1
|
Cao X, Huang M, Wang S, Li T, Huang Y. Tomato yellow leaf curl virus: Characteristics, influence, and regulation mechanism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108812. [PMID: 38875781 DOI: 10.1016/j.plaphy.2024.108812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
Tomato yellow leaf curl virus (TYLCV), a DNA virus belonging to the genus Begomovirus, significantly impedes the growth and development of numerous host plants, including tomatoes and peppers. Due to its rapid mutation rate and frequent recombination events, achieving complete control of TYLCV proves exceptionally challenging. Consequently, identifying resistance mechanisms become crucial for safeguarding host plants from TYLCV-induced damage. This review article delves into the global distribution, dispersal patterns, and defining characteristics of TYLCV. Moreover, the intricate interplay between TYLCV and various influencing factors, such as insect vectors, susceptible host plants, and abiotic stresses, plays a pivotal role in plant-TYLCV interactions. The review offers an updated perspective on recent investigations focused on plant response mechanisms to TYLCV infection, including the intricate relationship between TYLCV, whiteflies, and regulatory factors. This comprehensive analysis aims to establish a foundation for future research endeavors exploring the molecular mechanisms underlying TYLCV infection and the development of plant resistance through breeding programs.
Collapse
Affiliation(s)
- Xue Cao
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, Shandong Province, 276000, China
| | - Mengna Huang
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, Shandong Province, 276000, China
| | - Shimei Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Tea Science, Guizhou University, Guiyang, Guizhou Province, 550025, China
| | - Tong Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Tea Science, Guizhou University, Guiyang, Guizhou Province, 550025, China.
| | - Ying Huang
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, Shandong Province, 276000, China.
| |
Collapse
|
2
|
Lee YR, Siddique MI, Kim DS, Lee ES, Han K, Kim SG, Lee HE. CRISPR/Cas9-mediated gene editing to confer turnip mosaic virus (TuMV) resistance in Chinese cabbage ( Brassica rapa). HORTICULTURE RESEARCH 2023; 10:uhad078. [PMID: 37323233 PMCID: PMC10261878 DOI: 10.1093/hr/uhad078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/10/2023] [Indexed: 06/17/2023]
Abstract
Genome editing approaches, particularly the CRISPR/Cas9 technology, are becoming state-of-the-art for trait development in numerous breeding programs. Significant advances in improving plant traits are enabled by this influential tool, especially for disease resistance, compared to traditional breeding. One of the potyviruses, the turnip mosaic virus (TuMV), is the most widespread and damaging virus that infects Brassica spp. worldwide. We generated the targeted mutation at the eIF(iso)4E gene in the TuMV-susceptible cultivar "Seoul" using CRISPR/Cas9 to develop TuMV-resistant Chinese cabbage. We detected several heritable indel mutations in the edited T0 plants and developed T1 through generational progression. It was indicated in the sequence analysis of the eIF(iso)4E-edited T1 plants that the mutations were transferred to succeeding generations. These edited T1 plants conferred resistance to TuMV. It was shown with ELISA analysis the lack of accumulation of viral particles. Furthermore, we found a strong negative correlation (r = -0.938) between TuMV resistance and the genome editing frequency of eIF(iso)4E. Consequently, it was revealed in this study that CRISPR/Cas9 technique can expedite the breeding process to improve traits in Chinese cabbage plants.
