1
|
Madzokere ET, Freppel W, Pyke AT, Lynch SE, Mee PT, Doggett SL, Haniotis J, Weir R, Caly L, Druce J, Robson JM, van den Hurk AF, Edwards R, Herrero LJ. Ross River virus genomes from Australia and the Pacific display coincidental and antagonistic codon usage patterns with common vertebrate hosts and a principal vector. Virology 2025; 608:110530. [PMID: 40306107 DOI: 10.1016/j.virol.2025.110530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/24/2025] [Accepted: 04/10/2025] [Indexed: 05/02/2025]
Abstract
Around 4500 Ross River virus (RRV) human cases are reported in Australia annually. To date, there is no registered nor licenced vaccine to protect against RRV disease. Identifying and substituting preferred with less-preferred codons and dinucleotides is a recognised strategy to attenuate viruses and may prove useful to vaccine development efforts for RRV and other related viruses. Here, we used bioinformatic approaches aimed at assessing evidence of codon usage and dinucleotide bias in 55 RRV whole genomes sampled from humans (Homo sapiens), macropods (Notomacropus agilis), and the Aedes vigilax mosquito. Our results indicate that RRV undergoes positive and negative codon usage bias with natural selection as the major force driving RRV codon usage patterns. RRV displays a bias towards codons with an A or C at the 3rd position while H. sapiens displays a G or C and N. agilis and Ae. vigilax both show bias towards codons with an A or U at the same 3rd position. RRVs codon usage patterns are coincidental to those displayed by common vertebrate hosts and antagonistic to patterns of Ae. vigilax. The coincidental bias identified suggests vertebrate host gene expression greatly influences RRV evolution. In addition, we show that the UG dinucleotides in RRV are overrepresented at all three codon sites, while CA dinucleotides are only overrepresented at codon sites 1-2 and 2-3. These over and under-representations can be exploited to develop attenuated RRV RNA vaccines. The approach utilised here could also be used to develop vaccines for other alphaviruses of global importance.
Collapse
Affiliation(s)
- Eugene T Madzokere
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, Australia.
| | - Wesley Freppel
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, Australia.
| | - Alyssa T Pyke
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Brisbane, Queensland, Australia.
| | - Stacey E Lynch
- Australian Centre for Disease Preparedness, CSIRO, Geelong, Victoria, Australia.
| | - Peter T Mee
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria, Australia.
| | - Stephen L Doggett
- Department of Medical Entomology, NSW Health Pathology, Westmead Hospital, Sydney, New South Wales, Australia.
| | - John Haniotis
- Department of Medical Entomology, NSW Health Pathology, Westmead Hospital, Sydney, New South Wales, Australia.
| | - Richard Weir
- Berrimah Veterinary Laboratory, Department of Primary Industries and Fisheries, Darwin, Northern Territory, Australia.
| | - Leon Caly
- Victorian Infectious Diseases Reference Laboratory of Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| | - Julian Druce
- Victorian Infectious Diseases Reference Laboratory of Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| | - Jennifer M Robson
- Department of Microbiology and Molecular Pathology, Sullivan Nicolaides Pathology, Brisbane, Queensland, Australia.
| | - Andrew F van den Hurk
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Brisbane, Queensland, Australia.
| | - Robert Edwards
- College of Science and Engineering, Bedford Park, Adelaide, South Australia, Australia.
| | - Lara J Herrero
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, Australia.
