1
|
Ashraf MA, Shahid I, Brown JK, Yu N. An Integrative Computational Approach for Identifying Cotton Host Plant MicroRNAs with Potential to Abate CLCuKoV-Bur Infection. Viruses 2025; 17:399. [PMID: 40143327 PMCID: PMC11945813 DOI: 10.3390/v17030399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/08/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Cotton leaf curl Kokhran virus-Burewala (CLCuKoV-Bur) has a circular single-stranded ssDNA genome of 2759 nucleotides in length and belongs to the genus Begomovirus (family, Geminiviridae). CLCuKoV-Bur causes cotton leaf curl disease (CLCuD) and is transmitted by the whitefly Bemisis tabaci cryptic species. Monopartite begomoviruses encode five open reading frames (ORFs). CLCuKoV-Bur replicates through a dsDNA intermediate. Five open reading frames (ORFs) are organized in the small circular, single-stranded (ss)-DNA genome of CLCuKoV-Bur (2759 bases). RNA interference (RNAi) is a naturally occurring process that has revolutionized the targeting of gene regulation in eukaryotic organisms to combat virus infection. The aim of this study was to elucidate the potential binding attractions of cotton-genome-encoded microRNAs (Gossypium hirsutum-microRNAs, ghr-miRNAs) on CLCuKoV-Bur ssDNA-encoded mRNAs using online bioinformatics target prediction tools, RNA22, psRNATarget, RNAhybrid, and TAPIR. Using this suite of robust algorithms, the predicted repertoire of the cotton microRNA-binding landscape was determined for a CLCuKoV-Bur consensus genome sequence. Previously experimentally validated cotton (Gossypium hirsutum L.) miRNAs (n = 80) were selected from a public repository miRNA registry miRBase (v22) and hybridized in silico into the CLCuKoV-Bur genome (AM421522) coding and non-coding sequences. Of the 80 ghr-miRNAs interrogated, 18 ghr-miRNAs were identified by two to four algorithms evaluated. Among them, the ghr-miR399d (accession no. MIMAT0014350), located at coordinate 1747 in the CLCuKoV-Bur genome, was predicted by a consensus or "union" of all four algorithms and represents an optimal target for designing an artificial microRNA (amiRNA) silencing construct for in planta expression. Based on all robust predictions, an in silico ghr-miRNA-regulatory network was developed for CLCuKoV-Bur ORFs using Circos software version 0.6. These results represent the first predictions of ghr-miRNAs with the therapeutic potential for developing CLCuD resistance in upland cotton plants.
Collapse
Affiliation(s)
- Muhammad Aleem Ashraf
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Department of Biosciences and Technology, Emerson University, Multan 60000, Pakistan
| | - Imran Shahid
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Judith K. Brown
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA;
| | - Naitong Yu
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
2
|
Tahiru AW, Cobbina SJ, Asare W. Evaluation of energy potential of MSW in the Tamale metropolis, Ghana: An assessment of solid waste characteristics and energy content. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2024; 74:639-663. [PMID: 39008375 DOI: 10.1080/10962247.2024.2380802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/20/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024]
Abstract
In the present investigation, a thorough examination of waste composition was undertaken in the Tamale Metropolis, Ghana. The methodology employed was carefully designed, incorporating both commercial and residential sectors as well as various socioeconomic classes. Source-based sampling of waste materials covered a range of locations, including households, markets, hotels, and restaurants, while socioeconomic-based categorization followed the zoning of the metropolis. Waste audit sampling involved collecting a total of 90 batches of solid waste over the three-month period from August to October 2023. The primary objectives were to physically characterize the waste and evaluate its chemical properties through proximate and ultimate analysis of waste fractions, aiming to determine the waste-to-energy potential and compatibility with waste-to-energy technologies. The study revealed that the Tamale Metropolis generates 176.1 tons/day of Municipal Solid Waste (MSW) at a rate of 0.47 kg/capita/day.Organic matter constituted the majority (44.9%), followed by inert, miscellaneous, and plastic waste at 20% each. The remaining 14.3% comprised paper, metal, glass, leather, and textile components. Notably, the hospitality sector exhibited the highest organic matter content at 