1
|
Song Y, Yuan Z, Ji J, Ruan Y, Li X, Wang L, Zeng W, Wu K, Hu W, Yi L, Ding H, Zhao M, Fan S, Li Z, Chen J. Development of a Ferritin-Based Nanoparticle Vaccine against Classical Swine Fever. Vaccines (Basel) 2024; 12:948. [PMID: 39204071 PMCID: PMC11360710 DOI: 10.3390/vaccines12080948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
The occurrence of classical swine fever (CSF) poses a significant threat to the global swine industry. Developing an effective and safe vaccine is crucial for preventing and controlling CSF. Here, we constructed self-assembled ferritin nanoparticles fused with the classical swine fever virus (CSFV) E2 protein and a derived B cell epitope (Fe-E2B) using a baculovirus expression system (BVES), demonstrating enhanced immunogenicity. Furthermore, we provide a detailed evaluation of the immunological efficacy of the FeE2B in rabbits. The results showed that robust and sustained antibody responses were detected in rabbits immunized with the Fe-E2B nanoparticle vaccine, comparable to those elicited by commercially available vaccines. Additionally, we demonstrated that the vaccine effectively activated crucial immune factors IFN-γ and IL-4 in vivo, increasing their levels by 1.41-fold and 1.39-fold, respectively. Immunization with Fe-E2B enabled rabbits to avoid viremia and stereotypic fever after CSFV challenge. In conclusion, this study highlights the potential of ferritin nanoparticles as antigen-presenting carriers to induce robust immune responses, proposing a candidate vaccine strategy for the prevention and control of CSF.
Collapse
Affiliation(s)
- Yiwan Song
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
- Key Laboratory of Zoonotic Disease Prevention and Control of Guangdong, South China Agricultural University, Guangzhou 510642, China
| | - Zhongmao Yuan
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
- Key Laboratory of Zoonotic Disease Prevention and Control of Guangdong, South China Agricultural University, Guangzhou 510642, China
| | - Junzhi Ji
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
- Key Laboratory of Zoonotic Disease Prevention and Control of Guangdong, South China Agricultural University, Guangzhou 510642, China
| | - Yang Ruan
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
| | - Lianxiang Wang
- Wen’s Group Academy, Wen’s Foodstuffs Group Co., Ltd., Xinxing 527400, China;
| | - Weijun Zeng
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
- Key Laboratory of Zoonotic Disease Prevention and Control of Guangdong, South China Agricultural University, Guangzhou 510642, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
- Key Laboratory of Zoonotic Disease Prevention and Control of Guangdong, South China Agricultural University, Guangzhou 510642, China
| | - Wenshuo Hu
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
- Key Laboratory of Zoonotic Disease Prevention and Control of Guangdong, South China Agricultural University, Guangzhou 510642, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
- Key Laboratory of Zoonotic Disease Prevention and Control of Guangdong, South China Agricultural University, Guangzhou 510642, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
- Key Laboratory of Zoonotic Disease Prevention and Control of Guangdong, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoyao Li
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
- Wen’s Group Academy, Wen’s Foodstuffs Group Co., Ltd., Xinxing 527400, China;
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
- Key Laboratory of Zoonotic Disease Prevention and Control of Guangdong, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Jang G, Kim J, Park C, Song K, Kang W, Yang K, Lee C. Pathogenicity of a novel classical swine fever LOM vaccine‐derived virus isolated on Jeju Island, South Korea. Vet Med Sci 2022; 8:2434-2443. [DOI: 10.1002/vms3.903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Guehwan Jang
