1
|
Shaffer CM, Michener DC, Vlasava NB, Chotkowski H, Botermans M, Starre J, Tzanetakis IE. First Report of Gentian Kobu-sho-Associated Virus Infecting Peony in the United States and the Netherlands. PLANT DISEASE 2022; 106:1311. [PMID: 34645308 DOI: 10.1094/pdis-06-21-1316-pdn] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- C M Shaffer
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701
| | - D C Michener
- University of Michigan Matthaei Botanical Gardens & Nichols Arboretum, Ann Arbor, MI 48105
| | - N B Vlasava
- Central Botanic Garden, National Academy of Sciences, Minsk, Belarus
| | | | - M Botermans
- National Reference Centre of Plant Health, Dutch National Plant Protection Organization, Wageningen, The Netherlands
| | - J Starre
- Naktuinbouw, Roelofarendsveen, The Netherlands
| | - I E Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701
| |
Collapse
|
2
|
Larrea-Sarmiento A, Olmedo-Velarde A, Wang X, Borth W, Matsumoto TK, Suzuki JY, Wall MM, Melzer M, Hu J. A novel ampelovirus associated with mealybug wilt of pineapple (Ananas comosus). Virus Genes 2021; 57:464-468. [PMID: 34184183 DOI: 10.1007/s11262-021-01852-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/04/2021] [Indexed: 11/28/2022]
Abstract
Mealybug wilt of pineapple (MWP) is the most important and complex viral disease affecting pineapple worldwide. High-throughput sequencing was conducted to characterize a new virus identified only in symptomatic pineapple plants and tentatively named pineapple mealybug wilt-associated virus 6 (PMWaV-6). Data analyses revealed a genome of 17,854 nucleotides with an organization resembling members of the genus Ampelovirus, family Closteroviridae. Encoded proteins shared sequence identity with the corresponding proteins of grapevine leafroll-associated virus 3, blackberry vein banding-associated virus, and PMWaV-2. The present study reports the discovery of PMWaV-6, a putative and distinct new member of the genus Ampelovirus, subgroup I, its potential involvement in MWP, and the development of PMWaV-6-specific RT-PCR assays to detect and monitor this virus in field samples.
Collapse
Affiliation(s)
- Adriana Larrea-Sarmiento
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI, USA
| | - Alejandro Olmedo-Velarde
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI, USA
| | - Xupeng Wang
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI, USA
| | - Wayne Borth
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI, USA
| | - Tracie K Matsumoto
- United States Department of Agriculture, Agricultural Research Service, Daniel K. Inouye U. S. Pacific Basin Agricultural Research Center, Hilo, HI, USA
| | - Jon Y Suzuki
- United States Department of Agriculture, Agricultural Research Service, Daniel K. Inouye U. S. Pacific Basin Agricultural Research Center, Hilo, HI, USA
| | - Marisa M Wall
- United States Department of Agriculture, Agricultural Research Service, Daniel K. Inouye U. S. Pacific Basin Agricultural Research Center, Hilo, HI, USA
| | - Michael Melzer
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI, USA
| | - John Hu
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI, USA.
| |
Collapse
|
3
|
Hou W, Li S, Massart S. Is There a "Biological Desert" With the Discovery of New Plant Viruses? A Retrospective Analysis for New Fruit Tree Viruses. Front Microbiol 2020; 11:592816. [PMID: 33329473 PMCID: PMC7710903 DOI: 10.3389/fmicb.2020.592816] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022] Open
Abstract
High throughput sequencing technologies accelerated the pace of discovery and identification of new viral species. Nevertheless, biological characterization of a new virus is a complex and long process, which can hardly follow the current pace of virus discovery. This review has analyzed 78 publications of new viruses and viroids discovered from 32 fruit tree species since 2011. The scientific biological information useful for a pest risk assessment and published together with the discovery of a new fruit tree virus or viroid has been analyzed. In addition, the 933 publications citing at least one of these original publications were reviewed, focusing on the biology-related information provided. In the original publications, the scientific information provided was the development of a detection test (94%), whole-genome sequence including UTRs (92%), local and large-scale epidemiological surveys (68%), infectivity and indicators experiments (50%), association with symptoms (25%), host range infection (23%), and natural vector identification (8%). The publication of a new virus is cited 2.8 times per year on average. Only 18% of the citations reported information on the biology or geographical repartition of the new viruses. These citing publications improved the new virus characterization by identifying the virus in a new country or continent, determining a new host, developing a new diagnostic test, studying genome or gene diversity, or by studying the transmission. Based on the gathered scientific information on the virus biology, the fulfillment of a recently proposed framework has been evaluated. A baseline prioritization approach for publishing a new plant virus is proposed for proper assessment of the potential risks caused by a newly identified fruit tree virus.
