1
|
Wang W, Jin Y, Xie Z, He M, Li J, Wang Z, Ma S, Zhang W, Tong J. When animal viruses meet N 6-methyladenosine (m 6A) modifications: for better or worse? Vet Res 2024; 55:171. [PMID: 39695760 DOI: 10.1186/s13567-024-01424-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/07/2024] [Indexed: 12/20/2024] Open
Abstract
N6-methyladenosine (m6A) is a prevalent and dynamic RNA modification, critical in regulating gene expression. Recent research has shed light on its significance in the life cycle of viruses, especially animal viruses. Depending on the context, these modifications can either enhance or inhibit the replication of viruses. However, research on m6A modifications in animal virus genomes and the impact of viral infection on the host cell m6A landscape has been hindered due to the difficulty of detecting m6A sites at a single-nucleotide level. This article summarises the methods for detecting m6A in RNA. It then discusses the progress of research into m6A modification within animal viruses' infections, such as influenza A virus, porcine epidemic diarrhoea virus, porcine reproductive, and respiratory syndrome virus. Finally, the review explores how m6A modification affects the following three aspects of the replication of animal RNA viruses: the regulation of viral genomic RNA function, the alteration of the m6A landscape in cells after viral infection, and the modulation of antiviral immunity through m6A modification. Research on m6A modifications in viral RNA sheds light on virus-host interactions at a molecular level. Understanding the impact of m6A on viral replication can help identify new targets for antiviral drug development and may uncover novel regulatory pathways that could potentially enhance antiviral immune responses.
Collapse
Affiliation(s)
- Wenjing Wang
- College of Life Sciences, Hebei University, Baoding, 071002, China
- School of Life Sciences and Green Development, Hebei University, Baoding, 071002, China
| | - Yufei Jin
- College of Life Sciences, Hebei University, Baoding, 071002, China
- School of Life Sciences and Green Development, Hebei University, Baoding, 071002, China
| | - Ziyun Xie
- College of Veterinary Medicine, Hebei Agriculture University, Baoding, 071001, China
| | - Mei He
- College of Life Sciences, Hebei University, Baoding, 071002, China
- School of Life Sciences and Green Development, Hebei University, Baoding, 071002, China
| | - Jing Li
- College of Life Sciences, Hebei University, Baoding, 071002, China
- School of Life Sciences and Green Development, Hebei University, Baoding, 071002, China
| | - Zihan Wang
- College of Life Sciences, Hebei University, Baoding, 071002, China
- School of Life Sciences and Green Development, Hebei University, Baoding, 071002, China
| | - Saiya Ma
- College of Life Sciences, Hebei University, Baoding, 071002, China
- School of Life Sciences and Green Development, Hebei University, Baoding, 071002, China
| | - Wuchao Zhang
- College of Veterinary Medicine, Hebei Agriculture University, Baoding, 071001, China.
| | - Jie Tong
- College of Life Sciences, Hebei University, Baoding, 071002, China.
- School of Life Sciences and Green Development, Hebei University, Baoding, 071002, China.
| |
Collapse
|
2
|
Saikia B, Riquelme-Barrios S, Carell T, Brameyer S, Jung K. Depletion of m 6A-RNA in Escherichia coli reduces the infectious potential of T5 bacteriophage. Microbiol Spectr 2024; 12:e0112424. [PMID: 39422505 PMCID: PMC11619597 DOI: 10.1128/spectrum.01124-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
N6-Methyladenosine (m6A) is the most abundant internal modification of mRNA in eukaryotes that plays, among other mechanisms, an essential role in virus replication. However, the understanding of m6A-RNA modification in prokaryotes, especially in relation to phage replication, is limited. To address this knowledge gap, we investigated the effects of m6A-RNA modifications on phage replication in two model organisms: Vibrio campbellii BAA-1116 (previously Vibrio harveyi BB120) and Escherichia coli MG1655. An m6A-RNA-depleted V. campbellii mutant (ΔrlmFΔrlmJ) did not differ from the wild type in the induction of lysogenic phages or in susceptibility to the lytic Virtus phage. In contrast, the infection potential of the T5 phage, but not that of other T phages or the lambda phage, was reduced in an m6A-RNA-depleted E. coli mutant (ΔrlmFΔrlmJ) compared to the wild type. This was shown by a lower plaquing efficiency and a higher percentage of surviving cells. There were no differences in the T5 phage adsorption rate, but the mutant exhibited a 5-min delay in the rise period during the one-step growth curve. This is the first report demonstrating that E. coli cells with lower m6A-RNA levels have a higher chance of surviving T5 phage infection. IMPORTANCE The importance of RNA modifications has been thoroughly studied in the context of eukaryotic viral infections. However, their role in bacterial hosts during phage infections is largely unexplored. Our research delves into this gap by investigating the effect of host N6-methyladenosine (m6A)-RNA modifications during phage infection. We found that an Escherichia coli mutant depleted of m6A-RNA is less susceptible to T5 infection than the wild type. This finding emphasizes the need to further investigate how RNA modifications affect the fine-tuned regulation of individual bacterial survival in the presence of phages to ensure population survival.
