1
|
Shahdadnejad K, Yazdanparast R. The influence of IMPDH activity on ciliogenesis and adipogenesis of 3T3-L1 cells while undergoing differentiation. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159603. [PMID: 39961477 DOI: 10.1016/j.bbalip.2025.159603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 01/18/2025] [Accepted: 02/13/2025] [Indexed: 02/23/2025]
Abstract
The functional roles of primary cilia and inosine 5'-monophosphate dehydrogenase (IMPDH) are among the hot topics in today's adipogenesis research. Considering the reported interaction between IMPDH and ADP Ribosylation Factor-Like GTPase 13B (ARL13B), as a key ciliary protein, our study focused on this interaction during the ciliogenesis process while 3T3-L1 pre-adipocytes undergoing differentiation to lipid-accumulating adipocytes. Our results indicated that, in the early days of differentiation, when cilium length is long, IMPDH expression is high and its interaction with ARL13B is low. Conversely, in the last days of differentiation, the cilia length and IMPDH expression reduced while, the IMPDH/ARL13B interaction remains high relative to the initial days. In either of these two situations, IMPDH was not documented within the cilia. The extent of the interaction between IMPDH and ARL13B might account for the lack of co-localization of IMPDH and ARL13B within cilia during the process of differentiation. Although, inhibiting IMPDH in the early days of differentiation did not have a significant effect on cilia length, it did reduce adipogenesis by limiting mitotic clonal expansion through arresting cells in the G1/G0 phase. These findings provide the ground for further research to investigate the relationship between the IMPDH/ARL13B interaction and cilia length, which decline in obesity.
Collapse
Affiliation(s)
| | - Razieh Yazdanparast
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
2
|
Ebke LA, Sinha S, Pauer GJT, Hagstrom SA. Photoreceptor Compartment-Specific TULP1 Interactomes. Int J Mol Sci 2021; 22:ijms22158066. [PMID: 34360830 PMCID: PMC8348715 DOI: 10.3390/ijms22158066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 12/16/2022] Open
Abstract
Photoreceptors are highly compartmentalized cells with large amounts of proteins synthesized in the inner segment (IS) and transported to the outer segment (OS) and synaptic terminal. Tulp1 is a photoreceptor-specific protein localized to the IS and synapse. In the absence of Tulp1, several OS-specific proteins are mislocalized and synaptic vesicle recycling is impaired. To better understand the involvement of Tulp1 in protein trafficking, our approach in the current study was to physically isolate Tulp1-containing photoreceptor compartments by serial tangential sectioning of retinas and to identify compartment-specific Tulp1 binding partners by immunoprecipitation followed by liquid chromatography tandem mass spectrometry. Our results indicate that Tulp1 has two distinct interactomes. We report the identification of: (1) an IS-specific interaction between Tulp1 and the motor protein Kinesin family member 3a (Kif3a), (2) a synaptic-specific interaction between Tulp1 and the scaffold protein Ribeye, and (3) an interaction between Tulp1 and the cytoskeletal protein microtubule-associated protein 1B (MAP1B) in both compartments. Immunolocalization studies in the wild-type retina indicate that Tulp1 and its binding partners co-localize to their respective compartments. Our observations are compatible with Tulp1 functioning in protein trafficking in multiple photoreceptor compartments, likely as an adapter molecule linking vesicles to molecular motors and the cytoskeletal scaffold.
Collapse
Affiliation(s)
- Lindsey A. Ebke
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (L.A.E.); (S.S.); (G.J.T.P.)
| | - Satyabrata Sinha
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (L.A.E.); (S.S.); (G.J.T.P.)
| | - Gayle J. T. Pauer
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (L.A.E.); (S.S.); (G.J.T.P.)
| | - Stephanie A. Hagstrom
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (L.A.E.); (S.S.); (G.J.T.P.)
