1
|
Lee M, Kwon JS, Kim SH, Woo S, Oh SS. Electrochemical pan-variant detection of SARS-CoV-2 through host cell receptor-mimicking molecular recognition. Biosens Bioelectron 2025; 278:117311. [PMID: 40044551 DOI: 10.1016/j.bios.2025.117311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/30/2025]
Abstract
The persistent emergence of new SARS-CoV-2 variants has presented significant challenges to vaccines and antiviral therapeutics, highlighting the need for the development of methods that ensure variant-independent responses. This study introduces a unique sensor capable of electrochemically detecting SARS-CoV-2 across a wide range of variants. The comprehensive detection is achieved by using a peptide-DNA hybrid, R7-02, as the capture probe, mimicking the binding interface between a SARS-CoV-2 spike protein and a host cell receptor, hACE2. Since the first step of viral infection is the binding of the spike protein to hACE2 regardless of variant type, the hACE2-mimicking probe can naturally acquire the pan-variant recognition capability. In constructing the sensor, the R7-02 probes are positioned on electrodes via a tetrahedral DNA nanostructure for enhanced detection efficiency. Since R7-02 directly captures the externally-exposed spike protein, our approach does not require sample pretreatments, such as virus particle lysis, unlike conventional diagnostic methods. The R7-02-embedded sensor demonstrated high sensitivity towards Omicron and its major subvariants-commonly known as 'stealth Omicron' (BA.5, BA.2.75, BQ.1.1, and XBB.1.5)-with a detection limit as low as 811.9 pM, along with robust specificity for SARS-CoV-2 against influenza and other human coronaviruses. The sensor also successfully detected SARS-CoV-2 directly from non-treated saliva samples of COVID-19-positive patients. Given the comprehensive and sensitive detection capability, combined with its simple operation, our receptor-mimicking probe-based electrochemical sensor holds the potential to be a sustainable and effective point-of-care diagnostic tool, offering a promising solution to the constant challenges posed by the endemic presence of SARS-CoV-2.
Collapse
Affiliation(s)
- Minjong Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, South Korea
| | - Ji-Soo Kwon
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Sungwook Woo
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, South Korea.
| | - Seung Soo Oh
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, South Korea.
| |
Collapse
|
2
|
Jabbour HH, Bastian AG, DeOca KB, Mannie MD. A Novel Antiviral Therapeutic Platform: Anchoring IFN-β to the Surface of Infectious Virions Equips Interferon-Evasive Virions with Potent Antiviral Activity. Viruses 2025; 17:697. [PMID: 40431708 PMCID: PMC12115572 DOI: 10.3390/v17050697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 05/02/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
The COVID-19 pandemic highlighted the need for new therapeutic strategies to counter emerging pathogenic viruses. Herein, we introduce a novel fusion protein platform that enables antiviral targeting of distinct viral species based on host receptor specificity. Proof-of-concept studies focused on the human coronavirus NL63, which shares specificity for the ACE2 host receptor with the pandemic SARS-CoV and SARS-CoV-2 species. This antiviral fusion protein combines IFN-β with the soluble extracellular domain of ACE2 (IFNβ-ACE2). Both domains retained predicted bioactivities in that the IFN-β domain exhibited potent antiproliferative activity and the ACE2 domain exhibited full binding to the transmembrane SARS-CoV-2 Spike protein. In virus-washed (virus-targeted) and non-washed in vitro infection systems, we showed that the pool of IFNβ-ACE2 targeted to the virion surface had superior antiviral activity against NL63 compared to soluble ACE2, IFN-β, or the unlinked combination of ACE2 and IFN-β. The pool of IFNβ-ACE2 on the virion surface exhibited robust antiviral efficacy based on the preemptive targeting of antiviral IFN-β activity to the proximal site of viral infection. In conclusion, virus-targeted IFN-β places interferon optimally and antecedent to viral infection to constitute a new antiviral strategy.
Collapse
Affiliation(s)
| | | | | | - Mark D. Mannie
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA (K.B.D.)
| |
Collapse
|
3
|
Shao LT, Wang MM, Wang YM, Li T, Wang F, Xin JR, Zhang X, Li WG, Wang XJ, Wang SQ. Development and application of a high-titer VSV-based HCoV-NL63 pseudovirus system via C-terminal 14 amino acid truncation of spike. Biochem Biophys Res Commun 2025; 751:151458. [PMID: 39922054 DOI: 10.1016/j.bbrc.2025.151458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/18/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
To provide efficient tools for the development of novel antiviral drugs and vaccines of HCoV-NL63, it is urgently necessary to establish a safe, widely applicable, and high-titer NL63 pseudotyped particles (NL63pp) production system. In this research, we conducted a comparative analysis of several NL63pps, each with a truncated spike (S) protein missing part of its C-terminal amino acids. We discovered that deleting the C-terminal 14 amino acid sequence of the S protein (D14) led to a remarkable approximately 10-fold increase in the infection titer of VSV-based NL63pp. This value is higher than the titers of NL63pp packaged with S proteins having deletions of 18 or 24 amino acids at the C-terminus. Moreover, adding the VSV-G tag to the D14 C-terminus (D14V) resulted in an additional 30 % increase. We then constructed the recent prevalent HCoV-NL63 subgenotype C3 dual-reporter pseudovirus system C3-D14V, and found that C3-D14V had a higher infection efficiency. Utilizing this system, we investigated the susceptibility of several cell lines and observed that cells derived from liver (Huh7.5.1), small intestine (Caco-2) and lung (Calu-3) exhibited higher susceptibility. Furthermore, we applied this system to assess several bis-benzylisoquinoline alkaloids, notably, Cepharanthine demonstrated the highest inhibitory efficiency against NL63pp infection with EC50 0.61 μM. In conclusion, we have identified that S protein with a 14 amino acids deletion at the C-terminus significantly enhances the infection titer of HCoV-NL63 pseudovirus and provides an efficient VSV-based HCoV-NL63 dual-reporter (mCherry and luciferase2) pseudovirus system for various applications such as drug screening and antibody development in the future.
