Fort Pierce, Florida 34945; ,
| |
Collapse
|
35
|
Margaria P, Rosa C. First complete genome sequence of a tomato spotted wilt virus isolate from the United States and its relationship to other TSWV isolates of different geographic origin. Arch Virol 2015; 160:2915-20. [PMID: 26329831 DOI: 10.1007/s00705-015-2589-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/26/2015] [Indexed: 01/13/2023]
Abstract
We report the first complete nucleotide sequence of a tomato spotted wilt virus (genus Tospovirus, family Bunyaviridae) isolate from the United States. The tripartite genome of PA01 consisted of L, M and S RNAs of 8914, 4765 and 2984 nt, respectively. Similarity percentages in nucleotide and amino acid sequence among PA01 and previously characterized TSWV isolates are provided here. Phylogenetic analysis on the RNA-dependent RNA polymerase (RdRp) gene placed PA01 in a different clade from an isolate from Hawaii that was partially characterized previously. Evidence of two putative reassortment events in the M segment, among PA01 and isolates from South Korea, Italy and Brazil, was found by phylogenetic and recombination analysis, further supporting a role for genetic exchange among isolates of different geographic origin in TSWV evolution.
Collapse
Affiliation(s)
- Paolo Margaria
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Cristina Rosa
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
36
|
Hema M, Sreenivasulu P, Patil BL, Kumar PL, Reddy DVR. Tropical food legumes: virus diseases of economic importance and their control. Adv Virus Res 2015; 90:431-505. [PMID: 25410108 DOI: 10.1016/b978-0-12-801246-8.00009-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diverse array of food legume crops (Fabaceae: Papilionoideae) have been adopted worldwide for their protein-rich seed. Choice of legumes and their importance vary in different parts of the world. The economically important legumes are severely affected by a range of virus diseases causing significant economic losses due to reduction in grain production, poor quality seed, and costs incurred in phytosanitation and disease control. The majority of the viruses infecting legumes are vectored by insects, and several of them are also seed transmitted, thus assuming importance in the quarantine and in the epidemiology. This review is focused on the economically important viruses of soybean, groundnut, common bean, cowpea, pigeonpea, mungbean, urdbean, chickpea, pea, faba bean, and lentil and begomovirus diseases of three minor tropical food legumes (hyacinth bean, horse gram, and lima bean). Aspects included are geographic distribution, impact on crop growth and yields, virus characteristics, diagnosis of causal viruses, disease epidemiology, and options for control. Effectiveness of selection and planting with virus-free seed, phytosanitation, manipulation of crop cultural and agronomic practices, control of virus vectors and host plant resistance, and potential of transgenic resistance for legume virus disease control are discussed.
Collapse
Affiliation(s)
- Masarapu Hema
- Department of Virology, Sri Venkateswara University, Tirupati, India
| | - Pothur Sreenivasulu
- Formerly Professor of Virology, Sri Venkateswara University, Tirupati, India
| | - Basavaprabhu L Patil
- National Research Centre on Plant Biotechnology, IARI, Pusa Campus, New Delhi, India
| | - P Lava Kumar
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Dodla V R Reddy
- Formerly Principal Virologist, ICRISAT, Patancheru, Hyderabad, India.
| |
Collapse
|
37
|
Webster CG, Frantz G, Reitz SR, Funderburk JE, Mellinger HC, McAvoy E, Turechek WW, Marshall SH, Tantiwanich Y, McGrath MT, Daughtrey ML, Adkins S. Emergence of Groundnut ringspot virus and Tomato chlorotic spot virus in Vegetables in Florida and the Southeastern United States. PHYTOPATHOLOGY 2015; 105:388-398. [PMID: 25317844 DOI: 10.1094/phyto-06-14-0172-r] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Groundnut ringspot virus (GRSV) and Tomato chlorotic spot virus (TCSV) are two emerging tospoviruses in Florida. In a survey of the southeastern United States, GRSV and TCSV were frequently detected in solanaceous crops and weeds with tospovirus-like symptoms in south Florida, and occurred sympatrically with Tomato spotted wilt virus (TSWV) in tomato and pepper in south Florida. TSWV was the only tospovirus detected in other survey locations, with the exceptions of GRSV from tomato (Solanum lycopersicum) in South Carolina and New York, both of which are first reports. Impatiens (Impatiens walleriana) and lettuce (Lactuca sativa) were the only non-solanaceous GRSV and/or TCSV hosts identified in experimental host range studies. Little genetic diversity was observed in GRSV and TCSV sequences, likely due to the recent introductions of both viruses. All GRSV isolates characterized were reassortants with the TCSV M RNA. In laboratory transmission studies, Frankliniella schultzei was a more efficient vector of GRSV than F. occidentalis. TCSV was acquired more efficiently than GRSV by F. occidentalis but upon acquisition, transmission frequencies were similar. Further spread of GRSV and TCSV in the United States is possible and detection of mixed infections highlights the opportunity for additional reassortment of tospovirus genomic RNAs.