| |
Collapse
|
2
|
Aktürk Dizman Y. Exploring Codon Usage Patterns and Influencing Factors in Ranavirus DNA Polymerase Genes. J Basic Microbiol 2024; 64:e2400289. [PMID: 39099168 DOI: 10.1002/jobm.202400289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/05/2024] [Accepted: 07/20/2024] [Indexed: 08/06/2024]
Abstract
Ranaviruses, members of the genus Ranavirus within the family Iridoviridae, have become a significant concern for amphibian populations globally, along with other cold-blooded vertebrates, due to their emergence as a significant threat. We employed bioinformatics tools to examine the codon usage patterns in 61 DNA pol genes from Ranavirus, Lymphocystivirus, Megalocytivirus, and two unclassified ranaviruses, as no prior studies had been conducted on this topic. The results showed a slight or low level of codon usage bias (CUB) in the DNA pol genes of Ranavirus. Relative synonymous codon usage (RSCU) analysis indicated that the predominant codons favored in Ranavirus DNA pol genes terminate with C or G. Correlation analysis examining nucleotide content, third codon position, effective number of codons (ENC), correspondence analysis (COA), Aroma values, and GRAVY values indicated that the CUB across DNA pol genes could be influenced by both mutation pressure and natural selection. The neutrality plot indicated that natural selection is the primary factor driving codon usage. Furthermore, the analysis of the codon adaptation index (CAI) illustrated the robust adaptability of Ranavirus DNA pol genes to their hosts. Analysis of the relative codon deoptimization index (RCDI) suggested that Ranavirus DNA pol genes underwent greater selection pressure from their hosts. These findings will aid in comprehending the factors influencing the evolution and adaptation of Ranavirus to its hosts.
Collapse
Affiliation(s)
- Yeşim Aktürk Dizman
- Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdoğan University, Rize, Türkiye
| |
Collapse
|
3
|
S. Celina S, Černý J. Genetic background of adaptation of Crimean-Congo haemorrhagic fever virus to the different tick hosts. PLoS One 2024; 19:e0302224. [PMID: 38662658 PMCID: PMC11045102 DOI: 10.1371/journal.pone.0302224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Crimean-Congo haemorrhagic fever orthonairovirus (CCHFV) is a negative-sense, single-stranded RNA virus with a segmented genome and the causative agent of a severe Crimean-Congo haemorrhagic fever (CCHF) disease. The virus is transmitted mainly by tick species in Hyalomma genus but other ticks such as representatives of genera Dermacentor and Rhipicephalus may also be involved in virus life cycle. To improve our understanding of CCHFV adaptation to its tick species, we compared nucleotide composition and codon usage patterns among the all CCHFV strains i) which sequences and other metadata as locality of collection and date of isolation are available in GenBank and ii) which were isolated from in-field collected tick species. These criteria fulfilled 70 sequences (24 coding for S, 23 for M, and 23 for L segment) of virus isolates originating from different representatives of Hyalomma and Rhipicephalus genera. Phylogenetic analyses confirmed that Hyalomma- and Rhipicephalus-originating CCHFV isolates belong to phylogenetically distinct CCHFV clades. Analyses of nucleotide composition among the Hyalomma- and Rhipicephalus-originating CCHFV isolates also showed significant differences, mainly in nucleotides located at the 3rd codon positions indicating changes in codon usage among these lineages. Analyses of codon adaptation index (CAI), effective number of codons (ENC), and other codon usage statistics revealed significant differences between Hyalomma- and Rhipicephalus-isolated CCHFV strains. Despite both sets of strains displayed a higher adaptation to use codons that are preferred by Hyalomma ticks than Rhipicephalus ticks, there were distinct codon usage preferences observed between the two tick species. These findings suggest that over the course of its long co-evolution with tick vectors, CCHFV has optimized its codon usage to efficiently utilize translational resources of Hyalomma species.
Collapse
Affiliation(s)
- Seyma S. Celina
- Faculty of Tropical AgriSciences, Center for Infectious Animal Diseases, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Jiří Černý
- Faculty of Tropical AgriSciences, Center for Infectious Animal Diseases, Czech University of Life Sciences Prague, Prague, Czech Republic
| |
Collapse
|
4
|
Dou T, Gao F, Zhu J, Wang Z, Yang X, Hao Y, Song N, An S, Yin X, Liu X. Evolutionary analysis and biological characterization of a novel alphabaculovirus isolated from Mythimna separata. J Gen Virol 2024; 105. [PMID: 38376497 DOI: 10.1099/jgv.0.001958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024] Open
Abstract
Baculoviruses are insect-specific pathogens. Novel baculovirus isolates provide new options for the biological control of pests. Therefore, research into the biological characteristics of newly isolated baculoviruses, including accurate classification and nomenclature, is important. In this study, a baculovirus was isolated from Mythimna separata and its complete genome sequence was determined by next-generation sequencing. The double-stranded DNA genome was 153 882 bp in length, encoding 163 open reading frames. The virus was identified as a variant of Mamestra brassicae multiple nucleopolyhedrovirus (MbMNPV) and designated Mamestra brassicae multiple nucleopolyhedrovirus CHN1 (MbMNPV-CHN1) according to ultrastructural analysis, genome comparison and phylogenetic analysis. Phylogenetic inference placed MbMNPV-CHN1 in a clade containing isolates of MacoNPV-A, MacoNPV-B and MbMNPV, which we have designated the Mb-McNPV group. The genomes of isolates in the Mb-McNPV group exhibited a high degree of collinearity with relatively minor differences in the content of annotated open reading frames. The development of codon usage bias in the Mb-McNPV group was affected mainly by natural selection. MbMNPV-CHN1 shows high infectivity against seven species of Lepidoptera. The yield of MbMNPV-CHN1 in the fourth- and fifth-instar M. separata larvae was 6.25×109-1.23×1010 OBs/cadaver. Our data provide insights into the classification, host range and virulence differences among baculoviruses of the Mb-McNPV group, as well as a promising potential new baculoviral insecticide.