- College of Veterinary Medicine and Virus Vaccine Research Center Gyeongsang National University Jinju Republic of Korea
| | - Joo‐Ah Kim
- Livestock Affairs Division Jeju Special Self‐Governing Province Jeju Republic of Korea
| | - Changnam Park
- Veterinary Research Institute Jeju Special Self‐Governing Province Jeju Republic of Korea
| | - Kyungok Song
- Veterinary Research Institute Jeju Special Self‐Governing Province Jeju Republic of Korea
| | - Won‐Myoung Kang
- Veterinary Research Institute Jeju Special Self‐Governing Province Jeju Republic of Korea
| | - Kyungsu Yang
- Farm & Pharm Veterinary Hospital Jeju Republic of Korea
| | - Changhee Lee
- College of Veterinary Medicine and Virus Vaccine Research Center Gyeongsang National University Jinju Republic of Korea
| |
Collapse
|
3
|
The Unique Glycosylation at Position 986 on the E2 Glycoprotein of Classical Swine Fever Virus Is Responsible for Viral Attenuation and Protection against Lethal Challenge. J Virol 2021; 96:e0176821. [PMID: 34730400 PMCID: PMC8791258 DOI: 10.1128/jvi.01768-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Classical swine fever (CSF) is an economically important disease of pigs caused by classical swine fever virus (CSFV). The live attenuated vaccine C-strain (also called HCLV strain) against CSF was produced by multiple passages of a highly virulent strain in rabbits. However, the molecular determinants for its attenuation and protection remain unclear. In this study, we identified a unique glycosylation at position 986 (986NYT988) on the E2 glycoprotein Domain IV of C-strain but not (986NYA988) the highly virulent CSFV Shimen strain. We evaluated the infectivity, virulence, and protective efficacy of the C-strain-based mutant rHCLV-T988A lacking the glycosylation and Shimen strain mutant rShimen-A988T acquiring an additional glycosylation at position 986. rShimen-A988T showed a significantly decreased viral replication ability in SK6 cells, while rHCLV-T988A exhibited a growth kinetics indistinguishable from that of C-strain. Removal of the C-strain glycosylation site does not affect viral replication in rabbits and the attenuated phenotype in pigs. However, rShimen-A988T was attenuated and protected the pigs from a lethal challenge at 14 days postinoculation. In contrast, the rHCLV-T988A-inoculated pigs showed transient fever, a few clinical signs, and pathological changes in the spleens upon challenge with the Shimen strain. Mechanistic investigations revealed that the unique glycosylation at position 986 influences viral spreading, alters the formation of E2 homodimers, and leads to increased production of neutralizing antibodies. Collectively, our data for the first time demonstrate that the unique glycosylation at position 986 on the E2 glycoprotein is responsible for viral attenuation and protection. IMPORTANCE Viral glycoproteins involve in infectivity, virulence, and host immune responses. Deglycosylation on the Erns, E1, or E2 glycoprotein of highly virulent classical swine fever virus (CSFV) attenuated viral virulence in pigs, indicating that the glycosylation contributes to the pathogenicity of the highly virulent strain. However, the effects of the glycosylation on the C-strain E2 glycoprotein on viral infectivity in cells, viral attenuation, and protection in pigs have not been elucidated. This study demonstrates the unique glycosylation at position 986 on the C-strain E2 glycoprotein. C-strain mutant removing the glycosylation at the site provides only partial protection against CSFV challenge. Remarkably, the addition of the glycan to E2 of the highly virulent Shimen strain attenuates the viral virulence and confers complete protection against the lethal challenge in pigs. Our findings provide a new insight into the contribution of the glycosylation to the virus attenuation and protection.