Collapse
|
38
|
Shrestha A, Sundaraj S, Culbreath AK, Riley DG, Abney MR, Srinivasan R. Effects of Thrips Density, Mode of Inoculation, and Plant Age on Tomato Spotted Wilt Virus Transmission in Peanut Plants. ENVIRONMENTAL ENTOMOLOGY 2015; 44:136-143. [PMID: 26308816 DOI: 10.1093/ee/nvu013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/14/2014] [Indexed: 06/04/2023]
Abstract
Spotted wilt caused by tomato spotted wilt virus (TSWV; family Bunyaviridae; genus Tospovirus) is a serious disease of peanut (Arachis hypogaea L.) in the southeastern United States. Peanut genotypes with field resistance to TSWV are effective in suppressing spotted wilt. All commercially available genotypes with field resistance to TSWV were developed through conventional breeding. As a part of the breeding process, peanut genotypes are regularly screened under field situations. Despite numerous advantages associated with field screening, it is often limited by inconsistent vector (thrips) and TSWV pressure. A greenhouse transmission protocol would aid in thorough screening of selected genotypes and conserve time. In this study, various parameters associated with TSWV transmission, including tobacco thrips, Frankliniella fusca (Hinds) density, mode of inoculation, and plant age, were evaluated. Greater incidences of TSWV infection were obtained with thrips-mediated inoculation when compared with mechanical inoculation. TSWV inoculation with three, five, and 10 thrips resulted in greater incidences of TSWV infection in plants than inoculation with one thrips. However, incidences of TSWV infection did not vary between plants inoculated with three, five, and 10 viruliferous thrips. With both thrips-mediated and mechanical inoculation methods, incidences of TSWV infection in 1-wk-old plants were greater than in 4-wk-old plants. TSWV copy numbers, as determined by qPCR, also decreased with plant age. Results suggest that using at least three thrips per plant and 1- to 2-wk-old plants would maximize TSWV infection in inoculated plants.
Collapse
Affiliation(s)
- Anita Shrestha
- Department of Entomology, University of Georgia, Tifton, GA 31793
| | | | | | - David G Riley
- Department of Entomology, University of Georgia, Tifton, GA 31793
| | - Mark R Abney
- Department of Entomology, University of Georgia, Tifton, GA 31793
| | | |
Collapse
|
39
|
The first complete genome sequences of two distinct European tomato spotted wilt virus isolates. Arch Virol 2014; 160:591-5. [PMID: 25326756 DOI: 10.1007/s00705-014-2256-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/08/2014] [Indexed: 10/24/2022]
Abstract
Tomato spotted wilt virus (TSWV) represents a major constraint to the production of important vegetable and ornamental crops in several countries around the world, including those in Europe. In spite of their economic importance, European TSWV isolates have only been partially characterized, and a complete genome sequence has not been determined yet. In this study, we completed the whole genome sequence of two distinct TSWV isolates from Italy, p105 and p202/3WT. The sequences of the L and M segments of p105 and of the L segment of p202/3WT were determined using a combined approach of RT-PCR and small RNA (sRNAs) contig assembly. Phylogenetic analysis based on RNA-dependent RNA polymerase and GN/GC protein sequences grouped the two isolates in two different clades, showing that different evolutive lineages are present among Italian TSWV isolates. Analysis of possible recombination/reassortment events among our isolates and other available full-length genome TSWV sequences showed a likely reassortment event involving the L segment.