Collapse
Affiliation(s)
- Tao Dou
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, PR China
- Henan Engineering Laboratory of Pest Biological Control, Zhengzhou 450046, PR China
- NanoAgro CenterCollege of Plant Protection, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Futao Gao
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, PR China
- Henan Engineering Laboratory of Pest Biological Control, Zhengzhou 450046, PR China
- NanoAgro CenterCollege of Plant Protection, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Junhua Zhu
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, PR China
- Henan Engineering Laboratory of Pest Biological Control, Zhengzhou 450046, PR China
- NanoAgro CenterCollege of Plant Protection, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Zihao Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, PR China
- Henan Engineering Laboratory of Pest Biological Control, Zhengzhou 450046, PR China
- NanoAgro CenterCollege of Plant Protection, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Xifa Yang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, PR China
- Henan Engineering Laboratory of Pest Biological Control, Zhengzhou 450046, PR China
- NanoAgro CenterCollege of Plant Protection, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Youwu Hao
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, PR China
- Henan Engineering Laboratory of Pest Biological Control, Zhengzhou 450046, PR China
- NanoAgro CenterCollege of Plant Protection, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Nan Song
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, PR China
- Henan Engineering Laboratory of Pest Biological Control, Zhengzhou 450046, PR China
| | - Shiheng An
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, PR China
- Henan Engineering Laboratory of Pest Biological Control, Zhengzhou 450046, PR China
| | - Xinming Yin
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, PR China
- Henan Engineering Laboratory of Pest Biological Control, Zhengzhou 450046, PR China
| | - Xiangyang Liu
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, PR China
- Henan Engineering Laboratory of Pest Biological Control, Zhengzhou 450046, PR China
- NanoAgro CenterCollege of Plant Protection, Henan Agricultural University, Zhengzhou 450046, PR China
| |
Collapse
|
5
|
Yang B, Cheng Z, Luo L, Cheng K, Gan S, Shi Y, Liu C, Wang D. Comparative analysis of codon usage patterns of Plasmodium helical interspersed subtelomeric (PHIST) proteins. Front Microbiol 2023; 14:1320060. [PMID: 38156001 PMCID: PMC10752978 DOI: 10.3389/fmicb.2023.1320060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
Background Plasmodium falciparum is a protozoan parasite that causes the most severe form of malaria in humans worldwide, which is predominantly found in sub-Saharan Africa, where it is responsible for the majority of malaria-related deaths. Plasmodium helical interspersed subtelomeric (PHIST) proteins are a family of proteins, with a conserved PHIST domain, which are typically located at the subtelomeric regions of the Plasmodium falciparum chromosomes and play crucial roles in the interaction between the parasite and its human host, such as cytoadherence, immune evasion, and host cell remodeling. However, the specific utilization of synonymous codons by PHIST proteins in Plasmodium falciparum is still unknown. Methods Codon usage bias (CUB) refers to the unequal usage of synonymous codons during translation, resulting in over- or underrepresentation of certain nucleotide patterns. This imbalance in CUB can impact various cellular processes, including protein expression levels and genetic variation. To investigate this, the CUB of 88 PHIST protein coding sequences (CDSs) from 5 subgroups were analyzed in this study. Results The results showed that both codon base composition and relative synonymous codon usage (RSCU) analysis identified a higher occurrence of AT-ended codons (AGA and UUA) in PHIST proteins of Plasmodium falciparum. The average effective number of codons (ENC) for these PHIST proteins was 36.69, indicating a weak codon preference among them, as it was greater than 35. Additionally, the correlation analysis among codon base composition (GC1, GC2, GC3, GCs), codon adaptation index (CAI), codon bias index (CBI), frequency of optimal codons (FOP), ENC, general average hydropathicity (GRAVY), aromaticity (AROMO), length of synonymous codons (L_sym), and length of amino acids (L_aa) revealed the influence of base composition and codon usage indices on codon usage bias, with GC1 having a significant impact in this study. Furthermore, the neutrality plot analysis, PR2-bias plot analysis, and ENC-GC3 plot analysis provided additional evidence that natural selection plays a crucial role in determining codon bias in PHIST proteins. Conclusion In conclusion, this study has enhanced our understanding of the characteristics of codon usage and genetic evolution in PHIST proteins, thereby providing data foundation for further research on antimalarial drugs or vaccines.