62.3%, contrasting with average households and markets at 44.9% and 13.1%, respectively. Moisture content ranged from 5.4% to 12.6%, volatile solids from 21.8% to 77.2%, and gross calorific values from 7.9 MJ/kg to 28.9 MJ/kg. Household waste demonstrated the highest energy content at 6693.8 kcal/kg, followed by hotels/restaurants (2003.94 kcal/kg) and markets (1883.62 kcal/kg). This study's findings offer valuable insights that can inform the development of effective policies by regulatory bodies such as the Public Utility Regulatory Commission (PURC) and the Ghana Ministry of Energy, as well as city authorities like the Tamale Metropolitan Assembly and the Environmental Protection Agency. These insights can be used to address waste and energy challenges in the metropolis.Implications: The findings reveal critical insights with substantial implications for stakeholders and regulatory bodies. It emphasizes the waste-to-energy potential of various waste fractions, highlighting the need for sustainable municipal waste management strategies. Particularly, the high organic content in the hospitality sector presents significant energy recovery opportunities. For bodies like the Public Utility Regulatory Commission and the Ghana Ministry of Energy, this data is crucial for developing policies that support waste-to-energy technologies. Additionally, the Tamale Metropolitan Assembly and the Environmental Protection Agency can use these insights to improve local waste management practices, customizing interventions to address specific sectoral waste composition. The study also underlines the importance of ongoing monitoring to ensure the effectiveness of these strategies over time.
Collapse
Affiliation(s)
- Abdul-Wahab Tahiru
- Department of Environment and Sustainability Sciences, Faculty of Natural Resources and Environment, University for Development Studies, Tamale, TL, Ghana
| | - Samuel Jerry Cobbina
- Department of Environment and Sustainability Sciences, Faculty of Natural Resources and Environment, University for Development Studies, Tamale, TL, Ghana
- West African Centre for Water, Irrigation and Sustainable Agriculture (WACWISA), Tamale, Ghana
| | - Wilhemina Asare
- Department of Environment and Sustainability Sciences, Faculty of Natural Resources and Environment, University for Development Studies, Tamale, TL, Ghana
| |
Collapse
|
3
|
Mahmood MA, Ahmed N, Hussain A, Naqvi RZ, Amin I, Mansoor S. Dominance of Cotton leaf curl Multan virus-Rajasthan strain associated with third epidemic of cotton leaf curl disease in Pakistan. Sci Rep 2024; 14:13532. [PMID: 38866855 PMCID: PMC11169534 DOI: 10.1038/s41598-024-63211-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 05/27/2024] [Indexed: 06/14/2024] Open
Abstract
Cotton (Gossypium hirsutum) is an economically potent crop in many countries including Pakistan, India, and China. For the last three decades, cotton production is under the constant stress of cotton leaf curl disease (CLCuD) caused by begomoviruses/satellites complex that is transmitted through the insect pest, whitefly (Bemisia tabaci). In 2018, we identified a highly recombinant strain; Cotton leaf curl Multan virus-Rajasthan (CLCuMuV-Raj), associated with the Cotton leaf curl Multan betasatellite-Vehari (CLCuMuBVeh). This strain is dominant in cotton-growing hub areas of central Punjab, Pakistan, causing the third epidemic of CLCuD. In the present study, we have explored the CLCuD diversity from central to southern districts of Punjab (Faisalabad, Lodhran, Bahawalpur, Rahimyar Khan) and the major cotton-growing region of Sindh (Tandojam), Pakistan for 2 years (2020-2021). Interestingly, we found same virus (CLCuMuV-Raj) and associated betasatellite (CLCuMuBVeh) strain that was previously reported with the third epidemic in the central Punjab region. Furthermore, we found minor mutations in two genes of CLCuMuV-Raj C4 and C1 in 2020 and 2021 respectively as compared to its isolates in 2018, which exhibited virus evolution. Surprisingly, we did not find these mutations in CLCuMuV-Raj isolates identified from Sindh province. The findings of the current study represent the stability of CLCuMuV-Raj and its spread toward the Sindh province where previously Cotton leaf curl Kokhran virus (CLCuKoV) and Cotton leaf curl Shahdadpur virus (CLCuShV) have been reported. The findings of the current study demand future research on CLCuD complex to explore the possible reasons for prevalence in the field and how the virus-host-vector compatible interaction can be broken to develop resistant cultivars.
