1
|
Hassanyar AK, Nie H, Li Z, Lin Y, Huang J, Woldegiorgis ST, Hussain M, Feng W, Zhang Z, Yu K, Su S. Discovery of SNP Molecular Markers and Candidate Genes Associated with Sacbrood Virus Resistance in Apis cerana cerana Larvae by Whole-Genome Resequencing. Int J Mol Sci 2023; 24:ijms24076238. [PMID: 37047210 PMCID: PMC10094193 DOI: 10.3390/ijms24076238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
Sacbrood virus (SBV) is a significant problem that impedes brood development in both eastern and western honeybees. Whole-genome sequencing has become an important tool in researching population genetic variations. Numerous studies have been conducted using multiple techniques to suppress SBV infection in honeybees, but the genetic markers and molecular mechanisms underlying SBV resistance have not been identified. To explore single nucleotide polymorphisms (SNPs), insertions, deletions (Indels), and genes at the DNA level related to SBV resistance, we conducted whole-genome resequencing on 90 Apis cerana cerana larvae raised in vitro and challenged with SBV. After filtering, a total of 337.47 gigabytes of clean data and 31,000,613 high-quality SNP loci were detected in three populations. We used ten databases to annotate 9359 predicted genes. By combining population differentiation index (FST) and nucleotide polymorphisms (π), we examined genome variants between resistant (R) and susceptible (S) larvae, focusing on site integrity (INT < 0.5) and minor allele frequency (MAF < 0.05). A selective sweep analysis with the top 1% and top 5% was used to identify significant regions. Two SNPs on the 15th chromosome with GenBank KZ288474.1_322717 (Guanine > Cytosine) and KZ288479.1_95621 (Cytosine > Thiamine) were found to be significantly associated with SBV resistance based on their associated allele frequencies after SNP validation. Each SNP was authenticated in 926 and 1022 samples, respectively. The enrichment and functional annotation pathways from significantly predicted genes to SBV resistance revealed immune response processes, signal transduction mechanisms, endocytosis, peroxisomes, phagosomes, and regulation of autophagy, which may be significant in SBV resistance. This study presents novel and useful SNP molecular markers that can be utilized as assisted molecular markers to select honeybees resistant to SBV for breeding and that can be used as a biocontrol technique to protect honeybees from SBV.
Collapse
|
2
|
Wei R, Cao L, Feng Y, Chen Y, Chen G, Zheng H. Sacbrood Virus: A Growing Threat to Honeybees and Wild Pollinators. Viruses 2022; 14:1871. [PMID: 36146677 PMCID: PMC9505205 DOI: 10.3390/v14091871] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Sacbrood virus (SBV) is one of the many viruses that infect both the Western honeybee (Apis mellifera) and the Eastern honeybee (Apis cerana). Recently, the interspecies transmission of SBV has been discovered, especially among wild pollinators. This newly discovered evolutionary occurrence regarding SBV indicates a much wider host range than previously believed, causing further concern about the future sustainability of agriculture and the resilience of ecosystems. Over the past few decades, vast numbers of studies have been undertaken concerning SBV infection in honeybees, and remarkable progress has been made in our understanding of the epidemiology, pathogenesis, transmission, and manifestations of SBV infection in honeybees and other pollinators. Meanwhile, some methods, including Chinese medicine, have been established to control and prevent sacbrood disease in A. cerana in Asian countries. In this review, we summarize the existing knowledge of SBV and address the gaps in the knowledge within the existing literature in the hope of providing future directions for the research and development of management strategies for controlling the spread of this deadly disease.