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Correspondence:
| |
Collapse
|
3
|
Sánchez-Bellver L, Toulis V, Marfany G. On the Wrong Track: Alterations of Ciliary Transport in Inherited Retinal Dystrophies. Front Cell Dev Biol 2021; 9:623734. [PMID: 33748110 PMCID: PMC7973215 DOI: 10.3389/fcell.2021.623734] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/09/2021] [Indexed: 01/14/2023] Open
Abstract
Ciliopathies are a group of heterogeneous inherited disorders associated with dysfunction of the cilium, a ubiquitous microtubule-based organelle involved in a broad range of cellular functions. Most ciliopathies are syndromic, since several organs whose cells produce a cilium, such as the retina, cochlea or kidney, are affected by mutations in ciliary-related genes. In the retina, photoreceptor cells present a highly specialized neurosensory cilium, the outer segment, stacked with membranous disks where photoreception and phototransduction occurs. The daily renewal of the more distal disks is a unique characteristic of photoreceptor outer segments, resulting in an elevated protein demand. All components necessary for outer segment formation, maintenance and function have to be transported from the photoreceptor inner segment, where synthesis occurs, to the cilium. Therefore, efficient transport of selected proteins is critical for photoreceptor ciliogenesis and function, and any alteration in either cargo delivery to the cilium or intraciliary trafficking compromises photoreceptor survival and leads to retinal degeneration. To date, mutations in more than 100 ciliary genes have been associated with retinal dystrophies, accounting for almost 25% of these inherited rare diseases. Interestingly, not all mutations in ciliary genes that cause retinal degeneration are also involved in pleiotropic pathologies in other ciliated organs. Depending on the mutation, the same gene can cause syndromic or non-syndromic retinopathies, thus emphasizing the highly refined specialization of the photoreceptor neurosensory cilia, and raising the possibility of photoreceptor-specific molecular mechanisms underlying common ciliary functions such as ciliary transport. In this review, we will focus on ciliary transport in photoreceptor cells and discuss the molecular complexity underpinning retinal ciliopathies, with a special emphasis on ciliary genes that, when mutated, cause either syndromic or non-syndromic retinal ciliopathies.
Collapse
Affiliation(s)
- Laura Sánchez-Bellver
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
- Institute of Biomedicine (IBUB-IRSJD), Universitat de Barcelona, Barcelona, Spain
| | - Vasileios Toulis
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
- CIBERER, ISCIII, Universitat de Barcelona, Barcelona, Spain
| | - Gemma Marfany
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
- Institute of Biomedicine (IBUB-IRSJD), Universitat de Barcelona, Barcelona, Spain
- CIBERER, ISCIII, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Tereshko L, Gao Y, Cary BA, Turrigiano GG, Sengupta P. Ciliary neuropeptidergic signaling dynamically regulates excitatory synapses in postnatal neocortical pyramidal neurons. eLife 2021; 10:e65427. [PMID: 33650969 PMCID: PMC7952091 DOI: 10.7554/elife.65427] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Primary cilia are compartmentalized sensory organelles present on the majority of neurons in the mammalian brain throughout adulthood. Recent evidence suggests that cilia regulate multiple aspects of neuronal development, including the maintenance of neuronal connectivity. However, whether ciliary signals can dynamically modulate postnatal circuit excitability is unknown. Here we show that acute cell-autonomous knockdown of ciliary signaling rapidly strengthens glutamatergic inputs onto cultured rat neocortical pyramidal neurons and increases spontaneous firing. This increased excitability occurs without changes to passive neuronal properties or intrinsic excitability. Further, the neuropeptide receptor somatostatin receptor 3 (SSTR3) is localized nearly exclusively to excitatory neuron cilia both in vivo and in culture, and pharmacological manipulation of SSTR3 signaling bidirectionally modulates excitatory synaptic inputs onto these neurons. Our results indicate that ciliary neuropeptidergic signaling dynamically modulates excitatory synapses and suggest that defects in this regulation may underlie a subset of behavioral and cognitive disorders associated with ciliopathies.
