1
|
Shi M, Nan XR, Liu BQ. The Multifaceted Role of FUT8 in Tumorigenesis: From Pathways to Potential Clinical Applications. Int J Mol Sci 2024; 25:1068. [PMID: 38256141 PMCID: PMC10815953 DOI: 10.3390/ijms25021068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/07/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
FUT8, the sole glycosyltransferase responsible for N-glycan core fucosylation, plays a crucial role in tumorigenesis and development. Aberrant FUT8 expression disrupts the function of critical cellular components and triggers the abnormality of tumor signaling pathways, leading to malignant transformations such as proliferation, invasion, metastasis, and immunosuppression. The association between FUT8 and unfavorable outcomes in various tumors underscores its potential as a valuable diagnostic marker. Given the remarkable variation in biological functions and regulatory mechanisms of FUT8 across different tumor types, gaining a comprehensive understanding of its complexity is imperative. Here, we review how FUT8 plays roles in tumorigenesis and development, and how this outcome could be utilized to develop potential clinical therapies for tumors.
Collapse
Affiliation(s)
| | | | - Bao-Qin Liu
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, Shenyang 110122, China; (M.S.); (X.-R.N.)
| |
Collapse
|
2
|
Qiu H, Lin DY, Li JY. Screening and identification of dominant monoclonal HepG2 cell strain with 1.3-fold HBV genome. Shijie Huaren Xiaohua Zazhi 2021; 29:934-944. [DOI: 10.11569/wcjd.v29.i16.934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) infection model in vitro is the basis for studying HBV life cycle and pathogenesis and for drug screening. With the clinical anti-HBV therapy entering the new trend of "functional cure" and "complete cure", there is an urgent need for cell models that can stably simulate the transcription mechanism of covalently closed circular DNA (cccDNA) and the role of hepatitis B virus X protein (HBx). The 1.3-fold HBV genome contains all the biological information of HBV. It can start the transcription process by its own promoter, support the formation of cccDNA, and complete viral replication, which is closest to the life cycle of HBV in vivo. Lentivirus transfection is a technology that takes lentivirus as vector and introduces foreign molecules such as DNA and RNA into eukaryotic cells, which can form stable transfection.
AIM To construct a HepG2 cell model with 1.3-fold HBV genome by lentivirus transfection technology, and to screen and identify the dominant monoclonal strain that can stably and efficiently express HBV biomarkers.
METHODS A lentiviral plasmid containing 1.3-fold HBV genome information was constructed, and the recombinant lentivirus culture was used to infect HepG2 cells at the optimal multiplicity of infection (MOI). Blasticidin (BSD) was used to select HepG2 cell strains (1.3-fold HBV-HepG2) stably integrating the 1.3-fold HBV genome, and then the HBV in the cell model was identified by PCR. HepG2 cells stably carrying the 1.3-fold HBV genome were cultured and nine candidate positive monoclones were selected. The flanking sequences of each monoclonal cell were sequenced to determine the insertion position of the corresponding HBV genome in the genome of HepG2 cells. The most dominant monoclones were selected according to the expression levels of HBsAg and HBeAg. The expression levels and stability of HBsAg, HBeAg, HBx, cccDNA, and HBV DNA in HepG2 cells stably carrying the 1.3-fold HBV genome were compared.
RESULTS The lentiviral plasmid plenti-bsd-1.3-fold HBV was used to infect HepG2 cells at an MOI of 30. After 72 h, BSD (final concentration 1 μg/mL) was added for screening. After 15-20 d of continuous culture, stable 1.3-fold HBV-HepG2 cell line was obtained. HBV DNA sequence was then identified by PCR. Among the nine selected candidate positive monoclones, A14, in which the 1.3-fold HBV genome was inserted into the HepG2 genome at 1:166461695-166461715 (named HepGA14), had the highest expression levels of HBsAg and HBeAg at 24.28 IU/mL and 39.62 NCU/mL, respectively. HepGA14 can stably and highly express HBV biomarkers. Compared with HepG2.2.15 cell line, the expression levels of HBx and cccDNA in Hepga14 dominant monoclonal line in 1-20 passages were significantly higher (P < 0.05).