Collapse
|
4
|
Proline to Threonine Mutation at Position 162 of NS5B of Classical Swine Fever Virus Vaccine C Strain Promoted Genome Replication and Infectious Virus Production by Facilitating Initiation of RNA Synthesis. Viruses 2021; 13:v13081523. [PMID: 34452387 PMCID: PMC8402891 DOI: 10.3390/v13081523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022] Open
Abstract
The 3′untranslated region (3′UTR) and NS5B of classical swine fever virus (CSFV) play vital roles in viral genome replication. In this study, two chimeric viruses, vC/SM3′UTR and vC/b3′UTR, with 3′UTR substitution of CSFV Shimen strain or bovine viral diarrhea virus (BVDV) NADL strain, were constructed based on the infectious cDNA clone of CSFV vaccine C strain, respectively. After virus rescue, each recombinant chimeric virus was subjected to continuous passages in PK-15 cells. The representative passaged viruses were characterized and sequenced. Serial passages resulted in generation of mutations and the passaged viruses exhibited significantly increased genomic replication efficiency and infectious virus production compared to parent viruses. A proline to threonine mutation at position 162 of NS5B was identified in both passaged vC/SM3′UTR and vC/b3′UTR. We generated P162T mutants of two chimeras using the reverse genetics system, separately. The single P162T mutation in NS5B of vC/SM3′UTR or vC/b3′UTR played a key role in increased viral genome replication and infectious virus production. The P162T mutation increased vC/SM3′UTRP162T replication in rabbits. From RNA-dependent RNA polymerase (RdRp) assays in vitro, the NS5B containing P162T mutation (NS5BP162T) exhibited enhanced RdRp activity for different RNA templates. We further identified that the enhanced RdRp activity originated from increased initiation efficiency of RNA synthesis. These findings revealed a novel function for the NS5B residue 162 in modulating pestivirus replication.
Collapse
|
5
|
Jang G, Kim JA, Yoo H, Yang K, Yang HS, Park C, Jeong K, Park CK, Lyoo YS, Lee C. Genomic characterization of classical swine fever virus LOM variants with 3'-UTR INDELs from pigs on Jeju Island, South Korea. Arch Virol 2020; 165:1691-1696. [PMID: 32394293 DOI: 10.1007/s00705-020-04651-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 04/10/2020] [Indexed: 12/19/2022]
Abstract
Classical swine fever virus (CSFV) reemerged in naïve pig herds on Jeju Island, South Korea, due to the accidental introduction of the LOM vaccine strain in 2014. Since this reemergence, the previously CSFV-free region has experienced numerous outbreaks, causing the virus to become endemic in provincial herds. In this study, we determined the complete genome sequences and investigated the molecular characteristics of LOM-derived field CSFV strains with unique insertion-deletion (INDEL) mutations in the 3'-untranslated region (UTR) that were responsible for ongoing sporadic outbreaks on Jeju Island in 2019. The Jeju LOM-derived variants that emerged in 2019 had their own INDEL signatures in the 3'-UTR, resulting in changes to the predicted secondary stem-loop structures. The genomes of these strains were 12,297-12,302 nucleotides in length, one nucleotide (nt) shorter or one, two, or four nt longer than the reference LOM strain. The 3'-UTR INDEL variants shared 98.8-99.0% and 98.3-98.6% identity with the LOM strain at the polyprotein and full-genome level, respectively. The total number of genetic variations between the LOM vaccine strain and the 3'-UTR INDEL isolates ranged from 161 to 202 and 37 to 45 at the nucleotide and amino acid level, respectively. These mutations were broadly dispersed throughout the genome and particularly clustered in NS2 and the 3'-UTR, possibly triggering a reversion to low virulence and allowing the virus to adapt to improve its persistence in the field. This study provides important information about the genetic evolution of LOM-derived CSFV circulating in the free region, and suggests that it arose from continuous non-lethal mutations to ensure viral fitness in host animals.