Collapse
Affiliation(s)
- Baoling Yang
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Ziwen Cheng
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Like Luo
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Kuo Cheng
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Shengqi Gan
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Yuyi Shi
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Che Liu
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Dawei Wang
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| |
Collapse
|
6
|
Wang D, Yang B. Analysis of codon usage bias of thioredoxin in apicomplexan protozoa. Parasit Vectors 2023; 16:431. [PMID: 37990340 PMCID: PMC10664530 DOI: 10.1186/s13071-023-06002-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/06/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Apicomplexan protozoa are a diverse group of obligate intracellular parasites causing many diseases that affect humans and animals, such as malaria, toxoplasmosis, and cryptosporidiosis. Apicomplexan protozoa possess unique thioredoxins (Trxs) that have been shown to regulate various cellular processes including metabolic redox regulation, parasite survival, and host immune evasion. However, it is still unknown how synonymous codons are used by apicomplexan protozoa Trxs. METHODS Codon usage bias (CUB) is the unequal usage of synonymous codons during translation which leads to the over- or underrepresentation of certain nucleotide patterns. This imbalance in CUB can impact a variety of cellular processes including protein expression levels and genetic variation. This study analyzed the CUB of 32 Trx coding sequences (CDS) from 11 apicomplexan protozoa. RESULTS The results showed that both codon base composition and relative synonymous codon usage (RSCU) analysis revealed that AT-ended codons were more frequently used in Cryptosporidium spp. and Plasmodium spp., while the Eimeria spp., Babesia spp., Hammondia hammondi, Neospora caninum, and Toxoplasma gondii tended to end in G/C. The average effective number of codon (ENC) value of these apicomplexan protozoa is 46.59, which is > 35, indicating a weak codon preference among apicomplexan protozoa Trxs. Furthermore, the correlation analysis among codon base composition (GC1, GC2, GC3, GCs), codon adaptation index (CAI), codon bias index (CBI), frequency of optimal codons (FOP), ENC, general average hydropathicity (GRAVY), aromaticity (AROMO), length of synonymous codons (L_sym), and length of amino acids (L_aa) indicated the influence of base composition and codon usage indices on CUB. Additionally, the neutrality plot analysis, PR2-bias plot analysis, and ENC-GC3 plot analysis further demonstrated that natural selection plays an important role in apicomplexan protozoa Trxs codon bias. CONCLUSIONS In conclusion, this study increased the understanding of codon usage characteristics and genetic evolution of apicomplexan protozoa Trxs, which expanded new ideas for vaccine and drug research.