CONCLUSION We have successfully constructed and screened HepGA14, a dominant monoclonal HepG cell strain with HBV 1.3-fold genome, which lays a good foundation for further research of HBV-host relationship and pathogenesis as well as for drug screening.
Collapse
Affiliation(s)
- Hua Qiu
- Guangxi Medical University Affiliated Tumor Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Dong-Yi Lin
- Guangxi Medical University Affiliated Tumor Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Jin-Yuan Li
- Guangxi Medical University Affiliated Tumor Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
3
|
Wang T, Sun Y, Xiong Z, Wu J, Ding X, Guo X, Shao Y. Association of ST6GAL1 and CYP19A1 polymorphisms in the 3'-UTR with astrocytoma risk and prognosis in a Chinese Han population. BMC Cancer 2021; 21:391. [PMID: 33836687 PMCID: PMC8034180 DOI: 10.1186/s12885-021-08110-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/28/2021] [Indexed: 11/16/2022] Open
Abstract
Background Astrocytoma is a common type of central nervous system tumor. In this study, we investigated the correlation between ST6GAL1 and CYP19A1 polymorphisms and the risk and prognosis of astrocytoma. Methods A total of 365 astrocytoma patients and 379 healthy controls were genotyped using the Agena MassARRAY system. The correlation between ST6GAL1 and CYP19A1 variants and astrocytoma risk was calculated using logistic regression. The survival rate of patients with astrocytoma was analyzed to evaluate prognosis. Results We found that the ST6GAL1-rs2239611 significantly decreased the risk of astrocytoma in the codominant model (p = 0.044) and dominant model (p = 0.049). In stratified analyses, CYP19A1-rs2255192 might be associated with a higher risk of astrocytoma among the low-grade subgroup under recessive (p = 0.034) and additive (p = 0.030) models. However, CYP19A1-rs4646 had a risk-decreasing effect on the high-grade subgroup in the codominant model (p = 0.044). The results of Cox regression analysis showed that the CYP19A1-rs2239611 and -rs1042757 polymorphisms were significantly correlated with the prognosis of astrocytoma. Conclusion Our results suggest that ST6GAL1 and CYP19A1 genes may be a potential biomarker of genetic susceptibility and prognosis to astrocytoma in the Chinese Han population. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08110-1.
Collapse
Affiliation(s)
- Tuo Wang
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yao Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, China
| | - Zichao Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, China
| | - Jiamin Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, China
| | - Xiaoying Ding
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaoye Guo
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yuan Shao
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 277 YanTa West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
4
|
Norton PA, Mehta AS. Expression of genes that control core fucosylation in hepatocellular carcinoma: Systematic review. World J Gastroenterol 2019; 25:2947-2960. [PMID: 31249452 PMCID: PMC6589740 DOI: 10.3748/wjg.v25.i23.2947] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/25/2019] [Accepted: 05/18/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Changes in N-linked glycosylation have been observed in the circulation of individuals with hepatocellular carcinoma. In particular, an elevation in the level of core fucosylation has been observed. However, the mechanisms through which core fucose is increased are not well understood. We hypothesized that a review of the literature and related bioinformatic review regarding six genes known to be involved in the attachment of core fucosylation, the synthesis of the fucosylation substrate guanosine diphosphate (GDP)-fucose, or the transport of the substrate into the Golgi might offer mechanistic insight into the regulation of core fucose levels.
AIM To survey the literature to capture the involvement of genes regulating core N-linked fucosylation in hepatocellular carcinoma
METHODS The PubMed biomedical literature database was searched for the association of hepatocellular carcinoma and each of the core fucose-related genes and their protein products. We also queried The Cancer Genome Atlas Liver hepatocellular carcinoma (LIHC) dataset for genetic, epigenetic and gene expression changes for the set of six genes using the tools at cBioportal.