Collapse
Affiliation(s)
- Ye-Rin Lee
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Muhammad Irfan Siddique
- Department of Horticultural Sciences, North Carolina State University Mountain Horticultural Crops Research, Extension Center 455 Research Drive, Mills River, NC 28759, USA
| | - Do-Sun Kim
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Eun Su Lee
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Koeun Han
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Sang-Gyu Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, 34141, Republic of Korea
| | | |
Collapse
|
3
|
Zwolinski AM, Brigden A, Rey MEC. Differences in the 3' intergenic region and the V2 protein of two sequence variants of tomato curly stunt virus play an important role in disease pathology in Nicotiana benthamiana. PLoS One 2023; 18:e0286149. [PMID: 37220127 PMCID: PMC10205009 DOI: 10.1371/journal.pone.0286149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/10/2023] [Indexed: 05/25/2023] Open
Abstract
Tomato production in South Africa is threatened by the emergence of tomato curly stunt virus (ToCSV), a monopartite Begomovirus transmitted by the whitefly vector Bemisia tabaci (Genn.). We investigated the role of sequence differences present in the 3' intergenic region (IR) and the V2 coding region on the differing infectivity of ToCSV sequence variant isolates V30 and V22 in the model host Nicotiana benthamiana. Using virus mutant chimeras, we determined that the development of the upward leaf roll symptom phenotype is mediated by sequence differences present in the 3' IR containing the TATA-associated composite element. Sequence differences present in the V2 coding region are responsible for modulating disease severity and symptom recovery in V22-infected plants. Serine substitution of V22 V2 Val27 resulted in a significant increase in disease severity with reduced recovery, the first study to demonstrate the importance of this V2 residue in disease development. Two putative ORFs, C5 and C6, were identified using in silico analysis and detection of an RNA transcript spanning their coding region suggests that these ORFs may be transcribed during infection. Additional virus-derived RNA transcripts spanning multiple ORFs and crossing the boundaries of recognised polycistronic transcripts, as well as the origin of replication within the IR, were detected in ToCSV-infected plants providing evidence of bidirectional readthrough transcription. From our results, we conclude that the diverse responses of the model host to ToCSV infection is influenced by select sequence differences and our findings provide several avenues for further investigation into the mechanisms behind these responses to infection.
Collapse
Affiliation(s)
- Alexander M. Zwolinski
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Alison Brigden
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Marie E. C. Rey
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
4
|
Qureshi MA, Lal A, Nawaz-ul-Rehman MS, Vo TTB, Sanjaya GNPW, Ho PT, Nattanong B, Kil EJ, Jahan SMH, Lee KY, Tsai CW, Dao HT, Hoat TX, Aye TT, Win NK, Lee J, Kim SM, Lee S. Emergence of Asian endemic begomoviruses as a pandemic threat. FRONTIERS IN PLANT SCIENCE 2022; 13:970941. [PMID: 36247535 PMCID: PMC9554542 DOI: 10.3389/fpls.2022.970941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/05/2022] [Indexed: 06/16/2023]
Abstract
Plant viruses are responsible for the most devastating and commercially significant plant diseases, especially in tropical and subtropical regions. The genus begomovirus is the largest one in the family Geminiviridae, with a single-stranded DNA genome, either monopartite or bipartite. Begomoviruses are transmitted by insect vectors, such as Bemisia tabaci. Begomoviruses are the major causative agents of diseases in agriculture globally. Because of their diversity and mode of evolution, they are thought to be geographic specific. The emerging begomoviruses are of serious concern due to their increasing host range and geographical expansion. Several begomoviruses of Asiatic origin have been reported in Europe, causing massive economic losses; insect-borne transmission of viruses is a critical factor in virus outbreaks in new geographical regions. This review highlights crucial information regarding Asia's four emerging and highly destructive begomoviruses. We also provided information regarding several less common but still potentially important pathogens of different crops. This information will aid possible direction of future studies in adopting preventive measures to combat these emerging viruses.
