1
|
Ren N, Jin Q, Wang F, Huang D, Yang C, Zaman W, Salazar FV, Liu Q, Yuan Z, Xia H. Evaluation of vector susceptibility in Aedes aegypti and Culex pipiens pallens to Tibet orbivirus. mSphere 2024; 9:e0006224. [PMID: 38530016 PMCID: PMC11036799 DOI: 10.1128/msphere.00062-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/01/2024] [Indexed: 03/27/2024] Open
Abstract
Mosquito-borne viruses cause various infectious diseases in humans and animals. Tibet orbivirus (TIBOV), a newly identified arbovirus, efficiently replicates in different types of vertebrate and mosquito cells, with its neutralizing antibodies detected in cattle and goats. However, despite being isolated from Culicoides midges, Anopheles, and Culex mosquitoes, there has been a notable absence of systematic studies on its vector competence. Thus, in this study, Aedes aegypti and Culex pipiens pallens were reared in the laboratory to measure vector susceptibility through blood-feeding infection. Furthermore, RNA sequencing was used to examine the overall alterations in the Ae. aegypti transcriptome following TIBOV infection. The results revealed that Ae. aegypti exhibited a high susceptibility to TIBOV compared to Cx. p. pallens. Effective replication of the virus in Ae. aegypti midguts occurred when the blood-feeding titer of TIBOV exceeded 105 plaque-forming units mL-1. Nevertheless, only a few TIBOV RNA-positive samples were detected in the saliva of Ae. aegypti and Cx. p. pallens, suggesting that these mosquito species may not be the primary vectors for TIBOV. Moreover, at 2 dpi of TIBOV, numerous antimicrobial peptides downstream of the Toll and Imd signaling pathways were significantly downregulated in Ae. aegypti, indicating that TIBOV suppressed mosquitos' defense to survive in the vector at an early stage. Subsequently, the stress-activated protein kinase JNK, a crucial component of the MAPK signaling pathway, exhibited significant upregulation. Certain genes were also enriched in the MAPK signaling pathway in TIBOV-infected Ae. aegypti at 7 dpi.IMPORTANCETibet orbivirus (TIBOV) is an understudied arbovirus of the genus Orbivirus. Our study is the first-ever attempt to assess the vector susceptibility of this virus in two important mosquito vectors, Aedes aegypti and Culex pipiens pallens. Additionally, we present transcriptome data detailing the interaction between TIBOV and the immune system of Ae. aegypti, which expands the knowledge about orbivirus infection and its interaction with mosquitoes.
Collapse
Affiliation(s)
- Nanjie Ren
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qianqian Jin
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Wang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Doudou Huang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Cihan Yang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wahid Zaman
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Qiyong Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhiming Yuan
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Han Xia
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
- Hubei Jiangxia Laboratory, Wuhan, China
| |
Collapse
|
2
|
Gao T, Li M, Liu H, Fu S, Wang H, Liang G. Genome and evolution of Tibet orbivirus, TIBOV (genus Orbivirus, family Reoviridae). Front Cell Infect Microbiol 2024; 14:1327780. [PMID: 38505291 PMCID: PMC10950067 DOI: 10.3389/fcimb.2024.1327780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/16/2024] [Indexed: 03/21/2024] Open
Abstract
Tibet orbivirus (TIBOV) was first isolated from Anopheles maculatus mosquitoes in Xizang, China, in 2009. In recent years, more TIBOV strains have been isolated in several provinces across China, Japan, East Asia, and Nepal, South Asia. Furthermore, TIBOVs have also been isolated from Culex mosquitoes, and several midge species. Additionally, TIBOV neutralizing antibodies have been detected in serum specimens from several mammals, including cattle, sheep, and pigs. All of the evidence suggests that the geographical distribution of TIBOVs has significantly expanded in recent years, with an increased number of vector species involved in its transmission. Moreover, the virus demonstrated infectivity towards a variety of animals. Although TIBOV is considered an emerging orbivirus, detailed reports on its genome and molecular evolution are currently lacking. Thus, this study performed the whole-genome nucleotide sequencing of three TIBOV isolates from mosquitoes and midges collected in China in 2009, 2011, and 2019. Furthermore, the genome and molecular genetic evolution of TIBOVs isolated from different countries, periods, and hosts (mosquitoes, midges, and cattle) was systematically analyzed. The results revealed no molecular specificity among TIBOVs isolated from different countries, periods, and vectors. Meanwhile, the time-scaled phylogenetic analysis demonstrated that the most recent common ancestor (TMRCA) of TIBOV appeared approximately 797 years ago (95% HPD: 16-2347) and subsequently differentiated at least three times, resulting in three distinct genotypes. The evolutionary rate of TIBOVs was about 2.12 × 10-3 nucleotide substitutions per site per year (s/s/y) (95% HPD: 3.07 × 10-5, 9.63 × 10-3), which is similar to that of the bluetongue virus (BTV), also in the Orbivirus genus. Structural analyses of the viral proteins revealed that the three-dimensional structures of the outer capsid proteins of TIBOV and BTV were similar. These results suggest that TIBOV is a newly discovered and rapidly evolving virus transmitted by various blood-sucking insects. Given the potential public health burden of this virus and its high infectious rate in a wide range of animals, it is significant to strengthen research on the genetic variation of TIBOVs in blood-feeding insects and mammals in the natural environment and the infection status in animals.
