1
|
Orozco-Ochoa AK, González-Gómez JP, Quiñones B, Castro-Del Campo N, Valdez-Torres JB, Chaidez-Quiroz C. Bacteriophage Indie resensitizes multidrug-resistant Acinetobacter baumannii to antibiotics in vitro. Sci Rep 2025; 15:11578. [PMID: 40185918 PMCID: PMC11971354 DOI: 10.1038/s41598-025-96669-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 03/31/2025] [Indexed: 04/07/2025] Open
Abstract
Antimicrobial resistance in Acinetobacter baumannii poses a significant global health challenge. Phage therapy, particularly through phage-antibiotic synergy (PAS), offers a promising strategy to combat this pathogen. This study demonstrated significant PAS, where the combination of phage Indie and ceftazidime achieved a bacterial reduction of more than 85% of A. baumannii strain AbAK03 at 17 h using low doses. Notably, this combination overcame phage resistance observed at 4 h when the phage was used alone, extending bacterial eradication by 13 h. Furthermore, phage Indie restored bacterial susceptibility to ceftazidime, supporting its role in improving interventional treatments against multidrug-resistant A. baumannii. To explore this interaction, phage Indie was isolated and characterized from multidrug-resistant clinical strains. An in vitro PAS experiment was performed using ceftazidime and piperacillin-tazobactam. The combination of phage Indie with ceftazidime consistently showed superior bactericidal effects compared to either agent alone, while the combination of phage Indie with piperacillin-tazobactam exhibited an antagonistic effect. These findings provide clear evidence supporting the application of phage-antibiotic combinations as an effective intervention strategy and lay the groundwork for future in vivo trials in a mouse model to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Alma Karen Orozco-Ochoa
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Carretera a Eldorado Km 5.5, Campo El Diez, 80110, Culiacan, Sinaloa, Mexico
| | - Jean Pierre González-Gómez
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Carretera a Eldorado Km 5.5, Campo El Diez, 80110, Culiacan, Sinaloa, Mexico
| | - Beatriz Quiñones
- U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Produce Safety and Microbiology Research Unit, Albany, CA, 94710, USA
| | - Nohelia Castro-Del Campo
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Carretera a Eldorado Km 5.5, Campo El Diez, 80110, Culiacan, Sinaloa, Mexico
| | - José Benigno Valdez-Torres
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Carretera a Eldorado Km 5.5, Campo El Diez, 80110, Culiacan, Sinaloa, Mexico
| | - Cristóbal Chaidez-Quiroz
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Carretera a Eldorado Km 5.5, Campo El Diez, 80110, Culiacan, Sinaloa, Mexico.
| |
Collapse
|
2
|
Sun C, Zhou D, He J, Liu H, Fu Y, Zhou Z, Leptihn S, Yu Y, Hua X, Xu Q. A panel of genotypically and phenotypically diverse clinical Acinetobacter baumannii strains for novel antibiotic development. Microbiol Spectr 2024; 12:e0008624. [PMID: 38916336 PMCID: PMC11302250 DOI: 10.1128/spectrum.00086-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/28/2024] [Indexed: 06/26/2024] Open
Abstract
Acinetobacter baumannii is one of the most important pathogens worldwide. The intrinsic and acquired resistance of A. baumannii, coupled with the slow pace of novel antimicrobial drug development, poses an unprecedented and enormous challenge to clinical anti-infective therapy of A. baumannii. Recent studies in the field of pathogenicity, antibiotic resistance, and biofilms of A. baumannii have focused on the model strains, including ATCC 17978, ATCC 19606, and AB5075. However, these model strains represent only a limited portion of the heterogeneity in A. baumannii. Furthermore, variants of these model strains have emerged that show significant diversity not only at the genotypic level but also reflected in differences at the phenotypic levels of capsule, virulence, pathogenicity, and antibiotic resistance. Research on A. baumannii, a key pathogen, would benefit from a standardized approach, which characterizes heterogeneous strains in order to facilitate rapid diagnosis, discovery of new therapeutic targets, and efficacy assessment. Our study provides and describes a standardized, genomically and phenotypically heterogeneous panel of 45 different A. baumannii strains for the research community. In addition, we performed comparative analyses of several phenotypes of this panel. We found that the sequence type 2 (ST2) group showed significantly higher rates of resistance, lower fitness cost for adaptation, and yet less biofilm formation. The Macrocolony type E (MTE, flat center and wavy edge phenotype reported in the literature) group showed a less clear correlation of resistance rates and growth rate, but was observed to produce more biofilms. Our study sheds light on the complex interplay of resistance fitness and biofilm formation within distinct strains, offering insights crucial for combating A. baumannii infection. IMPORTANCE Acinetobacter baumannii is globally notorious, and in an effort to combat the spread of such pathogens, several emerging candidate therapies have already surfaced. However, the strains used to test these therapies vary across studies (the sources and numbers of test strains are varied and often very large, with little heterogeneity). The variation complicates the studies. Furthermore, the limited standardized resources of A. baumannii strains have greatly restricted the research on the physiology, pathogenicity, and antibiotic resistance. Therefore, it is crucial for the research community to acquire a standardized and heterogeneous panel of A. baumannii. Our study meticulously selected 45 diverse A. baumannii strains from a total of 2,197 clinical isolates collected from 64 different hospitals across 27 provinces in China, providing a scientific reference for the research community. This assistance will significantly facilitate scientific exchange in academic research.