Collapse
Affiliation(s)
- Guehwan Jang
- Animal Virology Laboratory, BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Joo-Ah Kim
- Animal Health Division, Jeju Special Self-Governing Province, Jeju, 63122, South Korea
| | - Hyekyung Yoo
- Farm and Pharm Veterinary Hospital, Jeju, 63029, Republic of Korea
| | - Kyungsu Yang
- Farm and Pharm Veterinary Hospital, Jeju, 63029, Republic of Korea
| | - Hyoung-Seok Yang
- Veterinary Research Institute, Jeju Special Self-Governing Province, Jeju, 63344, South Korea
| | - Changnam Park
- Veterinary Research Institute, Jeju Special Self-Governing Province, Jeju, 63344, South Korea
| | - Kyongju Jeong
- Veterinary Research Institute, Jeju Special Self-Governing Province, Jeju, 63344, South Korea
| | - Choi-Kyu Park
- College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, South Korea
| | - Young S Lyoo
- College of Veterinary Medicine, Konkuk University, Seoul, 05029, South Korea
| | - Changhee Lee
- Animal Virology Laboratory, BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
6
|
E2 and Erns of classical swine fever virus C-strain play central roles in its adaptation to rabbits. Virus Genes 2019; 55:238-242. [DOI: 10.1007/s11262-018-01631-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/27/2018] [Indexed: 01/30/2023]
|
7
|
Li Y, Xie L, Zhang L, Wang X, Li C, Han Y, Hu S, Sun Y, Li S, Luo Y, Liu L, Munir M, Qiu HJ. The E2 glycoprotein is necessary but not sufficient for the adaptation of classical swine fever virus lapinized vaccine C-strain to the rabbit. Virology 2018; 519:197-206. [PMID: 29734043 DOI: 10.1016/j.virol.2018.04.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/14/2018] [Accepted: 04/21/2018] [Indexed: 12/26/2022]
Abstract
Classical swine fever virus (CSFV) C-strain was developed through hundreds of passages of a highly virulent CSFV in rabbits. To investigate the molecular basis for the adaptation of C-strain to the rabbit (ACR), a panel of chimeric viruses with the exchange of glycoproteins Erns, E1, and/or E2 between C-strain and the highly virulent Shimen strain and a number of mutant viruses with different amino acid substitutions in E2 protein were generated and evaluated in rabbits. Our results demonstrate that Shimen-based chimeras expressing Erns-E1-E2, Erns-E2 or E1-E2 but not Erns-E1, Erns, E1, or E2 of C-strain can replicate in rabbits, indicating that E2 in combination with either Erns or E1 confers the ACR. Notably, E2 and the amino acids P108 and T109 in Domain I of E2 are critical in ACR. Collectively, our data indicate that E2 is crucial in mediating the ACR, which requires synergistic contribution of Erns or E1.
Collapse
Affiliation(s)
- Yongfeng Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Libao Xie
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lingkai Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiao Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chao Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuying Han
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shouping Hu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuan Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Su Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuzi Luo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lihong Liu
- Department of Microbiology, National Veterinary Institute (SVA), Uppsala, Sweden
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, United Kingdom
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| |
Collapse
|
8
|
Coronado L, Liniger M, Muñoz-González S, Postel A, Pérez LJ, Pérez-Simó M, Perera CL, Frías-Lepoureau MT, Rosell R, Grundhoff A, Indenbirken D, Alawi M, Fischer N, Becher P, Ruggli N, Ganges L. Novel poly-uridine insertion in the 3'UTR and E2 amino acid substitutions in a low virulent classical swine fever virus. Vet Microbiol 2017; 201:103-112. [PMID: 28284595 DOI: 10.1016/j.vetmic.2017.01.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 12/24/2022]
Abstract
In this study, we compared the virulence in weaner pigs of the Pinar del Rio isolate and the virulent Margarita strain. The latter caused the Cuban classical swine fever (CSF) outbreak of 1993. Our results showed that the Pinar del Rio virus isolated during an endemic phase is clearly of low virulence. We analysed the complete nucleotide sequence of the Pinar del Rio virus isolated after persistence in newborn piglets, as well as the genome sequence of the inoculum. The consensus genome sequence of the Pinar del Rio virus remained completely unchanged after 28days of persistent infection in swine. More importantly, a unique poly-uridine tract was discovered in the 3'UTR of the Pinar del Rio virus, which was not found in the Margarita virus or any other known CSFV sequences. Based on RNA secondary structure prediction, the poly-uridine tract results in a long single-stranded intervening sequence (SS) between the stem-loops I and II of the 3'UTR, without major changes in the stem- loop structures when compared to the Margarita virus. The possible implications of this novel insertion on persistence and attenuation remain to be investigated. In addition, comparison of the amino acid sequence of the viral proteins Erns, E1, E2 and p7 of the Margarita and Pinar del Rio viruses showed that all non-conservative amino acid substitutions acquired by the Pinar del Rio isolate clustered in E2, with two of them being located within the B/C domain. Immunisation and cross-neutralisation experiments in pigs and rabbits suggest differences between these two viruses, which may be attributable to the amino acid differences observed in E2. Altogether, these data provide fresh insights into viral molecular features which might be associated with the attenuation and adaptation of CSFV for persistence in the field.