Collapse
Affiliation(s)
- Tingting Gao
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Minghua Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hong Liu
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Shihong Fu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huanyu Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Guodong Liang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
3
|
Ledda S, Foxi C, Puggioni G, Bechere R, Rocchigiani AM, Scivoli R, Coradduzza E, Cau S, Vento L, Satta G. Experimental infection of Aedes (Stegomyia) albopictus and Culex pipiens mosquitoes with Bluetongue virus. MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:105-110. [PMID: 36193883 DOI: 10.1111/mve.12613] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Bluetongue disease (BT), caused by Bluetongue virus (BTV), infects wild and domestic ruminants, causing severe economic damage in the cattle and sheep industry. Proven vectors of BTV are biting midges belonging to the Culicoides genus, but other arthropods are considered potential vectors, such as ticks, mosquitoes, wingless flies, and sand flies. The present study represents the first attempt to evaluate the vectorial capacity of Culex pipiens and Aedes albopictus for BTV. Mosquitoes were artificially fed with blood containing BTV serotype 1. Infection, dissemination and transmission rates were evaluated at 0, 3, 7, 14 and 21 days after an infected blood meal. Viral RNA was only detected up to 3 days post infection in the bodies of both species. This study indicates that the two Italian populations of Cx. pipiens and Ae. albopictus are not susceptible to BTV infection.
Collapse
Affiliation(s)
- Salvatore Ledda
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | - Cipriano Foxi
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
- Mediterranean Center for Disease Control, University of Sassari, Sassari, Italy
| | | | - Roberto Bechere
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | | | - Rosario Scivoli
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | | | - Simona Cau
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | - Luigi Vento
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | - Giuseppe Satta
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| |
Collapse
|
4
|
Characterization of a Novel Orbivirus from Cattle Reveals Active Circulation of a Previously Unknown and Pathogenic Orbivirus in Ruminants in Kenya. mSphere 2023; 8:e0048822. [PMID: 36794933 PMCID: PMC10117150 DOI: 10.1128/msphere.00488-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Arboviruses are among emerging pathogens of public and veterinary health significance. However, in most of sub-Saharan Africa, their role in the aetiologies of diseases in farm animals is poorly described due to paucity of active surveillance and appropriate diagnosis. Here, we report the discovery of a previously unknown orbivirus in cattle collected in the Kenyan Rift Valley in 2020 and 2021. We isolated the virus in cell culture from the serum of a clinically sick cow aged 2 to 3 years, presenting signs of lethargy. High-throughput sequencing revealed an orbivirus genome architecture with 10 double-stranded RNA segments and a total size of 18,731 bp. The VP1 (Pol) and VP3 (T2) nucleotide sequences of the detected virus, tentatively named Kaptombes virus (KPTV), shared maximum similarities of 77.5% and 80.7% to the mosquito-borne Sathuvachari virus (SVIV) found in some Asian countries, respectively. Screening of 2,039 sera from cattle, goats, and sheep by specific RT-PCR identified KPTV in three additional samples originating from different herds collected in 2020 and 2021. Neutralizing antibodies against KPTV were found in 6% of sera from ruminants (12/200) collected in the region. In vivo experiments with new-born and adult mice induced body tremors, hind limb paralysis, weakness, lethargy, and mortality. Taken together, the data suggest the detection of a potentially disease-causing orbivirus in cattle in Kenya. Its impact on livestock, as well as its potential economic damage, needs to be addressed in future studies using targeted surveillance and diagnostics. IMPORTANCE The genus Orbivirus contains several viruses that cause large outbreaks in wild and domestic animals. However, there is little knowledge on the contribution of orbiviruses to diseases in livestock in Africa. Here, we report the identification of a novel presumably disease-causing orbivirus in cattle, Kenya. The virus, designated Kaptombes virus (KPTV), was initially isolated from a clinically sick cow aged 2 to 3 years, presenting signs of lethargy. The virus was subsequently detected in three additional cows sampled in neighboring locations in the subsequent year. Neutralizing antibodies against KPTV were found in 10% of cattle sera. Infection of new-born and adult mice with KPTV caused severe symptoms and lead to death. Together, these findings indicate the presence of a previously unknown orbivirus in ruminants in Kenya. These data are of relevance as cattle represents an important livestock species in farming industry and often is the main source of livelihoods in rural areas of Africa.