Collapse
Affiliation(s)
- Bibakhya Saikia
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | | | - Thomas Carell
- Department for Chemistry, Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität, München, Germany
| | - Sophie Brameyer
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Kirsten Jung
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| |
Collapse
|
3
|
Nayak BN, Palanisamy P, Venkataraman S, Subbiah M. A time series transcriptome profiling of host cell responses to Newcastle disease virus infection. Arch Virol 2024; 169:175. [PMID: 39117748 DOI: 10.1007/s00705-024-06100-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/13/2024] [Indexed: 08/10/2024]
Abstract
Newcastle disease virus (NDV), an avian paramyxovirus, causes major economic losses in the poultry industry worldwide. NDV strains are classified as avirulent, moderately virulent, or virulent according to the severity of the disease they cause. In order to gain a deeper understanding of the molecular mechanisms of virus-host interactions, we conducted Illumina HiSeq-based RNA-Seq analysis on chicken embryo fibroblast (DF1) cells during the first 24 hours of infection with NDV strain Komarov. Comparative analysis of uninfected DF1 cells versus NDV-infected DF1 cells at 6, 12, and 24 h postinfection identified 462, 459, and 410 differentially expressed genes, respectively. The findings revealed an increase in the expression of genes linked to the MAPK signalling pathway in the initial stages of NDV infection. This overexpression potentially aids viral multiplication while hindering pathogen detection and subsequent immune responses from the host. Our findings provide initial insights into the early responses of DF1 cells to NDV infection.
Collapse
Affiliation(s)
- B Nagaraj Nayak
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
- Graduate studies, Regional Centre for Biotechnology, New Delhi, India
| | | | | | - Madhuri Subbiah
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India.
- Adjunct Faculty, Regional Centre for Biotechnology, New Delhi, India.
| |
Collapse
|
4
|
Ren T, Xu M, Du X, Wang Y, Loor JJ, Lei L, Gao W, Du X, Song Y, Liu G, Li X. Research Progress on the Role of M6A in Regulating Economic Traits in Livestock. Int J Mol Sci 2024; 25:8365. [PMID: 39125935 PMCID: PMC11313175 DOI: 10.3390/ijms25158365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/23/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024] Open
Abstract
Reversible regulation of N6-methyladenosine (m6A) methylation of eukaryotic RNA via methyltransferases is an important epigenetic event affecting RNA metabolism. As such, m6A methylation plays crucial roles in regulating animal growth, development, reproduction, and disease progression. Herein, we review the latest research advancements in m6A methylation modifications and discuss regulatory aspects in the context of growth, development, and reproductive traits of livestock. New insights are highlighted and perspectives for the study of m6A methylation modifications in shaping economically important traits are discussed.
Collapse
Affiliation(s)
- Tuanhui Ren
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (T.R.); (M.X.); (X.D.); (Y.W.); (L.L.); (W.G.); (X.D.); (Y.S.); (G.L.)
| | - Meng Xu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (T.R.); (M.X.); (X.D.); (Y.W.); (L.L.); (W.G.); (X.D.); (Y.S.); (G.L.)
| | - Xinyu Du
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (T.R.); (M.X.); (X.D.); (Y.W.); (L.L.); (W.G.); (X.D.); (Y.S.); (G.L.)
| | - Yanxi Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (T.R.); (M.X.); (X.D.); (Y.W.); (L.L.); (W.G.); (X.D.); (Y.S.); (G.L.)
| | - Juan J. Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA;
| | - Lin Lei
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (T.R.); (M.X.); (X.D.); (Y.W.); (L.L.); (W.G.); (X.D.); (Y.S.); (G.L.)
| | - Wenwen Gao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (T.R.); (M.X.); (X.D.); (Y.W.); (L.L.); (W.G.); (X.D.); (Y.S.); (G.L.)
| | - Xiliang Du
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (T.R.); (M.X.); (X.D.); (Y.W.); (L.L.); (W.G.); (X.D.); (Y.S.); (G.L.)
| | - Yuxiang Song
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (T.R.); (M.X.); (X.D.); (Y.W.); (L.L.); (W.G.); (X.D.); (Y.S.); (G.L.)
| | - Guowen Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (T.R.); (M.X.); (X.D.); (Y.W.); (L.L.); (W.G.); (X.D.); (Y.S.); (G.L.)
| | - Xinwei Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (T.R.); (M.X.); (X.D.); (Y.W.); (L.L.); (W.G.); (X.D.); (Y.S.); (G.L.)