Collapse
Affiliation(s)
- Liani Coronado
- Centro Nacional de Sanidad Agropecuaria (CENSA), La Habana, Cuba; IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Matthias Liniger
- Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
| | - Sara Muñoz-González
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Alexander Postel
- EU and OIE Reference Laboratory for Classical Swine Fever, Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine, Hannover, Germany
| | | | - Marta Pérez-Simó
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | | | | | - Rosa Rosell
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Departamentd'Agricultura, Ramaderia, Pesca, Alimentació i Medi Natural, (DAAM), Generalitat de Catalunya, Spain
| | - Adam Grundhoff
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Research Group Virus Genomics, Hamburg, Germany
| | - Daniela Indenbirken
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Research Group Virus Genomics, Hamburg, Germany
| | - Malik Alawi
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Research Group Virus Genomics, Hamburg, Germany; Bioinformatics Service Facility, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicole Fischer
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Becher
- EU and OIE Reference Laboratory for Classical Swine Fever, Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine, Hannover, Germany
| | - Nicolas Ruggli
- Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
| | - Llilianne Ganges
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| |
Collapse
|
9
|
Li Y, Wang X, Sun Y, Li LF, Zhang L, Li S, Luo Y, Qiu HJ. Generation and evaluation of a chimeric classical swine fever virus expressing a visible marker gene. Arch Virol 2015; 161:563-71. [PMID: 26614259 DOI: 10.1007/s00705-015-2693-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 11/16/2015] [Indexed: 11/24/2022]
Abstract
Classical swine fever virus (CSFV) is a noncytopathogenic virus, and the incorporation of an enhanced green fluorescent protein (EGFP) tag into the viral genome provides a means of direct monitoring of viral infection without immunostaining. It is well established that the 3' untranslated region (3'-UTR) of the CSFV plays an important role in viral RNA replication. Although CSFV carrying a reporter gene and chimeric CSFV have been generated and evaluated, a chimeric CSFV with a visible marker has not yet been reported. Here, we generated and evaluated a chimeric virus containing the EGFP tag and the 3'-UTR from vaccine strain HCLV (C-strain) in the genetic background of the highly virulent CSFV Shimen strain. The chimeric marker CSFV was fluorescent and had an approximately 100-fold lower viral titer, lower replication level of viral genome, and weaker fluorescence intensity than the recombinant CSFV with only the EGFP tag or the parental virus. Furthermore, the marker chimera was avirulent and displayed no viremia in inoculated pigs, which were completely protected from lethal CSFV challenge as early as 15 days post-inoculation. The chimeric marker virus was visible in vitro and attenuated in vitro and in vivo, which suggests that CSFV can be engineered to produce attenuated variants with a visible marker to facilitate in vitro studies of CSFV infection and replication and to develop of novel vaccines against CSF.
Collapse
Affiliation(s)
- Yongfeng Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, 150001, Heilongjiang, China
| | - Xiao Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, 150001, Heilongjiang, China
| | - Yuan Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, 150001, Heilongjiang, China
| | - Lian-Feng Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, 150001, Heilongjiang, China
| | - Lingkai Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, 150001, Heilongjiang, China
| | - Su Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, 150001, Heilongjiang, China
| | - Yuzi Luo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, 150001, Heilongjiang, China
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
10
|
Ji W, Guo Z, Ding NZ, He CQ. Studying classical swine fever virus: Making the best of a bad virus. Virus Res 2015; 197:35-47. [DOI: 10.1016/j.virusres.2014.12.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/02/2014] [Accepted: 12/04/2014] [Indexed: 01/04/2023]
|