Collapse
Affiliation(s)
- Ruike Wei
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lianfei Cao
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ye Feng
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yanping Chen
- USDA-ARS Bee Research Laboratory, Beltsville, MD 20705, USA
| | - Gongwen Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huoqing Zheng
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Sacbrood viruses cross-infection between Apis cerana and Apis mellifera: Rapid detection, viral dynamics, evolution and spillover risk assessment. J Invertebr Pathol 2021; 186:107687. [PMID: 34728219 DOI: 10.1016/j.jip.2021.107687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/21/2022]
Abstract
Recent outbreaks of sacbrood virus (SBV) have caused serious epizootic disease in Apis cerana populations across Asia including Taiwan. Earlier phylogenetic analyses showed that cross-infection of AcSBV and AmSBV in both A. cerana and A. mellifera seems common, raising a concern of cross-infection intensifying the risk of disease resurgence in A. cerana. In this study, we analyzed the dynamics of cross-infection in three different types of apiaries (A. mellifera-only, A. cerana-only and two species co-cultured apiaries) over one year in Taiwan. Using novel, genotype-specific primer sets, we showed that SBV infection status varies across apiaries: AmSBV-AM and AcSBV-AC were the major genotype in the A. mellifera-only and the A. cerana-only apiaries, respectively, while AmSBV-AC and AcSBV-AC were the dominant genotypes in the co-cultured apiaries. Interestingly, co-cultured apiaries were among the only apiary type that harbored all variants and dual infections (i.e., AC and AM genotype co-infection in a single sample), indicating the interactions between hosts may form a conduit for cross-infection. The cross-infection between the two honey bee species appears to occur in a regular cycle with temporal fluctuation of AmSBV-AC and AcSBV-AC prevalence synchronized to each other in the co-cultured apiaries. Artificial infection of AcSBV in A. mellifera workers showed the suppression of viral replication, suggesting the potential of A. mellifera serving as a AcSBV reservoir that may contribute to virus spillover. Furthermore, the survival rate of A. cerana larvae was significantly reduced after artificial infections of both SBVs, indicating fitness costs of cross-infection on A. cerana and thus a high risk of disease resurgence in co-cultured apiaries. Our field and laboratory data provide baseline information that facilitates understanding of the risk of SBV cross-infection, and highlights the urgent need of SBV monitoring in co-cultured apiaries.
Collapse
|
4
|
Huang WF, Zhang Y, Mehmood S, Wang Z, Hou C, Li Z. Updating Sacbrood Virus Quantification PCR Method Using a TaqMan-MGB Probe. Vet Sci 2021; 8:vetsci8040063. [PMID: 33924550 PMCID: PMC8070565 DOI: 10.3390/vetsci8040063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/01/2021] [Accepted: 04/09/2021] [Indexed: 11/16/2022] Open
Abstract
Sacbrood virus (SBV) is a common honey bee virus disease. SBV variants and strains identified in Asian honey bees, Apis cerana, have created confusion in identifications. Although the regional names indicated the expansions of the virus in new regions, pathogenesis, and genomes of these variants are not distinct enough to be a separate virus species. However, current SBV qPCR methods may not detect newly identified A. cerana SBV variants (Ac SBV) according to the genome sequences. Since these Ac SBV can naturally infect A. mellifera and possibly other hymenopterans, ignorance of Ac SBV variants in detection methods is simply unwise. In this report, we updated the qPCR method based on Blanchard's design that used conserved regions of VP1 to design a TaqMan method with an MGB (minor groove binder) probe. We tested the method in bees and hornets, including A. mellifera, A. cerana, and Vespa velutina. The updated primers and the probe can match published SBV and Ac SBV genomes in databases, and this updated method has reasonable sensitivity and flexibility to be applied as a detection and quantification method before the discovery of variants with more mutated VP1 gene.
Collapse
Affiliation(s)
- Wei-Fone Huang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.L.)