Collapse
Affiliation(s)
- Li-Ting Shao
- Bioinformatics Center of AMMS, Beijing, 100850, China
| | | | - Yi-Ming Wang
- Bioinformatics Center of AMMS, Beijing, 100850, China; College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Tian Li
- Bioinformatics Center of AMMS, Beijing, 100850, China; School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Fei Wang
- Bioinformatics Center of AMMS, Beijing, 100850, China
| | - Jie-Rong Xin
- Bioinformatics Center of AMMS, Beijing, 100850, China
| | - Xin Zhang
- Bioinformatics Center of AMMS, Beijing, 100850, China
| | - Wei-Guo Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.
| | - Xue-Jun Wang
- Bioinformatics Center of AMMS, Beijing, 100850, China.
| | - Sheng-Qi Wang
- Bioinformatics Center of AMMS, Beijing, 100850, China.
| |
Collapse
|
4
|
Minigulov N, Boranbayev K, Bekbossynova A, Gadilgereyeva B, Filchakova O. Structural proteins of human coronaviruses: what makes them different? Front Cell Infect Microbiol 2024; 14:1458383. [PMID: 39711780 PMCID: PMC11659265 DOI: 10.3389/fcimb.2024.1458383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/17/2024] [Indexed: 12/24/2024] Open
Abstract
Following COVID-19 outbreak with its unprecedented effect on the entire world, the interest to the coronaviruses increased. The causative agent of the COVID-19, severe acute respiratory syndrome coronavirus - 2 (SARS-CoV-2) is one of seven coronaviruses that is pathogenic to humans. Others include SARS-CoV, MERS-CoV, HCoV-HKU1, HCoV-OC43, HCoV-NL63 and HCoV-229E. The viruses differ in their pathogenicity. SARS-CoV, MERS-CoV, and SARS-CoV-2 are capable to spread rapidly and cause epidemic, while HCoV-HKU1, HCoV-OC43, HCoV-NL63 and HCoV-229E cause mild respiratory disease. The difference in the viral behavior is due to structural and functional differences. All seven human coronaviruses possess four structural proteins: spike, envelope, membrane, and nucleocapsid. Spike protein with its receptor binding domain is crucial for the entry to the host cell, where different receptors on the host cell are recruited by different viruses. Envelope protein plays important role in viral assembly, and following cellular entry, contributes to immune response. Membrane protein is an abundant viral protein, contributing to the assembly and pathogenicity of the virus. Nucleocapsid protein encompasses the viral RNA into ribonucleocapsid, playing important role in viral replication. The present review provides detailed summary of structural and functional characteristics of structural proteins from seven human coronaviruses, and could serve as a practical reference when pathogenic human coronaviruses are compared, and novel treatments are proposed.
Collapse
Affiliation(s)
| | | | | | | | - Olena Filchakova
- Biology Department, School of Sciences and Humanities, Nazarbayev
University, Astana, Kazakhstan
| |
Collapse
|
5
|
Andreu S, Ripa I, López-Guerrero JA, Bello-Morales R. Human Coronavirus 229E Uses Clathrin-Mediated Endocytosis as a Route of Entry in Huh-7 Cells. Biomolecules 2024; 14:1232. [PMID: 39456165 PMCID: PMC11505773 DOI: 10.3390/biom14101232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Human coronavirus 229E (HCoV-229E) is an endemic coronavirus responsible for approximately one-third of "common cold" cases. To infect target cells, HCoV-229E first binds to its receptor on the cell surface and then can follow different pathways, entering by direct fusion or by taking advantage of host cell mechanisms such as endocytosis. Based on the role of clathrin, the process can be classified into clathrin-dependent or -independent endocytosis. This study characterizes the role of clathrin-mediated endocytosis (CME) in HCoV-229E infection of the human hepatoma cell line Huh-7. Using specific CME inhibitory drugs, we demonstrated that blocking CME significantly reduces HCoV-229E infection. Additionally, CRISPR/Cas9-mediated knockout of the µ subunit of adaptor protein complex 2 (AP-2) further corroborated the role of CME, as KOs showed over a 50% reduction in viral infection. AP-2 plays an important role in clathrin recruitment and the maturation of clathrin-coated vesicles. Our study also confirmed that in Huh-7 cells, HCoV-229E requires endosomal acidification for successful entry, as viral entry decreased when treated with lysomotropic agents. Furthermore, the colocalization of HCoV-229E with early endosome antigen 1 (EEA-1), only present in early endosomes, suggested that the virus uses an endosomal route for entry. These findings highlight, for the first time, the role of CME in HCoV-229E infection and confirm previous data of the use of the endosomal route at a low pH in the experimental cell model Huh-7. Our results provide new insights into the mechanisms of entry of HCoV-229E and provide a new basis for the development of targeted antiviral therapies.
Collapse
Affiliation(s)
- Sabina Andreu
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas), 28049 Madrid, Spain
| | - Inés Ripa
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas), 28049 Madrid, Spain
| | - José Antonio López-Guerrero
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas), 28049 Madrid, Spain
| | - Raquel Bello-Morales
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas), 28049 Madrid, Spain
| |
Collapse
|