Collapse
Affiliation(s)
- Wanying Hou
- Key Laboratory of Tobacco Pest Monitoring Controlling and Integrated Management, Institute of Tobacco Research, Chinese Academy of Agricultural Sciences, Qingdao, China
- Plant Pathology Laboratory, TERRA, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Shifang Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sebastien Massart
- Plant Pathology Laboratory, TERRA, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| |
Collapse
|
4
|
EFSA Panel on Plant Health (PLH), Bragard C, Dehnen‐Schmutz K, Gonthier P, Jacques M, Jaques Miret JA, Justesen AF, MacLeod A, Magnusson CS, Milonas P, Navas‐Cortes JA, Parnell S, Potting R, Reignault PL, Thulke H, Van der Werf W, Vicent Civera A, Yuen J, Zappalà L, Candresse T, Chatzivassiliou E, Finelli F, Winter S, Bosco D, Chiumenti M, Di Serio F, Ferilli F, Kaluski T, Minafra A, Rubino L. Pest categorisation of non-EU viruses of Rubus L. EFSA J 2020; 18:e05928. [PMID: 32626483 PMCID: PMC7008910 DOI: 10.2903/j.efsa.2020.5928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The Panel on Plant Health of EFSA conducted a pest categorisation of 17 viruses of Rubus L. that were previously classified as either non-EU or of undetermined standing in a previous opinion. These infectious agents belong to different genera and are heterogeneous in their biology. Blackberry virus X, blackberry virus Z and wineberry latent virus were not categorised because of lack of information while grapevine red blotch virus was excluded because it does not infect Rubus. All 17 viruses are efficiently transmitted by vegetative propagation, with plants for planting representing the major pathway for entry and spread. For some viruses, additional pathway(s) are Rubus seeds, pollen and/or vector(s). Most of the viruses categorised here infect only one or few plant genera, but some of them have a wide host range, thus extending the possible entry pathways. Cherry rasp leaf virus, raspberry latent virus, raspberry leaf curl virus, strawberry necrotic shock virus, tobacco ringspot virus and tomato ringspot virus meet all the criteria to qualify as potential Union quarantine pests (QPs). With the exception of impact in the EU territory, on which the Panel was unable to conclude, blackberry chlorotic ringspot virus, blackberry leaf mottle-associated virus, blackberry vein banding-associated virus, blackberry virus E, blackberry virus F, blackberry virus S, blackberry virus Y and blackberry yellow vein-associated virus satisfy all the other criteria to be considered as potential QPs. Black raspberry cryptic virus, blackberry calico virus and Rubus canadensis virus 1 do not meet the criterion of having a potential negative impact in the EU. For several viruses, the categorisation is associated with high uncertainties, mainly because of the absence of data on biology, distribution and impact. Since the opinion addresses non-EU viruses, they do not meet the criteria to qualify as potential Union regulated non-quarantine pests.
Collapse
|
5
|
Adiputra J, Jarugula S, Naidu RA. Intra-species recombination among strains of the ampelovirus Grapevine leafroll-associated virus 4. Virol J 2019; 16:139. [PMID: 31744534 PMCID: PMC6862812 DOI: 10.1186/s12985-019-1243-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/15/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Grapevine leafroll disease is one of the most economically important viral diseases affecting grape production worldwide. Grapevine leafroll-associated virus 4 (GLRaV-4, genus Ampelovirus, family Closteroviridae) is one of the six GLRaV species documented in grapevines (Vitis spp.). GLRaV-4 is made up of several distinct strains that were previously considered as putative species. Currently known strains of GLRaV-4 stand apart from other GLRaV species in lacking the minor coat protein. METHODS In this study, the complete genome sequence of three strains of GLRaV-4 from Washington State vineyards was determined using a combination of high-throughput sequencing, Sanger sequencing and RACE. The genome sequence of these three strains was compared with corresponding sequences of GLRaV-4 strains reported from other grapevine-growing regions. Phylogenetic analysis and SimPlot and Recombination Detection Program (RDP) were used to identify putative recombination events among GLRaV-4 strains. RESULTS The genome size of GLRaV-4 strain 4 (isolate WAMR-4), strain 5 (isolate WASB-5) and strain 9 (isolate WALA-9) from Washington State vineyards was determined to be 13,824 nucleotides (nt), 13,820 nt, and 13,850 nt, respectively. Multiple sequence alignments showed that a 11-nt sequence (5'-GTAATCTTTTG-3') towards 5' terminus of the 5' non-translated region (NTR) and a 10-nt sequence (5'-ATCCAGGACC-3') towards 3' end of the 3' NTR are conserved among the currently known GLRaV-4 strains. LR-106 isolate of strain 4 and Estellat isolate of strain 6 were identified as recombinants due to putative recombination events involving divergent sequences in the ORF1a from strain 5 and strain Pr. CONCLUSION Genome-wide analyses showed for the first time that recombinantion can occur between distinct strains of GLRaV-4 resulting in the emergence of genetically stable and biologically successful chimeric viruses. Although the origin of recombinant strains of GLRaV-4 remains elusive, intra-species recombination could be playing an important role in shaping genetic diversity and evolution of the virus and modulating the biology and epidemiology of GLRaV-4 strains.