- Correspondence:
| | - Yakun Zhang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.L.)
| | - Shahid Mehmood
- Chemical Ecology Group, Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650000, China; (S.M.); (Z.W.)
| | - Zhengwei Wang
- Chemical Ecology Group, Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650000, China; (S.M.); (Z.W.)
| | - Chunsheng Hou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100193, China
| | - Zhiguo Li
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.L.)
| |
Collapse
|
5
|
da Silva Ferreira R, de Toni Aquino da Cruz LC, de Souza VJ, da Silva Neves NA, de Souza VC, Filho LCF, da Silva Lemos P, de Lima CPS, Naveca FG, Atanaka M, Nunes MRT, Slhessarenko RD. Insect-specific viruses and arboviruses in adult male culicids from Midwestern Brazil. INFECTION GENETICS AND EVOLUTION 2020; 85:104561. [PMID: 32961364 DOI: 10.1016/j.meegid.2020.104561] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/09/2020] [Accepted: 09/17/2020] [Indexed: 11/26/2022]
Abstract
Viruses were identified from male anthropophilic mosquitoes from Mato Grosso (MT) State, Midwest Brazil from February 2017 to January 2018. Mosquitoes tested included Aedes (Stegomyia) aegypti (1139 males; 84 pools), Culex quinquefasciatus (9426 males; 179 pools), Culex sp. (3 males; 3 pools) and Psorophora albigenu (1 male; 1 pool) collected from four cities of MT. Pools were subjected to viral RNA extraction followed by RT-PCRs specific for ten flaviviruses, five alphaviruses and Simbu serogroup of orthobunyaviruses. Positive pools were passaged three times in VERO cells (alphavirus and orthobunyavirus) or C6/36 cells (flavivirus), with isolates confirmed through RT-PCR and nucleotide sequencing. We detected pools positive for Ilhéus (1 pool), dengue serotype 4 (1), Mayaro (12), equine encephalitis virus (1) yellow fever (1), Oropouche (2), Zika (4) and chikungunya (12) viruses. High throughput sequencing of arbovirus positive pools identified 35 insect-specific viruses (ISVs) from the families Circoviridae (2), Parvoviridae (2), Totiviridae (1), Flaviviridae (1), Iflaviridae (2), Mesoniviridae (4), Nodaviridae (2), Luteoviridae (1), Phasmaviridae (1) Phenuiviridae (2), Rhabdoviridae (2), Orthomyxoviridae (1), Xinmoviridae (1), and unclassified Bunyavirales (1), unclassified Picornavirales (3), unclassified Riboviria (4) and taxon Negevirus (5). From these, five novel viruses were tentatively named Mojica circovirus, Kuia iflavirus, Muxirum negevirus, Lambada picorna-like virus and Tacuru picorna-like virus. Our findings underscore the diversity and wide geographical distribution of ISVs and arboviruses infecting male culicids.
Collapse
Affiliation(s)
- Raquel da Silva Ferreira
- Programa de Pós-Graduação em Ciências da Saúde, Laboratório de Virologia, Universidade Federal de Mato Grosso, 78060-900 Cuiabá, Mato Grosso, Brazil
| | | | - Vilma Juscineide de Souza
- Secretaria Estadual de Saúde, Centro Político Administrativo, Palácio Paiaguás, Rua D, Bloco 5, 78049-902 Cuiabá, Mato Grosso, Brazil
| | - Nilvanei Aparecido da Silva Neves
- Programa de Pós-Graduação em Ciências da Saúde, Laboratório de Virologia, Universidade Federal de Mato Grosso, 78060-900 Cuiabá, Mato Grosso, Brazil
| | - Victor Costa de Souza
- Instituto Leônidas e Maria Deane, FIOCRUZ, Rua Terezina, n. 476, Adrianópolis, 69057-070 Manaus, Amazonas, Brazil
| | | | - Poliana da Silva Lemos
- Instituto Evandro Chagas, Rodovia BR-316 KM 7 S/N, Levilândia, 67030-000 Ananindeua, Pará, Brazil
| | | | - Felipe Gomes Naveca
- Instituto Leônidas e Maria Deane, FIOCRUZ, Rua Terezina, n. 476, Adrianópolis, 69057-070 Manaus, Amazonas, Brazil
| | - Marina Atanaka
- Programa de Pós-Graduação em Ciências da Saúde, Instituto de Saúde Coletiva, Universidade Federal de Mato Grosso, 78060-900 Cuiabá, Mato Grosso, Brazil
| | | | - Renata Dezengrini Slhessarenko
- Programa de Pós-Graduação em Ciências da Saúde, Laboratório de Virologia, Universidade Federal de Mato Grosso, 78060-900 Cuiabá, Mato Grosso, Brazil.