Collapse
|
40
|
Jones R. Trends in plant virus epidemiology: Opportunities from new or improved technologies. Virus Res 2014; 186:3-19. [DOI: 10.1016/j.virusres.2013.11.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 10/30/2013] [Accepted: 11/01/2013] [Indexed: 12/16/2022]
|
41
|
Srinivasan R, Riley D, Diffie S, Shrestha A, Culbreath A. Winter weeds as inoculum sources of tomato spotted wilt virus and as reservoirs for its vector, Frankliniella fusca (Thysanoptera: Thripidae) in farmscapes of Georgia. ENVIRONMENTAL ENTOMOLOGY 2014; 43:410-420. [PMID: 24612539 DOI: 10.1603/en13288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Thrips-transmitted Tomato spotted wilt virus (TSWV) has a broad host range including crops and weeds. In Georgia, TSWV is known to consistently affect peanut, tomato, pepper, and tobacco production. These crops are grown from March through November. In the crop-free period, weeds are presumed to serve as a green bridge for thrips and TSWV. Previous studies have identified several winter weeds as TSWV and thrips hosts. However, their ability to influence TSWV transmission in crops is still not completely understood. To further understand these interactions, population dynamics of two prevalent vectors, viz., Frankliniella fusca (Hinds) and Frankliniella occidentalis (Pergande), on selected winter weeds were monitored from October through April in four counties from 2004 to 2008. Peak populations were typically recorded in March. F. fusca and F. occidentalis adults were found on winter weeds and their percentages ranged from 0 to 68% in comparison with other adults. Immatures outnumbered all adults. Microcosm experiments indicated that the selected winter weeds differentially supported F. fusca reproduction and development. The time required to complete one generation (adult to adult) ranged from 11 to 16 d. Adult recovery ranged from 0.97 to 2.2 per female released. In addition, transmission assays revealed that thrips efficiently transmitted TSWV from peanut to weeds, the incidence of infection ranged from 10 to 55%. Back transmission assays with thrips from TSWV-infected weeds resulted in up to 75% TSWV infection in peanut. These whole-plant transmission and back transmission assays provide the basis for TSWV persistence in farmscapes year round.
Collapse
Affiliation(s)
- Rajagopalbabu Srinivasan
- Department of Entomology, College of Agriculture and Environmental Sciences, 2360 Rainwater Rd., Tifton, GA 31793, USA
| | | | | | | | | |
Collapse
|
42
|
Sundaraj S, Srinivasan R, Culbreath AK, Riley DG, Pappu HR. Host plant resistance against tomato spotted wilt virus in peanut (Arachis hypogaea) and its impact on susceptibility to the virus, virus population genetics, and vector feeding behavior and survival. PHYTOPATHOLOGY 2014; 104:202-210. [PMID: 24025049 DOI: 10.1094/phyto-04-13-0107-r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Tomato spotted wilt virus (TSWV) severely affects peanut production in the southeastern United States. Breeding efforts over the last three decades resulted in the release of numerous peanut genotypes with field resistance to TSWV. The degree of field resistance in these genotypes has steadily increased over time, with recently released genotypes exhibiting a higher degree of field resistance than older genotypes. However, most new genotypes have never been evaluated in the greenhouse or laboratory against TSWV or thrips, and the mechanism of resistance is unknown. In this study, TSWV-resistant and -susceptible genotypes were subjected to TSWV mechanical inoculation. The incidence of TSWV infection was 71.7 to 87.2%. Estimation of TSWV nucleocapsid (N) gene copies did not reveal significant differences between resistant and susceptible genotypes. Parsimony and principal component analyses of N gene nucleotide sequences revealed inconsistent differences between virus isolates collected from resistant and susceptible genotypes and between old (collected in 1998) and new (2010) isolates. Amino acid sequence analyses indicated consistent differences between old and new isolates. In addition, we found evidence for overabundance of nonsynonymous substitutions. However, there was no evidence for positive selection. Purifying selection, population expansion, and differentiation seem to have influenced the TSWV populations temporally rather than positive selection induced by host resistance. Choice and no-choice tests indicated that resistant and susceptible genotypes differentially affected thrips feeding and survival. Thrips feeding and survival were suppressed on some resistant genotypes compared with susceptible genotypes. These findings reveal how TSWV resistance in peanut could influence evolution, epidemiology, and management of TSWV.