Collapse
|
5
|
Li Z, Li Z, Yang Z, Li L, Gao L, Xie J, Liao D, Gao X, Hu Z, Niu B, Yao P, Zeng W, Li H, Yang H. Isolation and characterization of two novel serotypes of Tibet orbivirus from Culicoides and sentinel cattle in Yunnan Province of China. Transbound Emerg Dis 2022; 69:3371-3387. [PMID: 36047657 DOI: 10.1111/tbed.14691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 02/04/2023]
Abstract
Tibet orbivirus (TIBOV), a new candidate of Orbivirus genus, was initially isolated from mosquitoes in Tibet in 2009 and subsequently from both Culicoides and mosquitoes in several provinces of China and Japan. Little is known about the origin, genetic diversity, dissemination and pathogenicity of TIBOV, although its potential threat to animal health has been acknowledged. In this study, two viruses, V290/YNSZ and V298/YNJH, were isolated from the Culicoides and sentinel cattle in Yunnan Province. Their genome sequences, cell tropism in mammalian and insect cell lines along with pathogenicity in suckling mice were determined. Genome phylogenetic analyses confirmed their classification as TIBOV species; however, OC1 proteins of the V290/YNSZ and V298/YNJH shared maximum sequence identities of 31.5% and 33.9% with other recognized TIBOV serotypes (TIBOV-1 to TIBOV-4) and formed two monophyletic branches in phylogenetic tree, indicating they represented two novel TIBOV serotypes which were tentatively designated as TIBOV-5 and TIBOV-6. The viruses replicated robustly in BHK, Vero and C6/36 cells and triggered overt clinical symptoms in suckling mice after intracerebral inoculation, causing mortality of 100% and 25%. Cross-sectional epidemiology analysis revealed silent circulation of TIBOV in Yunnan Province with overall prevalence of 16.4% (18/110) in cattle, 10.8% (13/120) in goats and 5.5% (6/110) in swine. The prevalence patterns of four investigated TIBOV serotypes (TIBOV-1, -2, -5 and 6) differed from each one another, with their positive rates ranging from 8.2% (9/110) for TIBOV-2 in cattle to 0.9% (1/110) for TIBOV-1 and TIBOV-5 in cattle and swine. Our findings provided new insights for diversity, pathogenicity and epidemiology of TIBOV and formed a basis for future studies addressing the geographical distribution and the zoonotic potential of TIBOV.
Collapse
Affiliation(s)
- Zhanhong Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Zhuoran Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Zhenxing Yang
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Le Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Lin Gao
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Jiarui Xie
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Defang Liao
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Xiang Gao
- Animal Disease Control and Prevention Center of Jinghong County, Jinghong, China
| | - Zhongyan Hu
- Animal Disease Control and Prevention Center of Jinghong County, Jinghong, China
| | - Baosheng Niu
- Animal Disease Control and Prevention Center of Shizong County, Qujing, China
| | - Pingfen Yao
- Animal Disease Control and Prevention Center of Shizong County, Qujing, China
| | - Weikun Zeng
- School of Medicine, Kunming University, Kunming, China
| | - Huachun Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Heng Yang
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China.,College of Agriculture and Life Sciences, Kunming University, Kunming, China
| |
Collapse
|
6
|
Ren N, Wang X, Liang M, Tian S, Ochieng C, Zhao L, Huang D, Xia Q, Yuan Z, Xia H. Characterization of a novel reassortment Tibet orbivirus isolated from Culicoides spp. in Yunnan, PR China. J Gen Virol 2021; 102. [PMID: 34494948 PMCID: PMC8567429 DOI: 10.1099/jgv.0.001645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Orbiviruses are arboviruses with 10 double-stranded linear RNA segments, and some have been identified as pathogens of dramatic epizootics in both wild and domestic ruminants. Tibet orbivirus (TIBOV) is a new orbivirus isolated from hematophagous insects in recent decades, and, currently, most of the strains have been isolated from insects in PR China, except for two from Japan. In this study, we isolated a novel reassortment TIBOV strain, YN15-283-01, from Culicoides spp. To identify and understand more characteristics of YN15-283-01, electrophoresis profiles of the viral genome, electron microscopic observations, plaque assays, growth curves in various cell lines, and bioinformatic analysis were conducted. The results indicated that YN15-283-01 replicated efficiently in mosquito cells, rodent cells and several primate cells. Furthermore, the maximum likelihood phylogenetic trees and simplot analysis of the 10 segments indicated that YN15-283-01 is a natural reassortment isolate that had emerged mainly from XZ0906 and SX-2017a.