| |
Collapse
|
6
|
Li M, Sun L, Ma Y, Fei D, Ma M. Development of a sandwich ELISA for the detection of Chinese sacbrood virus infection. Arch Virol 2020; 165:1551-1556. [PMID: 32356186 DOI: 10.1007/s00705-020-04634-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 03/26/2020] [Indexed: 12/20/2022]
Abstract
Chinese sacbrood disease (CSBD) is a highly pathogenic infectious disease in bees that is caused by Chinese sacbrood virus (CSBV). Although several molecular detection methods have been developed for CSBV, there are no commercially available enzyme-linked immunosorbent assay (ELISA) kits. We therefore developed a sandwich ELISA to detect CSBV antigens. To this end, monoclonal antibodies were produced using VP2 as an immunogen and subsequently characterized. Hybridomas were screened for the secretion of immunoglobulin G (IgG). Using an unlabeled monoclonal antibody (mAb) for coating and a horseradish peroxidase (HRP)-labeled mAb for detection, a CSBV sandwich ELISA method was established. This method showed specificity for CSBV and did not show cross-reactivity with other bee viruses. The detection limit of the sandwich ELISA was 3.675 × 104 copies/µL. Sixty bee larvae were tested using our sandwich ELISA method, and the presence of CSBV was verified by reverse transcription polymerase chain reaction (RT-PCR). The total coincidence rate was 90%. Thus, a sandwich ELISA method with high specificity and accuracy and a detection limit of 3.675 × 104 copies/µL has been successfully developed and can be used for the clinical detection of CSBV. This method will support rapid diagnosis, real-time monitoring, and early warning of CSBD.
Collapse
Affiliation(s)
- Ming Li
- Jinzhou Medical University, No. 40, Section 3 Songpo Road, Jinzhou, 121001, Liaoning Province, China
| | - Li Sun
- Jinzhou Medical University, No. 40, Section 3 Songpo Road, Jinzhou, 121001, Liaoning Province, China
| | - Yueyu Ma
- Jinzhou Medical University, No. 40, Section 3 Songpo Road, Jinzhou, 121001, Liaoning Province, China
| | - Dongliang Fei
- Jinzhou Medical University, No. 40, Section 3 Songpo Road, Jinzhou, 121001, Liaoning Province, China.
| | - Mingxiao Ma
- Jinzhou Medical University, No. 40, Section 3 Songpo Road, Jinzhou, 121001, Liaoning Province, China.
| |
Collapse
|
7
|
Yañez O, Piot N, Dalmon A, de Miranda JR, Chantawannakul P, Panziera D, Amiri E, Smagghe G, Schroeder D, Chejanovsky N. Bee Viruses: Routes of Infection in Hymenoptera. Front Microbiol 2020; 11:943. [PMID: 32547504 PMCID: PMC7270585 DOI: 10.3389/fmicb.2020.00943] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/20/2020] [Indexed: 11/13/2022] Open
Abstract
Numerous studies have recently reported on the discovery of bee viruses in different arthropod species and their possible transmission routes, vastly increasing our understanding of these viruses and their distribution. Here, we review the current literature on the recent advances in understanding the transmission of viruses, both on the presence of bee viruses in Apis and non-Apis bee species and on the discovery of previously unknown bee viruses. The natural transmission of bee viruses will be discussed among different bee species and other insects. Finally, the research potential of in vivo (host organisms) and in vitro (cell lines) serial passages of bee viruses is discussed, from the perspective of the host-virus landscape changes and potential transmission routes for emerging bee virus infections.