| |
Collapse
|
5
|
Ji J, Xu S, Xu X, Man Y, Yao L, Xie Q, Bi Y. Transcriptome-wide N6-methyladenosine modification and microRNA jointly regulate the infection of avian leukosis virus subgroup J in vitro. Poult Sci 2024; 103:103671. [PMID: 38569240 PMCID: PMC10999702 DOI: 10.1016/j.psj.2024.103671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 04/05/2024] Open
Abstract
N6-methyladenosine (m6A) methylation in transcripts has been suggested to influence tumorigenesis in liver tumors caused by the avian leukosis virus subgroup J (ALV-J). However, m6A modifications during ALV-J infection in vitro remain unclear. Herein, we performed m6A and RNA sequencing in ALV-J-infected chicken fibroblasts (DF-1). A total of 51 differentially expressed genes containing differentially methylated peaks were identified, which were markedly enriched in microRNAs (miRNAs) in cancer cells as well as apoptosis, mitophagy and autophagy, RNA degradation, and Hippo and MAPK signaling pathways. Correlation analysis indicated that YTHDC1 (m6A-reader gene) plays a key role in m6A modulation during ALV-J infection. The env gene of ALV-J harbored the strongest peak, and untranslated regions and long terminal repeats also contained peaks of different degrees. To the best of our knowledge, this is the first thorough analysis of m6A patterns in ALV-J-infected DF-1 cells. Combined with miRNA profiles, this study provides a useful basis for future research into the key pathways of ALV-J infection associated with m6A alteration.
Collapse
Affiliation(s)
- Jun Ji
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang 473061, PR China.
| | - Shuqi Xu
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang 473061, PR China
| | - Xin Xu
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang 473061, PR China
| | - Yuanzhuo Man
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang 473061, PR China
| | - Lunguang Yao
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang 473061, PR China
| | - Qingmei Xie
- College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Yingzuo Bi
- College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| |
Collapse
|
6
|
Teng Y, Yi J, Chen J, Yang L. N6-Methyladenosine (m6A) Modification in Natural Immune Cell-Mediated Inflammatory Diseases. J Innate Immun 2023; 15:804-821. [PMID: 37903470 PMCID: PMC10673353 DOI: 10.1159/000534162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/13/2023] [Indexed: 11/01/2023] Open
Abstract
The post-transcriptional N6-methyladenosine (m6A) modification of RNA influences stability, transport, and translation with implications for various physiological and pathological processes. Immune cell development, differentiation, and activation are also thought to be regulated by m6A and affect host defense against pathogens and inflammatory response with impacts on infectious, neoplastic, autoimmune, cardiovascular, hepatic, and osteal diseases. The current review summarizes recent research on m6A in monocyte/macrophages, neutrophils, dendritic cells, natural killer cells, and microglia and gives insights into epigenetic modifications of the immune system and novel therapeutic strategies for immune-related diseases.
Collapse
Affiliation(s)
- Yan Teng
- Institute of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jin Yi
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Junnian Chen
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lu Yang
- Institute of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
7
|
Liu G, Qin P, Cheng X, Wu L, Wang R, Gao W. Ursolic acid: biological functions and application in animal husbandry. Front Vet Sci 2023; 10:1251248. [PMID: 37964910 PMCID: PMC10642196 DOI: 10.3389/fvets.2023.1251248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
Ursolic acid (UA) is a plant-derived pentacyclic triterpenoid with 30 carbon atoms. UA has anti-inflammatory, antioxidative, antimicrobial, hepato-protective, anticancer, and other biological activities. Most studies on the biological functions of UA have been performed in mammalian cell (in vitro) and rodent (in vivo) models. UA is used in animal husbandry as an anti-inflammatory and antiviral agent, as well as for enhancing the integrity of the intestinal barrier. Although UA has been shown to have significant in vitro bacteriostatic effects, it is rarely used in animal nutrition. The use of UA as a substitute for oral antibiotics or as a novel feed additive in animal husbandry should be considered. This review summarizes the available data on the biological functions of UA and its applications in animal husbandry.
Collapse
Affiliation(s)
- Guanhui Liu
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Peng Qin
- Chenguang Biotechnology Group Handan Co., Ltd., Handan, China
| | - Xinying Cheng
- Chenguang Biotechnology Group Handan Co., Ltd., Handan, China
| | - Lifei Wu
- Hebei Plant Extraction Innovation Center Co., Ltd., Handan, China
- Hebei Province Plant Source Animal Health Products Technology Innovation Center, Handan, China
| | - Ruoning Wang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Wei Gao
- Hebei Plant Extraction Innovation Center Co., Ltd., Handan, China
- Hebei Province Plant Source Animal Health Products Technology Innovation Center, Handan, China
| |
Collapse
|