Collapse
Affiliation(s)
- Muhammad Amir Qureshi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Aamir Lal
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | | | - Thuy Thi Bich Vo
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | | | - Phuong Thi Ho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Bupi Nattanong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Eui-Joon Kil
- Department of Plant Medicals, Andong National University, Andong, South Korea
| | | | - Kyeong-Yeoll Lee
- Division of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, South Korea
| | - Chi-Wei Tsai
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Hang Thi Dao
- Plant Protection Research Institute, Hanoi, Vietnam
| | | | - Tin-Tin Aye
- Department of Entomology, Yezin Agricultural University, Yezin, Myanmar
| | - Nang Kyu Win
- Department of Plant Pathology, Yezin Agricultural University, Yezin, Myanmar
| | - Jangha Lee
- Crop Breeding Research Center, NongWoo Bio, Yeoju, South Korea
| | - Sang-Mok Kim
- Plant Quarantine Technology Center, Animal and Plant Quarantine Agency, Gimcheon, South Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
5
|
Siddique MI, Lee JH, Ahn JH, Kusumawardhani MK, Safitri R, Harpenas A, Kwon JK, Kang BC. Genotyping-by-sequencing-based QTL mapping reveals novel loci for Pepper yellow leaf curl virus (PepYLCV) resistance in Capsicum annuum. PLoS One 2022; 17:e0264026. [PMID: 35176091 PMCID: PMC8853517 DOI: 10.1371/journal.pone.0264026] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/01/2022] [Indexed: 11/18/2022] Open
Abstract
Disease caused by Pepper yellow leaf curl virus (PepYLCV) is one of the greatest threats to pepper (Capsicum spp.) cultivation in the tropics and subtropics. Resistance to PepYLCV was previously identified in a few Capsicum accessions, but no resistance QTLs have been mapped. This study aimed to elucidate the genetics of PepYLCV resistance in C. annuum L. Augmented inoculation by the viruliferous whitefly Bemisia tabaci was used to evaluate parental lines and an F2 segregating population derived from a cross between resistant C. annuum line LP97 and susceptible C. annuum line ECW30R. Final evaluation was performed six weeks after inoculation using a standardized 5-point scale (0 = no symptoms to 4 = very severe symptoms). A high-density linkage map was constructed using genotyping-by-sequencing (GBS) to identify single-nucleotide polymorphism (SNP) markers associated with PepYLCV resistance in the F2 population. QTL analysis revealed three QTLs, peplcv-1, peplcv-7, and peplcv-12, on chromosomes P1, P7, and P12, respectively. Candidate genes associated with PepYLCV resistance in the QTL regions were inferred. In addition, single markers Chr7-LCV-7 and Chr12-LCV-12 derived from the QTLs were developed and validated in another F2 population and in commercial varieties. This work thus provides not only information for mapping PepYLCV resistance loci in pepper but also forms the basis for future molecular analysis of genes involved in PepYLCV resistance.
Collapse
Affiliation(s)
- Muhammad Irfan Siddique
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Joung-Ho Lee
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | | | | | - Ramadhani Safitri
- Department of Plant Pathology, East West Seed Indonesia, West Java, Indonesia
| | - Asep Harpenas
- Department of Plant Pathology, East West Seed Indonesia, West Java, Indonesia
| | - Jin-Kyung Kwon
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Byoung-Cheorl Kang
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
- * E-mail:
| |
Collapse
|
6
|
Zhang Y, Xiang X, Lu Y, Li H, Wahaab A, Sharma M, Liu K, Wei J, Li Z, Shao D, Li B, Ma Z, Qiu Y. Downregulation of miR-296-3p by highly pathogenic porcine reproductive and respiratory syndrome virus activates the IRF1/TNF-α signaling axis in porcine alveolar macrophages. Arch Virol 2021; 166:511-519. [PMID: 33394172 DOI: 10.1007/s00705-020-04921-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/01/2020] [Indexed: 12/19/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV, species Betaarterivirus suid 1 or 2) is a major pathogen affecting pigs on farms throughout the world. miR-296-3p is a multifunctional microRNA involved in the regulation of the inflammatory response in mice and humans. However, little is known about the biological functions of miR-296-3p in pigs. In this study, we used a highly pathogenic PRRSV-2 (species Betaarterivirus suid 2) strain to show that PRRSV infection robustly downregulates the expression of miR-296-3p in porcine alveolar macrophages (PAMs). Furthermore, we demonstrated that overexpression of miR-296-3p increases the replication of highly pathogenic (HP)-PRRSV in PAMs. Notably, the overexpression of miR-296-3p inhibited the induction of TNF-α, even with increased viral replication, compared with that in the HP-PRRSV-infected control group. We also demonstrated that miR-296-3p targets IRF1-facilitated viral infection and modulates the expression of TNF-α in PAMs during HP-PRRSV infection and that IRF1 regulates the expression of TNF-α by activating the TNF promoter via IRF1 response elements. In summary, these findings show that HP-PRRSV infection activates the IRF1/TNF-α signaling axis in PAMs by downregulating host miR-296-3p. This extends our understanding of the inflammatory response induced by HP-PRRSV infection.
Collapse
Affiliation(s)
- Yanbing Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, China
| | - Xiao Xiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, China
| | - Yan Lu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, China
| | - Hui Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, China
| | - Abdul Wahaab
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, China
| | - Mona Sharma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, China
| | - Zongjie Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, China
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, China
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, China.
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, China.
| |
Collapse
|