Collapse
Affiliation(s)
- Orlando Yañez
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Agroscope, Swiss Bee Research Centre, Bern, Switzerland
| | - Niels Piot
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Anne Dalmon
- INRAE, Unité de Recherche Abeilles et Environnement, Avignon, France
| | | | - Panuwan Chantawannakul
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Delphine Panziera
- General Zoology, Institute for Biology, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
- Halle-Jena-Leipzig, German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| | - Esmaeil Amiri
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, United States
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Declan Schroeder
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Nor Chejanovsky
- Entomology Department, Institute of Plant Protection, The Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
8
|
Zhang X, Fei D, Sun L, Li M, Ma Y, Wang C, Huang S, Ma M. Identification of the Novel Host Protein Interacting With the Structural Protein VP1 of Chinese Sacbrood Virus by Yeast Two-Hybrid Screening. Front Microbiol 2019; 10:2192. [PMID: 31611854 PMCID: PMC6775477 DOI: 10.3389/fmicb.2019.02192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/06/2019] [Indexed: 12/15/2022] Open
Abstract
Chinese sacbrood virus (CSBV) is the major cause and lead to the collapse of Apis cerana colonies. VP1, the structural protein of CSBV, shows the highest variation in the amino acid sequences among proteins from different CSBV strains as well as exhibits excellent immunogenicity. However, its function with host protein still remains unclear. To clarify its function with host protein, we screened out host cellular proteins that interact with VP1 using the membrane protein yeast two-hybrid system. In addition, we verified interactions between heat shock protein 70 cognate 5 (Hsp70-c5) and VP1 using glutathione S-transferase (GST) pull-down and co-immunoprecipitation assays. VP1 and Hsp70-c5 were colocalized in the cytoplasm and nucleus. Using western blot and real-time polymerase chain reaction (PCR), Hsp70-c5 expression in CSBV-infected larvae was upregulated compared with that in healthy larvae. We observed that when we silenced Hsp70-c5, VP1 expression was significantly downregulated. These results demonstrate that Hsp70-c5 is involved in at least one stage(s) of the viral life cycle.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mingxiao Ma
- Institute of Animal Husbandry Veterinary, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
9
|
Ko CY, Chiang ZL, Liao RJ, Chang ZT, Chang JC, Kuo TY, Chen YW, Nai YS. Dynamics of Apis cerana Sacbrood Virus (AcSBV) Prevalence in Apis cerana (Hymenoptera: Apidae) in Northern Taiwan and Demonstration of its Infection in Apis mellifera (Hymenoptera: Apidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:2055-2066. [PMID: 31314109 DOI: 10.1093/jee/toz174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Indexed: 06/10/2023]
Abstract
Since 2016, Apis cerana sacbrood virus (AcSBV) has been recorded in Taiwan. It is epizootic in Apis cerana (Hymenoptera: Apidae) and causing serious loss of A. cerana. Herein, we performed a long-term survey of AcSBV prevalence in the populations of A. cerana in Northern Taiwan from January 2017 to July 2018. The surveillance of AcSBV prevalence in A. mellifera (Hymenoptera: Apidae) populations was starting and further confirmed by sequencing since April 2017; thus, these data were also included in this survey. In our survey, the average prevalence rates of AcSBV were 72 and 53% in A. cerana and A. mellifera, respectively, in 2017, which decreased to 45 and 27% in 2018. For the spatial analysis of AcSBV in two honey bee populations, Hsinchu showed the highest prevalence, followed by New Taipei, Yilan, Taipei, and Keelung, suggesting that AcSBV might have come from the southern part of Taiwan. Interestingly, the AcSBV prevalence rates from A. cerana and A. mellifera cocultured apiaries gradually synchronized. The result of phylogenetic analysis and comparison of the annual AcSBV prevalence in A. cerana-only, A. mellifera-only, and A. cerana/A. mellifera cocultured sample sites indicate cross-infection between A. cerana and A. mellifera; however, AcSBV may lose the advantage of virulence in A. mellifera. The evidence suggested that the transmission of AcSBV might occur among these two honey bee species in the field. Therefore, A. mellifera may serve as a guard species to monitor AcSBV in A. cerana, but the cross-infection still needs to be surveyed.