Collapse
Affiliation(s)
- Muhammad Arslan Mahmood
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, 38000, Pakistan
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
- Department of Biological Sciences, University of Sialkot, Sialkot, 51310, Pakistan
| | - Nasim Ahmed
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, 38000, Pakistan
- Biotechnology and Microbiology Group, Department of Zoology, University of Poonch Rawalakot, Rawalakot, Azad Jammu and Kashmir, Pakistan
- Department of Biotechnology, Mohi-ud-Din Islamic University, Nerian Sharif, Azad Jammu and Kashmir, Pakistan
| | - Athar Hussain
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, 38000, Pakistan
- School of Food and Agricultural Sciences (SFAS), University of Management and Technology (UMT), Lahore, 54000, Pakistan
| | - Rubab Zahra Naqvi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, 38000, Pakistan
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, 38000, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, 38000, Pakistan.
- International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.
| |
Collapse
|
4
|
Aqueel R, Badar A, Roy N, Mushtaq Q, Ali AF, Bashir A, Ijaz UZ, Malik KA. Cotton microbiome profiling and Cotton Leaf Curl Disease (CLCuD) suppression through microbial consortia associated with Gossypium arboreum. NPJ Biofilms Microbiomes 2023; 9:100. [PMID: 38097579 PMCID: PMC10721634 DOI: 10.1038/s41522-023-00470-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023] Open
Abstract
The failure of breeding strategies has caused scientists to shift to other means where the new approach involves exploring the microbiome to modulate plant defense mechanisms against Cotton Leaf Curl Disease (CLCuD). The cotton microbiome of CLCuD-resistant varieties may harbor a multitude of bacterial genera that significantly contribute to disease resistance and provide information on metabolic pathways that differ between the susceptible and resistant varieties. The current study explores the microbiome of CLCuD-susceptible Gossypium hirsutum and CLCuD-resistant Gossypium arboreum using 16 S rRNA gene amplification for the leaf endophyte, leaf epiphyte, rhizosphere, and root endophyte of the two cotton species. This revealed that Pseudomonas inhabited the rhizosphere while Bacillus was predominantly found in the phyllosphere of CLCuV-resistant G. arboreum. Using salicylic acid-producing Serratia spp. and Fictibacillus spp. isolated from CLCuD-resistant G. arboreum, and guided by our analyses, we have successfully suppressed CLCuD in the susceptible G. hirsutum through pot assays. The applied strains exhibited less than 10% CLCuD incidence as compared to control group where it was 40% at 40 days post viral inoculation. Through detailed analytics, we have successfully demonstrated that the applied microbes serve as a biocontrol agent to suppress viral disease in Cotton.
Collapse
Affiliation(s)
- Rhea Aqueel
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Ferozepur Road, Lahore, 54600, Pakistan
- Water & Environment Research Group, University of Glasgow, Mazumdar-Shaw Advanced Research Centre, Glasgow, G11 6EW, UK
| | - Ayesha Badar
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Ferozepur Road, Lahore, 54600, Pakistan
| | - Nazish Roy
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Ferozepur Road, Lahore, 54600, Pakistan
| | - Qandeel Mushtaq
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Ferozepur Road, Lahore, 54600, Pakistan
| | - Aimen Fatima Ali
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Ferozepur Road, Lahore, 54600, Pakistan
| | - Aftab Bashir
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Ferozepur Road, Lahore, 54600, Pakistan
| | - Umer Zeeshan Ijaz
- Water & Environment Research Group, University of Glasgow, Mazumdar-Shaw Advanced Research Centre, Glasgow, G11 6EW, UK.
- National University of Ireland, Galway, University Road, Galway, H91 TK33, Ireland.
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, L69 7BE, UK.
| | - Kauser Abdulla Malik
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Ferozepur Road, Lahore, 54600, Pakistan.
- Pakistan Academy of Sciences, Islamabad, Pakistan.
| |
Collapse
|