RESULTS A total of 27 citations involving one or more of the core fucosylation-related genes (FPGT, FUK, FUT8, GMDS, SLC35C1, TSTA3) and hepatocellular carcinoma were identified. The same set of gene symbols was used to query the 371 patients with liver cancer in the LIHC dataset to identify the frequency of mRNA over or under expression, as well as non-synonymous mutations, copy number variation and methylation level. Although all six genes trended to more samples displaying over expression relative to under-expression, it was noted that a number of tumor samples had undergone amplification of the genes of the de novo synthesis pathway, GMDS (27 samples) and TSTA3 (78 samples). In contrast, the other four genes had undergone amplification in 2 or fewer samples.
CONCLUSION Amplification of genes involved in the de novo pathway for generation of GDP-fucose, GMDS and TSTA3, likely contributes to the elevated core fucose observed in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Pamela A Norton
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, United States
| | - Anand S Mehta
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC 29425, United States
| |
Collapse
|
5
|
Han Y, Xiao K, Tian Z. Comparative Glycomics Study of Cell-Surface N-Glycomes of HepG2 versus LO2 Cell Lines. J Proteome Res 2019; 18:372-379. [PMID: 30343578 DOI: 10.1021/acs.jproteome.8b00655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cell-surface N-glycans play important roles in both inter- and intracellular processes, including cell adhesion and development, cell recognition, as well as cancer development and metastasis; detailed structural characterization of these N-glycans is thus paramount. Here we report our comparative N-glycomics study of cell-surface N-glycans of the hepatocellular carcinoma (HCC) HepG2 cells vs the normal liver LO2 cells. With sequential trypsin digestion of proteins, C18 depletion of peptides without glycosylation, PNGase F digestion of N-glycopeptides, PGC enrichment of N-glycans, CH3I permethylation of the enriched N-glycans, cell-surface N-glycomes of the HepG2 and LO2 cells were analyzed using C18-RPLC-MS/MS (HCD). With spectrum-level FDR no bigger than 1%, 351 and 310 N-glycans were identified for HepG2 and LO2, respectively, with comprehensive structural information (not only monosaccharide composition, but also sequence and linkage) by N-glycan database search engine GlySeeker. The percentage of hybrid N-glycans with tetra-antennary structures was substantially increased in the HepG2 cells. This comprehensive discovery study of differentially expressed cell-surface N-glycans in HepG2 vs LO2 serves as a solid reference for future validation study of glycosylation markers in HCC.
Collapse
Affiliation(s)
- Yuyin Han
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability , Tongji University , Shanghai 200092 , China
| | - Kaijie Xiao
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability , Tongji University , Shanghai 200092 , China
| | - Zhixin Tian
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability , Tongji University , Shanghai 200092 , China
| |
Collapse
|
6
|
St6gal1 knockdown alters HBV life cycle in HepAD38 cells. Biochem Biophys Res Commun 2018; 503:1841-1847. [PMID: 30057317 DOI: 10.1016/j.bbrc.2018.07.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 07/24/2018] [Indexed: 11/22/2022]
Abstract
Complex glycans at the cell surface play important roles, and their alteration is known to modulate cellular activity. Previously, we found that HBV replication in HepAD38 altered cell-surface sialylated N-glycan through the upregulation of St6gal1, Mgat2, and Mgat4a expression. Here we studied the effects of knocking them down on HBV replication in HepAD38. Our results showed that St6gal1 knockdown (KD) reduced intracellular HBV rcDNA level by 90%, that Mgat2 KD did not change the intracellular HBV rcDNA level, and that Mgat4 KD increased the intracellular HBV rcDNA level by 19 times compared to Tet(-). The changes in intracellular rcDNA level were followed by the alteration of Pol and HBc expression. Our study suggests that St6gal1 KD contributes more to the HBV life cycle than Mgat2 or Mgat4a KD through the modification of intracellular L, Pol, and HBc expression.