Collapse
Affiliation(s)
- Jati Adiputra
- Department of Plant Pathology, Irrigated Agriculture Research and Extension center, Washington State University, Prosser, Washington, 99350, USA.,Present address, Center for Diagnostic Standards of Agricultural Quarantine, Ministry of Agriculture, Indonesia Agricultural Quarantine Agency, Jakarta, Indonesia
| | - Sridhar Jarugula
- Department of Plant Pathology, Irrigated Agriculture Research and Extension center, Washington State University, Prosser, Washington, 99350, USA
| | - Rayapati A Naidu
- Department of Plant Pathology, Irrigated Agriculture Research and Extension center, Washington State University, Prosser, Washington, 99350, USA.
| |
Collapse
|
6
|
Bragard C, Dehnen-Schmutz K, Gonthier P, Jacques MA, Jaques Miret JA, Justesen AF, MacLeod A, Magnusson CS, Milonas P, Navas-Cortes JA, Parnell S, Potting R, Reignault PL, Thulke HH, der Werf WV, Vicent Civera A, Yuen J, Zappalà L, Candresse T, Chatzivassiliou E, Winter S, Chiumenti M, Di Serio F, Kaluski T, Minafra A, Rubino L. List of non-EU viruses and viroids of Cydonia Mill., Fragaria L., Malus Mill., Prunus L., Pyrus L., Ribes L., Rubus L. and Vitis L. EFSA J 2019; 17:e05501. [PMID: 32626418 PMCID: PMC7009187 DOI: 10.2903/j.efsa.2019.5501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Panel on Plant Health performed a listing of non-EU viruses and viroids (reported hereinafter as viruses) of Cydonia Mill., Fragaria L., Malus Mill., Prunus L., Pyrus L., Ribes L., Rubus L. and Vitis L. A systematic literature review identified 197 viruses infecting one or more of the host genera under consideration. Viruses were allocated into three categories (i) 86 non-EU viruses, known to occur only outside the EU or having only limited presence in the EU (i.e. reported in only one or few Member States (MSs), known to have restricted distribution, outbreaks), (ii) 97 viruses excluded at this stage from further categorisation efforts because they have significant presence in the EU (i.e. only reported so far from the EU or known to occur or be widespread in some MSs or frequently reported in the EU), (iii) 14 viruses with undetermined standing for which available information did not readily allow to allocate to one or the other of the two above groups. Comments provided by MSs during consultation phases were integrated in the opinion. The main knowledge gaps and uncertainties of this listing concern (i) the geographic distribution and prevalence of the viruses analysed, in particular when they were recently described; (ii) the taxonomy and biological status of a number of poorly characterised viruses; (iii) the host status of particular plant genera in relation to some viruses. The viruses considered as non-EU and those with undetermined standing will be categorised in the next steps to answer a specific mandate from the Commission to develop pest categorisations for non-EU viruses. This list does not imply a prejudice on future needs for a pest categorisation for other viruses which are excluded from the current categorisation efforts.