Collapse
|
43
|
Liu Z, Feng S, Pandey MK, Chen X, Culbreath AK, Varshney RK, Guo B. Identification of expressed resistance gene analogs from peanut (Arachis hypogaea L.) expressed sequence tags. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:453-461. [PMID: 23384141 DOI: 10.1111/jipb.12037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 01/24/2013] [Indexed: 06/01/2023]
Abstract
Low genetic diversity makes peanut (Arachis hypogaea L.) very vulnerable to plant pathogens, causing severe yield loss and reduced seed quality. Several hundred partial genomic DNA sequences as nucleotide-binding-site leucine-rich repeat (NBS-LRR) resistance genes (R) have been identified, but a small portion with expressed transcripts has been found. We aimed to identify resistance gene analogs (RGAs) from peanut expressed sequence tags (ESTs) and to develop polymorphic markers. The protein sequences of 54 known R genes were used to identify homologs from peanut ESTs from public databases. A total of 1,053 ESTs corresponding to six different classes of known R genes were recovered, and assembled 156 contigs and 229 singletons as peanut-expressed RGAs. There were 69 that encoded for NBS-LRR proteins, 191 that encoded for protein kinases, 82 that encoded for LRR-PK/transmembrane proteins, 28 that encoded for Toxin reductases, 11 that encoded for LRR-domain containing proteins and four that encoded for TM-domain containing proteins. Twenty-eight simple sequence repeats (SSRs) were identified from 25 peanut expressed RGAs. One SSR polymorphic marker (RGA121) was identified. Two polymerase chain reaction-based markers (Ahsw-1 and Ahsw-2) developed from RGA013 were homologous to the Tomato Spotted Wilt Virus (TSWV) resistance gene. All three markers were mapped on the same linkage group AhIV. These expressed RGAs are the source for RGA-tagged marker development and identification of peanut resistance genes.
Collapse
Affiliation(s)
- Zhanji Liu
- University of Georgia, Department of Plant Pathology, Tifton, GA 31793, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Srinivasan R, Sundaraj S, Pappu HR, Diffie S, Riley DG, Gitaitis RD. Transmission of Iris yellow spot virus by Frankliniella fusca and Thrips tabaci (Thysanoptera: Thripidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2012; 105:40-47. [PMID: 22420253 DOI: 10.1603/ec11094] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Thrips-transmitted Iris yellow spot virus (IYSV) (Family Bunyaviridae, Genus Tospovirus) affects onion production in the United States and worldwide. The presence of IYSV in Georgia was confirmed in 2003. Two important thrips species that transmit tospoviruses, the onion thrips (Thrips tabaci (Lindeman)) and the tobacco thrips (Frankliniella fusca (Hinds)) are known to infest onion in Georgia. However, T. tabaci is the only confirmed vector of IYSV. Experiments were conducted to test the vector status of F. fusca in comparison with T. tabaci. F. fusca and T. tabaci larvae and adults reared on IYSV-infected hosts were tested with antiserum specific to the nonstructural protein of IYSV through an antigen coated plate ELISA. The detection rates for F. fusca larvae and adults were 4.5 and 5.1%, respectively, and for T. tabaci larvae and adults they were 20.0 and 24.0%, respectively, indicating that both F. fusca and T. tabaci can transmit IYSV. Further, transmission efficiencies of F. fusca and T. tabaci were evaluated by using an indicator host, lisianthus (Eustoma russellianum (Salisbury)). Both F. fusca and T. tabaci transmitted IYSV at 18.3 and 76.6%, respectively. Results confirmed that F. fusca also can transmit IYSV but at a lower efficiency than T. tabaci. To attest if low vector competency of our laboratory-reared F. fusca population affected its IYSV transmission capability, a Tomato spotted wilt virus (Family Bunyaviridae, Genus Tospovirus) transmission experiment was conducted. F. fusca transmitted Tomato spotted wilt virus at a competent rate (90%) suggesting that the transmission efficiency of a competent thrips vector can widely vary between two closely related viruses.
Collapse
|