Collapse
Affiliation(s)
- Chunli Sun
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, Zhejiang University, Haining, Zhejiang, China
| | - Danyan Zhou
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jintao He
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haiyang Liu
- Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ying Fu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Zhihui Zhou
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sebastian Leptihn
- Department of Antimicrobial Biotechnology, Fraunhofer Institute for Cell Therapy & Immunology (IZI), Leipzig, Germany
- Department of Biochemistry, Health and Medical University, Erfurt, Germany
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qingye Xu
- Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Zhang Y, Shao Y, You H, Shen Y, Miao F, Yuan C, Chen X, Zhai M, Shen Y, Zhang J. Characterization and therapeutic potential of MRABP9, a novel lytic bacteriophage infecting multidrug-resistant Acinetobacter baumannii clinical strains. Virology 2024; 595:110098. [PMID: 38705084 DOI: 10.1016/j.virol.2024.110098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/13/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024]
Abstract
Acinetobacter baumannii is one of the most important pathogens of healthcare-associated infections. The rising prevalence of multidrug-resistant A. baumannii (MRAB) strains and biofilm formation impact the outcome of conventional treatment. Phage-related therapy is a promising strategy to tame troublesome multidrug-resistant bacteria. Here, we isolated and evaluated a highly efficient lytic phage called MRABP9 from hospital sewage. The phage was a novel species within the genus Friunavirus and exhibited lytic activity against 2 other identified MRAB strains. Genomic analysis revealed it was a safe virulent phage and a pectate lyase domain was identified within its tail spike protein. MRABP9 showed potent bactericidal and anti-biofilm activity against MRAB, significantly delaying the time point of bacterial regrowth in vitro. Phage administration could rescue the mice from acute lethal MRAB infection. Considering its features, MRABP9 has the potential as an efficient candidate for prophylactic and therapeutic use against acute infections caused by MRAB strains.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, 210009, China; Department of Critical Care Medicine, Zhongda Hospital, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Medical School, Southeast University, Nanjing, 210009, China.
| | - Yong Shao
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast University, Nanjing, 210018, China
| | - Hongyang You
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast University, Nanjing, 210018, China
| | - Yuqing Shen
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, 210009, China; Department of Critical Care Medicine, Zhongda Hospital, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Medical School, Southeast University, Nanjing, 210009, China
| | - Fengqin Miao
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, 210009, China
| | - Chenyan Yuan
- Department of Clinical Laboratory, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Xin Chen
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, 210009, China
| | - Mengyan Zhai
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, 210009, China
| | - Yi Shen
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast University, Nanjing, 210018, China
| | - Jianqiong Zhang
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, 210009, China; Department of Critical Care Medicine, Zhongda Hospital, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Medical School, Southeast University, Nanjing, 210009, China; Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast University, Nanjing, 210018, China
| |
Collapse
|
4
|
Tan Y, Su J, Luo D, Liang B, Liu S, Zeng H. Isolation and genome-wide analysis of the novel Acinetobacter baumannii bacteriophage vB_AbaM_AB3P2. Arch Virol 2024; 169:66. [PMID: 38451338 DOI: 10.1007/s00705-024-05986-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/12/2024] [Indexed: 03/08/2024]
Abstract
A lytic Acinetobacter baumannii phage, isolate vB_AbaM_AB3P2, was isolated from a sewage treatment plant in China. A. baumannii phage vB_AbaM_AB3P2 has a dsDNA genome that is 44,824 bp in length with a G + C content of 37.75%. Ninety-six open reading frames were identified, and no genes for antibiotic resistance or virulence factors were found. Genomic and phylogenetic analysis of this phage revealed that it represents a new species in the genus Obolenskvirus. Phage vB_AbaM_AB3P2 has a short latent period (10 min) and high stability at 30-70°C and pH 2-10 and is potentially useful for controlling multi-drug-resistant A. baumannii.