Collapse
|
7
|
Jarugula S, Gowda S, Dawson WO, Naidu RA. Development of infectious cDNA clones of Grapevine leafroll-associated virus 3 and analyses of the 5' non-translated region for replication and virion formation. Virology 2018; 523:89-99. [PMID: 30103103 DOI: 10.1016/j.virol.2018.07.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/19/2018] [Accepted: 07/21/2018] [Indexed: 01/28/2023]
Abstract
Infectious cDNA clones were developed for Grapevine leafroll-associated virus 3 (GLRaV-3, genus Ampelovirus, family Closteroviridae). In vitro RNA transcripts generated from cDNA clones showed replication via the production of 3'-coterminal subgenomic (sg) mRNAs in Nicotiana benthamiana protoplasts. The detection of sgRNAs and the recovery of progeny recombinant virions from N. benthamiana leaves agroinfiltrated with full-length cDNA clones confirmed RNA replication and virion formation. The 5' non-translated region (5' NTR) of GLRaV-3 was exchangeable between genetic variants and complement the corresponding cognate RNA functions in trans. Mutational analysis of the 5' NTR in minireplicon cDNA clones showed that the conserved 40 nucleotides at the 5'-terminus were indispensable for replication, compared to downstream variable portion of the 5' NTR. Some of the functional mutations in the 5' NTR were tolerated in full-length cDNA clones and produced sgRNAs and virions in N. benthamiana leaves, whereas other mutations affected replication and virion formation.
Collapse
Affiliation(s)
- Sridhar Jarugula
- Department of Plant Pathology, Irrigated Agriculture Research and Extension Center, Washington State University, WA 99350, United States
| | - Siddarame Gowda
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - William O Dawson
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Rayapati A Naidu
- Department of Plant Pathology, Irrigated Agriculture Research and Extension Center, Washington State University, WA 99350, United States.
| |
Collapse
|
8
|
Donda BP, Jarugula S, Naidu RA. An Analysis of the Complete Genome Sequence and Subgenomic RNAs Reveals Unique Features of the Ampelovirus, Grapevine leafroll-associated virus 1. PHYTOPATHOLOGY 2017; 107:1069-1079. [PMID: 28686140 DOI: 10.1094/phyto-02-17-0061-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Despite being the first closterovirus documented in grapevines (Vitis sp.), the molecular biology of Grapevine leafroll-associated virus 1 (GLRaV-1, genus Ampelovirus, family Closteroviridae) is still in its infancy. In this study, the complete genome sequence of two GLRaV-1 isolates was determined to be 18,731 (isolate WA-CH) and 18,946 (isolate WA-PN) nucleotides (nt). The genome of WA-CH and WA-PN isolates encodes nine putative open reading frames (ORFs) and the arrangement of these ORFs in both isolates was similar to that of Australian and Canadian isolates. In addition to two divergent copies of the coat protein (CP), the genome of GLRaV-1 isolates contain CP-homologous domain in four genes, making the virus unique among Closteroviridae members. The 5' and 3' nontranslated regions (NTRs) of WA-CH and WA-PN isolates showed differences in size and sequence composition, with 5' NTR having variable number of ∼65-nt-long repeats. Using the 5' NTR sequences, a reverse transcription-polymerase chain reaction and restriction fragment length polymorphism method was developed to distinguish GLRaV-1 variants in vineyards. Northern analysis of total RNA from GLRaV-1-infected grapevine samples revealed three subgenomic RNAs (sgRNAs), corresponding tentatively to CP, p21, and p24 ORFs, present at higher levels, with p24 sgRNA observed at relatively higher abundance than the other two sgRNAs. The 5' terminus of sgRNAs corresponding to CP, CPd1, CPd2, p21, and p24 were mapped to the virus genome and the leader sequence for these five sgRNAs determined to be 68, 27, 15, 49, and 18 nt, respectively. Taken together, this study provided a foundation for further elucidation of the comparative molecular biology of closteroviruses infecting grapevines.