Collapse
Affiliation(s)
- Chong-Yu Ko
- Department of Biotechnology and Animal Science, National Ilan University, Yilan City, Taiwan
| | - Zong-Lin Chiang
- Department of Biotechnology and Animal Science, National Ilan University, Yilan City, Taiwan
| | - Ruo-Jyun Liao
- Department of Biotechnology and Animal Science, National Ilan University, Yilan City, Taiwan
| | - Zih-Ting Chang
- Department of Biotechnology and Animal Science, National Ilan University, Yilan City, Taiwan
| | - Ju-Chun Chang
- Department of Biotechnology and Animal Science, National Ilan University, Yilan City, Taiwan
| | - Tsun-Yung Kuo
- Department of Biotechnology and Animal Science, National Ilan University, Yilan City, Taiwan
| | - Yue-Wen Chen
- Department of Biotechnology and Animal Science, National Ilan University, Yilan City, Taiwan
| | - Yu-Shin Nai
- Department of Entomology, National Chung Hsing University, Taichung City, Taiwan
| |
Collapse
|
10
|
Wu P, Yu H, Xu J, Wu J, Getachew A, Tu Y, Guo Z, Jin H, Xu S. Purification of Chinese Sacbrood Virus (CSBV), Gene Cloning and Prokaryotic Expression of its Structural Protein VP1. Mol Biotechnol 2018; 60:901-911. [DOI: 10.1007/s12033-018-0121-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
11
|
Sun L, Li M, Fei D, Diao Q, Wang J, Li L, Ma M. Preparation and Application of Egg Yolk Antibodies Against Chinese Sacbrood Virus Infection. Front Microbiol 2018; 9:1814. [PMID: 30123212 PMCID: PMC6085425 DOI: 10.3389/fmicb.2018.01814] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/19/2018] [Indexed: 01/18/2023] Open
Abstract
Chinese sacbrood virus (CSBV) infects Apis cerana larvae, resulting in the inability of the larvae to pupate and their consequent death, which may pose a serious threat to entire colonies. As there is no effective medical treatment for CSBV infections, further studies are necessary. In this study, an effective treatment for CSBV is described, based on a specific immunoglobulin Y (IgY) from egg yolk against CSBV. The inactivated vaccine was produced by ultracentrifugation and formalin treatment, using CSBV purified from a natural outbreak. The specific IgY was produced by immunization of white leghorn hens with the vaccine. An enzyme-linked immunosorbent assay using purified CSBV as the coating antigen revealed that the anti-CSBV IgY titer began increasing in the egg yolk on the 14th day post-immunization, reaching a peak on day 42, and anti-CSBV IgY remained at a high level until day 91. IgY isolated from the combinations of egg yolk collected between days 42-91 was purified by PEG and ammonium sulfate precipitation. In three repeated protection experiments using A. cerana larvae inoculated with CSBV, the survival rate of larvae was more than 80%, and the titer of anti-CSBV IgY was more than 25 and 24 when the larvae were fed IgY 24 h after and before inoculation with CSBV, respectively. Therefore, 400 colonies infected with CSBV were treated by feeding sugar containing IgY solutions with an antibody titer of 25, and the cure rate was 95-100%. Three hundred susceptible colonies were protected by feeding the larvae with sugar containing IgY solutions with an antibody titer of 24, and the protection rate was 97%. The results clearly suggest that a specific IgY was obtained from hens immunized with an inactivated-CSBV vaccine; this may be a novel method for controlling CSBV infection.
Collapse
Affiliation(s)
- Li Sun
- Institute of Biological Sciences, Jinzhou Medical University, Jinzhou, China
| | - Ming Li
- Institute of Biological Sciences, Jinzhou Medical University, Jinzhou, China
| | - Dongliang Fei
- Institute of Biological Sciences, Jinzhou Medical University, Jinzhou, China
| | - Qingyun Diao
- Honeybee Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Wang
- Tianjin Speerise Challenge Biotechnology Co., Ltd., Tianjin, China
| | - Liqin Li
- Tianjin Speerise Challenge Biotechnology Co., Ltd., Tianjin, China
| | - Mingxiao Ma
- Institute of Biological Sciences, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|