Collapse
Affiliation(s)
- Yujing Tan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Waihuan West Road 100, Guangzhou, Guangdong Province, 510006, China
| | - Jianhui Su
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Waihuan West Road 100, Guangzhou, Guangdong Province, 510006, China
| | - Dandan Luo
- Yunnan Zhinong High-technology Company, Limited, Kunming, 650000, China
| | - Bingshao Liang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Shenshen Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Waihuan West Road 100, Guangzhou, Guangdong Province, 510006, China
| | - Haiyan Zeng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Waihuan West Road 100, Guangzhou, Guangdong Province, 510006, China.
| |
Collapse
|
5
|
Li Y, Xiao S, Huang G. Acinetobacter baumannii Bacteriophage: Progress in Isolation, Genome Sequencing, Preclinical Research, and Clinical Application. Curr Microbiol 2023; 80:199. [PMID: 37120784 PMCID: PMC10149043 DOI: 10.1007/s00284-023-03295-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 04/02/2023] [Indexed: 05/01/2023]
Abstract
Acinetobacter baumannii (A. baumannii) is a common nosocomial pathogen associated with serious clinical challenges owing to its rapidly increasing resistance to antibiotics. Due to their high host specificity and easy access to the natural environment, bacteriophages (phages) may serve as good antibacterial agents. Phage therapy has been successfully used to treat antibiotic-resistant A. baumannii infections. As a fundamental step before phage therapy, the characterization and sequencing of A. baumannii phages have been well studied. Until October 2022, 132 A. baumannii phages have been sequenced and studied, with their genomes ranging from 4 to 234 kb, and we summarize the characterized and sequenced A. baumannii phages. This review is a current and short overview that does not go into detail on the A. baumannii phages. In addition, preclinical studies and clinical applications of A. baumannii phages are also included.
Collapse
Affiliation(s)
- Yanqi Li
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shune Xiao
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Guangtao Huang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China.
| |
Collapse
|
6
|
Bagińska N, Harhala MA, Cieślik M, Orwat F, Weber-Dąbrowska B, Dąbrowska K, Górski A, Jończyk-Matysiak E. Biological Properties of 12 Newly Isolated Acinetobacter baumannii-Specific Bacteriophages. Viruses 2023; 15:231. [PMID: 36680270 PMCID: PMC9866556 DOI: 10.3390/v15010231] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Infections with the opportunistic Gram-negative bacterium Acinetobacter baumannii pose a serious threat today, which is aggravated by the growing problem of multi-drug resistance among bacteria, caused by the overuse of antibiotics. Treatment of infections caused by antibiotic-resistant A. baumannii strains with the use of phage therapy is not only a promising alternative, but sometimes the only option. Therefore, phages specific for clinical multi-drug resistant A. baumannii were searched for in environmental, municipal, and hospital wastewater samples collected from different locations in Poland. The conducted research allowed us to determine the biological properties and morphology of the tested phages. As a result of our research, 12 phages specific for A. baumannii, 11 of which turned out to be temperate and only one lytic, were isolated. Their lytic spectra ranged from 11 to 75%. The plaques formed by most phages were small and transparent, while one of them formed relatively large plaques with a clearly marked 'halo' effect. Based on Transmission Electron Microscopy (TEM), most of our phages have been classified as siphoviruses (only one phage was classified as a podovirus). All phages have icosahedral capsid symmetry, and 11 of them have a long tail. Optimal multiplicity of infections (MOIs) and the adsorption rate were also determined. MOI values varied depending on the phage-from 0.001 to 10. Based on similarities to known bacteriophages, our A. baumannii-specific phages have been proposed to belong to the Beijerinckvirinae and Junivirinae subfamilies. This study provides an additional tool in the fight against this important pathogen and may boost the interest in phage therapy as an alternative and supplement to the current antibiotics.
Collapse
Affiliation(s)
- Natalia Bagińska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Marek Adam Harhala
- Laboratory of Phage Molecular Biology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Martyna Cieślik
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Filip Orwat
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Beata Weber-Dąbrowska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Krystyna Dąbrowska
- Laboratory of Phage Molecular Biology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Andrzej Górski
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
- Infant Jesus Hospital, The Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| |
Collapse
|