Collapse
Affiliation(s)
- Bhanu Priya Donda
- Department of Plant Pathology, Washington State University, Irrigated Agriculture Research and Extension Center, Prosser, WA 99350
| | - Sridhar Jarugula
- Department of Plant Pathology, Washington State University, Irrigated Agriculture Research and Extension Center, Prosser, WA 99350
| | - Rayapati A Naidu
- Department of Plant Pathology, Washington State University, Irrigated Agriculture Research and Extension Center, Prosser, WA 99350
| |
Collapse
|
9
|
Thekke-Veetil T, Tzanetakis IE. Development of reliable detection assays for blueberry mosaic- and blackberry vein banding- associated viruses based on their population structures. J Virol Methods 2017; 248:191-194. [PMID: 28754569 DOI: 10.1016/j.jviromet.2017.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/19/2017] [Accepted: 07/24/2017] [Indexed: 02/05/2023]
Abstract
Blueberry mosaic associated virus (BlMaV), the presumed causal agent of the homonymous disease and blackberry vein banding associated virus (BVBaV), a component of the blackberry yellow vein disease complex, are recently characterized RNA viruses. There is a need for efficient and sensitive detection protocols for the two viruses, not only for screening during the nursery propagation process but also in commercial fields to better understand virus epidemiology and minimize disease spread. RNA viruses display significant nucleotide variation forming quasi-species. Therefore, sequence-based detection methodologies, even though sensitive, may lead to false negative results. For this reason, information on the genetic diversity of virus populations is essential to develop diagnostic assays that have the potential to detect all variants. Detection assays for BlMaV and BVBaV were developed based on existing genetic diversity data and were validated by screening samples from different geographical areas in the United States. These detection tests provide sensitivity and specificity and will serve as the protocols of choice for virus screening in Vaccinium and Rubus certification programs in the United States and elsewhere. Given the increasing global trade of both blueberry and blackberry these tests will be valuable in avoiding virus introductions to new areas.
Collapse
Affiliation(s)
- Thanuja Thekke-Veetil
- Department of Plant Pathology, Division of Agriculture, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Ioannis E Tzanetakis
- Department of Plant Pathology, Division of Agriculture, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
10
|
Hassan M, Di Bello PL, Keller KE, Martin RR, Sabanadzovic S, Tzanetakis IE. A new, widespread emaravirus discovered in blackberry. Virus Res 2017; 235:1-5. [DOI: 10.1016/j.virusres.2017.04.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 01/22/2023]
|
11
|
Shahid MS, Aboughanem-Sabanadzovic N, Sabanadzovic S, Tzanetakis IE. Genomic Characterization and Population Structure of a Badnavirus Infecting Blackberry. PLANT DISEASE 2017; 101:110-115. [PMID: 30682310 DOI: 10.1094/pdis-04-16-0527-re] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Blackberry viruses are pervasive, decreasing growth, yield, and plant longevity. In a quest to identify viruses associated with blackberry yellow vein, a disease caused by virus complexes, a new double-stranded DNA virus, referred to as blackberry virus F (BVF), a putative member of the genus Badnavirus, family Caulimoviridae, was identified. The virus was found in both cultivated and wild blackberry samples collected from several states in the southern United States. Population structure, host range, and association with disease symptoms were assessed. As BVF integrates into the plant genome, it affects the production of virus-free propagation material, the cornerstone for certification programs.
Collapse
Affiliation(s)
- Muhammad Shafiq Shahid
- Department of Plant Pathology, Division of Agriculture, University of Arkansas, Fayetteville 72701
| | | | - Sead Sabanadzovic
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State 39762
| | | |
Collapse
|
12
|
Ho T, Quito-Avila D, Keller KE, Postman JD, Martin RR, Tzanetakis IE. Evidence of sympatric speciation of elderberry carlaviruses. Virus Res 2016; 215:72-5. [PMID: 26851177 DOI: 10.1016/j.virusres.2016.01.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/14/2016] [Accepted: 01/22/2016] [Indexed: 10/22/2022]
Abstract
Five new carlaviruses infecting elderberry were characterized and tentatively named as elderberry virus A-E (ElVA-ElVE). Their genome organization is similar to that of other carlaviruses with size ranging from 8540 to 8628 nucleotides, excluding the polyadenylated tails. ElVA, ElVB and ElVD share a common ancestor as do ElVC and ElVE, indicating that speciation may be sympatric with all viruses having emerged in elderberry. Analyses of the carlavirus conserved domains indicate that the 2-oxoglutarate and Fe(II)-dependent oxygenase motifs are reliable indicators of virus phylogenetic classification with recombination playing a significant role in the evolution of the genus. A universal RT-PCR assay that detects all the elderberry carlaviruses and potentially other members of the genus has been developed. This tool can be used for research and regulatory purposes as elderberry cultivation is rapidly expanding to new areas where the viruses may be absent.