Collapse
|
7
|
Qin X, Guo Y, Du H, Zhong Y, Zhang J, Li X, Yu H, Zhang Z, Jia Z, Li Z. Comparative Analysis for Glycopatterns and Complex-Type N-Glycans of Glycoprotein in Sera from Chronic Hepatitis B- and C-Infected Patients. Front Physiol 2017; 8:596. [PMID: 28871230 PMCID: PMC5566988 DOI: 10.3389/fphys.2017.00596] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/02/2017] [Indexed: 12/25/2022] Open
Abstract
Background: Chronic infection with HBV (CHB) or HCV (CHC) is the most common chronic viral hepatitis that can lead to cirrhosis and hepatocellular carcinoma in humans, their infections have distinct pathogenic processes, however, little is known about the difference of glycoprotein glycopatterns in serum between hepatitis B virus (HBV)- and hepatitis C virus (HCV)-infected patients. Methods: A method combining the lectin microarrays, letin-mediated affinity capture glycoproteins, and MALDI-TOF/TOF-MS was employed to analyze serum protein glycopatterns and identify the glycan structures from patients with CHB (n = 54) or CHC(n = 47), and healthy volunteers (HV, n = 35). Lectin blotting was further utilized to validate and assess the expression levels of their serum glycopatterns. Finally, the differences of the glycoprotein glycopatterns were systematically compared between CHB and CHC patients. Conclusions: As a result, there were 11 lectins (e.g., HHL, GSL-II, and EEL) exhibited significantly increased expression levels, and three lectins (LCA, VVA, and ACA) exhibited significantly decreased expression levels of serum protein glycopatterns only in the CHB patients. However, DBA exhibited significantly decreased expression levels, and two lectins (WGA and SNA) exhibited significantly increased expression levels of serum glycopatterns only in the CHC patients. Furthermore, LEL and MAL-I showed a coincidentally increasing trend in both CHC and CHB patients compared with the HV. The individual analysis demonstrated that eight lectins (MPL, GSL-I, PTL-II, UEA-I, WGA, LEL, VVA, and MAL-I) exhibited a high degree of consistency with the pooled serum samples of HV, CHB, and CHC patients. Besides, a complex-type N-glycans binder PHA-E+L exhibited significantly decreased NFIs in the CHB compared with HV and CHC subjects (p < 0.01). The MALDI-TOF/TOF-MS results of N-linked glycans from the serum glycoproteins isolated by PHA-E+L-magnetic particle conjugates showed that there was an overlap of 23 N-glycan peaks (e.g., m/z 1419.743, 1663.734, and 1743.581) between CHB, and CHC patients, 5 glycan peaks (e.g., m/z 1850.878, 1866.661, and 2037.750) were presented in virus-infected hepatitis patients compared with HV, 3 glycan peaks (1460.659, 2069.740, and 2174.772) were observed only in CHC patients. Our data provide useful information to find new biomarkers for distinguishing CHB and CHC patients based on the precision alteration of their serum glycopatterns.
Collapse
Affiliation(s)
- Xinmin Qin
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest UniversityXi'an, China
| | - Yonghong Guo
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'an, China
| | - Haoqi Du
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest UniversityXi'an, China
| | - Yaogang Zhong
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest UniversityXi'an, China
| | - Jiaxu Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest UniversityXi'an, China
| | - Xuetian Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest UniversityXi'an, China
| | - Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest UniversityXi'an, China
| | - Zhiwei Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest UniversityXi'an, China
| | - Zhansheng Jia
- Center of Infectious Diseases, Tangdu Hospital, Fourth Military Medical UniversityXi'an, China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest UniversityXi'an, China
| |
Collapse
|