Collapse
Affiliation(s)
- Dawei Wang
- Jinzhou Medical University, Jinzhou, 121000, Liaoning Province, China
| | - Baoling Yang
- Jinzhou Medical University, Jinzhou, 121000, Liaoning Province, China.
| |
Collapse
|
7
|
Aktürk Dizman Y. Codon usage bias analysis of the gene encoding NAD +-dependent DNA ligase protein of Invertebrate iridescent virus 6. Arch Microbiol 2023; 205:352. [PMID: 37812231 DOI: 10.1007/s00203-023-03688-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023]
Abstract
The genome of Invertebrate iridescent virus 6 (IIV6) contains a sequence that shows similarity to eubacterial NAD+-dependent DNA ligases. The 615-amino acid open reading frame (ORF 205R) consists of several domains, including an N-terminal domain Ia, followed by an adenylation domain, an OB-fold domain, a helix-hairpin-helix (HhH) domain, and a BRCT domain. Notably, the zinc finger domain, typically present in NAD+-dependent DNA ligases, is absent in ORF 205R. Since the protein encoded by ORF 205R (IIV6 DNA ligase gene) is involved in critical functions such as DNA replication, modification, and repair, it is crucial to comprehend the codon usage associated with this gene. In this paper, the codon usage bias (CUB) in DNA ligase gene of IIV6 and 11 reference iridoviruses was analyzed by comparing the nucleotide contents, relative synonymous codon usage (RSCU), effective number of codons (ENC), codon adaptation index (CAI), relative abundance of dinucleotides and other indices. Both the base content and the RCSU analysis indicated that the A- and T-ending codons were mostly favored in the DNA ligase gene of IIV6. The ENC value of 35.64 implied a high CUB in the IIV6 DNA ligase gene. The ENC plot, neutrality plot, parity rule 2 plot, correspondence analysis revealed that mutation pressure and natural selection had an impact on the CUB of the IIVs DNA ligase genes. Additionally, the analysis of codon adaptation index demonstrated that the IIV6 DNA ligase gene is strongly adapted to its host. These findings will improve our comprehension of the CUB of IIV6 DNA ligase and reference genes, which may provide the required information for a fundamental evolutionary analysis of these genes.
Collapse
Affiliation(s)
- Yeşim Aktürk Dizman
- Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, 53100, Rize, Turkey.
| |
Collapse
|
8
|
Han L, Song S, Feng H, Ma J, Wei W, Si F. A roadmap for developing Venezuelan equine encephalitis virus (VEEV) vaccines: Lessons from the past, strategies for the future. Int J Biol Macromol 2023:125514. [PMID: 37353130 DOI: 10.1016/j.ijbiomac.2023.125514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Venezuelan equine encephalitis (VEE) is a zoonotic infectious disease caused by the Venezuelan equine encephalitis virus (VEEV), which can lead to severe central nervous system infections in both humans and animals. At present, the medical community does not possess a viable means of addressing VEE, rendering the prevention of the virus a matter of paramount importance. Regarding the prevention and control of VEEV, the implementation of a vaccination program has been recognized as the most efficient strategy. Nevertheless, there are currently no licensed vaccines or drugs available for human use against VEEV. This imperative has led to a surge of interest in vaccine research, with VEEV being a prime focus for researchers in the field. In this paper, we initially present a comprehensive overview of the current taxonomic classification of VEEV and the cellular infection mechanism of the virus. Subsequently, we provide a detailed introduction of the prominent VEEV vaccine types presently available, including inactivated vaccines, live attenuated vaccines, genetic, and virus-like particle vaccines. Moreover, we emphasize the challenges that current VEEV vaccine development faces and suggest urgent measures that must be taken to overcome these obstacles. Notably, based on our latest research, we propose the feasibility of incorporation codon usage bias strategies to create the novel VEEV vaccine. Finally, we prose several areas that future VEEV vaccine development should focus on. Our objective is to encourage collaboration between the medical and veterinary communities, expedite the translation of existing vaccines from laboratory to clinical applications, while also preparing for future outbreaks of new VEEV variants.
Collapse
Affiliation(s)
- Lulu Han
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China; Huaihe Hospital of Henan University, Clinical Medical College of Henan University, Kai Feng 475000, China
| | - Shuai Song
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, PR China
| | - Huilin Feng
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences of Henan University, Kai Feng 475000, China
| | - Jing Ma
- Huaihe Hospital of Henan University, Clinical Medical College of Henan University, Kai Feng 475000, China
| | - Wenqiang Wei
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences of Henan University, Kai Feng 475000, China.
| | - Fusheng Si
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China.
| |
Collapse
|