Collapse
Affiliation(s)
- Nanjie Ren
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Xiaoyu Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Mengying Liang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Shen Tian
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical diseases,School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, PR China
| | - Christabel Ochieng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Lu Zhao
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Doudou Huang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Qianfeng Xia
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical diseases,School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, PR China
| | - Zhiming Yuan
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Han Xia
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
7
|
Virome in adult Aedes albopictus captured during different seasons in Guangzhou City, China. Parasit Vectors 2021; 14:415. [PMID: 34407871 PMCID: PMC8371599 DOI: 10.1186/s13071-021-04922-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 08/03/2021] [Indexed: 01/09/2023] Open
Abstract
Background The mosquito Aedes albopictus is an important vector for many pathogens. Understanding the virome in Ae. albopictus is critical for assessing the risk of disease transmission, implementation of vector control measures, and health system strengthening. Methods In this study, viral metagenomic and PCR methods were used to reveal the virome in adult Ae. albopictus captured in different areas and during different seasons in Guangzhou, China. Results The viral composition of adult Ae. albopictus varied mainly between seasons. Over 50 viral families were found, which were specific to vertebrates, invertebrates, plants, fungi, bacteria, and protozoa. In rural areas, Siphoviridae (6.5%) was the most common viral family harbored by mosquitoes captured during winter and spring, while Luteoviridae (1.1%) was the most common viral family harbored by mosquitoes captured during summer and autumn. Myoviridae (7.0% and 1.3%) was the most common viral family in mosquitoes captured in urban areas during all seasons. Hepatitis B virus (HBV) was detected by PCR in a female mosquito pool. The first near full-length HBV genome from Ae. albopictus was amplified, which showed a high level of similarity with human HBV genotype B sequences. Human parechovirus (HPeV) was detected in male and female mosquito pools, and the sequences were clustered with HPeV 1 and 3 sequences. Conclusions Large numbers of viral species were found in adult Ae. albopictus, including viruses from vertebrates, insects, and plants. The viral composition in Ae. albopictus mainly varied between seasons. Herein, we are the first to report the detection of HPeV and HBV in mosquitoes. This study not only provides valuable information for the control and prevention of mosquito-borne diseases, but it also demonstrates the feasibility of xenosurveillance. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04922-z.
Collapse
|
8
|
Suda Y, Murota K, Shirafuji H, Yanase T. Genomic analysis of putative novel serotypes of Tibet orbivirus isolated in Japan. Arch Virol 2021; 166:1151-1156. [PMID: 33547486 DOI: 10.1007/s00705-021-04966-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/02/2020] [Indexed: 11/27/2022]
Abstract
Tibet orbivirus (TIBOV) was initially isolated in Tibet in 2009 and subsequently in Guangdong, Hunan, and Yunnan, China. We document the first isolation of TIBOV outside of China: two TIBOV isolates from Culicoides collected in 2009 and 2010 in Kagoshima, Japan. Their complete genome sequences were also determined. Our results suggest that the two virus isolates are of novel serotypes, evident by variability within genome segment 2 encoding VP2. These new putative TIBOV serotypes will help with future virus surveillance and with the evaluation of its potential to cause disease in domestic ruminants.
Collapse
Affiliation(s)
- Yuto Suda
- Kyushu Research Station, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), 2702 Chuzan, Kagoshima, Kagoshima, 891-0105, Japan
| | - Katsunori Murota
- Kyushu Research Station, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), 2702 Chuzan, Kagoshima, Kagoshima, 891-0105, Japan
| | - Hiroaki Shirafuji
- Kyushu Research Station, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), 2702 Chuzan, Kagoshima, Kagoshima, 891-0105, Japan
| | - Tohru Yanase
- Kyushu Research Station, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), 2702 Chuzan, Kagoshima, Kagoshima, 891-0105, Japan.
| |
Collapse
|