Collapse
Affiliation(s)
- Thien Ho
- Department of Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701, USA
| | - Diego Quito-Avila
- Centro de Investigaciones Biotecnologicas del Ecuador (CIBE), Escuela Superior Politecnica del Litoral (ESPOL), Guayaquil, Guayas EC090150, Ecuador
| | | | - Joseph D Postman
- National Clonal Germplasm Repository, USDA-ARS, Corvallis, OR 97333, USA
| | | | - Ioannis E Tzanetakis
- Department of Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701, USA.
| |
Collapse
|
13
|
Thekke-Veetil T, Polashock JJ, Marn MV, Plesko IM, Schilder AC, Keller KE, Martin RR, Tzanetakis IE. Population structure of blueberry mosaic associated virus: Evidence of reassortment in geographically distinct isolates. Virus Res 2015; 201:79-84. [PMID: 25733053 DOI: 10.1016/j.virusres.2015.02.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 02/19/2015] [Accepted: 02/22/2015] [Indexed: 10/23/2022]
Abstract
The population structure of blueberry mosaic associated virus (BlMaV), a putative member of the family Ophioviridae, was examined using 61 isolates collected from North America and Slovenia. The studied isolates displayed low diversity in the movement and nucleocapsid proteins and low ratios of non-synonymous to synonymous nucleotide substitutions, indicative of strong purifying selection. Phylogenetic analyses revealed grouping primarily based on geography with some isolates deviating from this rule. Phylogenetic incongruence in the two regions, coupled with detection of reassortment events, indicated the possible role of genetic exchange in the evolution of BlMaV.
Collapse
Affiliation(s)
- Thanuja Thekke-Veetil
- Department of Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701, United States
| | | | - Mojca V Marn
- Agricultural Institute of Slovenia, Hacquetova 17, Ljubljana, Slovenia
| | - Irena M Plesko
- Agricultural Institute of Slovenia, Hacquetova 17, Ljubljana, Slovenia
| | - Annemiek C Schilder
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States
| | | | | | - Ioannis E Tzanetakis
- Department of Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701, United States.
| |
Collapse
|
14
|
Abstract
Virus control in berry crops starts with the development of plants free of targeted pathogens, usually viruses, viroids, phytoplasmas, and systemic bacteria, through a combination of testing and therapy. These then become the top-tier plants in certification programs and are the source from which all certified plants are produced, usually after multiple cycles of propagation. In certification schemes, efforts are made to produce plants free of the targeted pathogens to provide plants of high health status to berry growers. This is achieved using a systems approach to manage virus vectors. Once planted in fruit production fields, virus control shifts to disease control where efforts are focused on controlling viruses or virus complexes that result in disease. In fruiting fields, infection with a virus that does not cause disease is of little concern to growers. Virus control is based on the use of resistance and tolerance, vector management, and isolation.
Collapse
Affiliation(s)
- Robert R Martin
- USDA-ARS Horticultural Crops Research Unit, Corvallis, Oregon, USA.
| | - Ioannis E Tzanetakis
- Department of Plant Pathology, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
15
|
Ho T, Tzanetakis IE. Development of a virus detection and discovery pipeline using next generation sequencing. Virology 2014; 471-473:54-60. [PMID: 25461531 DOI: 10.1016/j.virol.2014.09.019] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 08/28/2014] [Accepted: 09/22/2014] [Indexed: 12/13/2022]
Abstract
Next generation sequencing (NGS) has revolutionized virus discovery. Notwithstanding, a vertical pipeline, from sample preparation to data analysis, has not been available to the plant virology community. We developed a degenerate oligonucleotide primed RT-PCR method with multiple barcodes for NGS, and constructed VirFind, a bioinformatics tool specifically for virus detection and discovery able to: (i) map and filter out host reads, (ii) deliver files of virus reads with taxonomic information and corresponding Blastn and Blastx reports, and (iii) perform conserved domain search for reads of unknown origin. The pipeline was used to process more than 30 samples resulting in the detection of all viruses known to infect the processed samples, the extension of the genomic sequences of others, and the discovery of several novel viruses. VirFind was tested by four external users with datasets from plants or insects, demonstrating its potential as a universal virus detection and discovery tool.
Collapse
Affiliation(s)
- Thien Ho
- Department of Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR, USA.
| | - Ioannis E Tzanetakis
- Department of Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR, USA.
| |
Collapse
|
16
|
Abstract
Certification programs have been developed to provide plant material that meets a predetermined level of plant health. The primary objectives of these programs are to limit pathogen incidence in plant material in order to minimize losses by growers and prevent movement of harmful pests and pathogens that may harm the environment. For many fruit and nut crops, orchards are expected to remain productive for years or decades; thus, starting with plants of high health status is essential. The components of certification programs in terms of plant health will be outlined, along with the benefits of harmonizing these programs where possible to facilitate plant movement without increasing trade in plant pathogens.
Collapse
|