Collapse
Affiliation(s)
- Lauren Tereshko
- Department of Biology, Brandeis UniversityWalthamUnited States
| | - Ya Gao
- Department of Biology, Brandeis UniversityWalthamUnited States
| | - Brian A Cary
- Department of Biology, Brandeis UniversityWalthamUnited States
| | | | - Piali Sengupta
- Department of Biology, Brandeis UniversityWalthamUnited States
| |
Collapse
|
5
|
Brooks C, Murphy J, Belcastro M, Heller D, Kolandaivelu S, Kisselev O, Sokolov M. Farnesylation of the Transducin G Protein Gamma Subunit Is a Prerequisite for Its Ciliary Targeting in Rod Photoreceptors. Front Mol Neurosci 2018; 11:16. [PMID: 29410614 PMCID: PMC5787109 DOI: 10.3389/fnmol.2018.00016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/10/2018] [Indexed: 12/26/2022] Open
Abstract
Primary cilia are microtubule-based organelles, which protrude from the plasma membrane and receive a wide range of extracellular signals. Various cilia use G protein-coupled receptors (GPCRs) for the detection of these signals. For instance, vertebrate rod photoreceptors use their cilia (also called outer segments) as antennae detecting photons by GPCR rhodopsin. Rhodopsin recognizes incoming light and activates its G protein, transducin, which is composed of three subunits α, β, and γ. Similar to all G protein γ subunits, the transducin Gγ1 subunit undergoes C-terminal prenylation resulting in the addition of an isoprenoid farnesyl; however, the significance of this posttranslational modification is unclear. To study the role of the farnesyl group, we genetically introduced a mutant Gγ1 that lacked the prenylation site into the retinal photoreceptors of mice. The biochemical and physiological analyses of these mice revealed that mutant Gγ1 dimerizes with the endogenous transducin Gβ1 subunit and that the resulting Gβγ dimers display reduced hydrophobicity. Although mutant Gβγ dimers could form a heterotrimeric G protein, they could not mediate phototransduction. This deficiency was due to a strong exclusion of non-farnesylated Gβγ complexes from the cilia (rod outer segments). Our results provide the first evidence that farnesylation is required for trafficking of G-protein βγ subunits to the cilium of rod photoreceptors.
Collapse
Affiliation(s)
- Celine Brooks
- Department of Ophthalmology, West Virginia University, Morgantown, WV, United States
| | - Joseph Murphy
- Department of Ophthalmology, West Virginia University, Morgantown, WV, United States
| | | | - Daniel Heller
- Department of Ophthalmology, West Virginia University, Morgantown, WV, United States
| | | | - Oleg Kisselev
- Department of Ophthalmology, Saint Louis University, St. Louis, MO, United States
| | - Maxim Sokolov
- Department of Ophthalmology, West Virginia University, Morgantown, WV, United States
- Department of Biochemistry, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
6
|
Bujakowska KM, Liu Q, Pierce EA. Photoreceptor Cilia and Retinal Ciliopathies. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a028274. [PMID: 28289063 DOI: 10.1101/cshperspect.a028274] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Photoreceptors are sensory neurons designed to convert light stimuli into neurological responses. This process, called phototransduction, takes place in the outer segments (OS) of rod and cone photoreceptors. OS are specialized sensory cilia, with analogous structures to those present in other nonmotile cilia. Deficient morphogenesis and/or dysfunction of photoreceptor sensory cilia (PSC) caused by mutations in a variety of photoreceptor-specific and common cilia genes can lead to inherited retinal degenerations (IRDs). IRDs can manifest as isolated retinal diseases or syndromic diseases. In this review, we describe the structure and composition of PSC and different forms of ciliopathies with retinal involvement. We review the genetics of the IRDs, which are monogenic disorders but genetically diverse with regard to causality.
Collapse
Affiliation(s)
- Kinga M Bujakowska
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114
| | - Qin Liu
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114
| | - Eric A Pierce
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
7
|
Jaiswal M, Fansa EK, Kösling SK, Mejuch T, Waldmann H, Wittinghofer A. Novel Biochemical and Structural Insights into the Interaction of Myristoylated Cargo with Unc119 Protein and Their Release by Arl2/3. J Biol Chem 2016; 291:20766-78. [PMID: 27481943 PMCID: PMC5034065 DOI: 10.1074/jbc.m116.741827] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/29/2016] [Indexed: 11/06/2022] Open
Abstract
Primary cilia are highly specialized small antenna-like cellular protrusions that extend from the cell surface of many eukaryotic cell types. The protein content inside cilia and cytoplasm is very different, but details of the sorting process are not understood for most ciliary proteins. Recently, we have shown that prenylated proteins are sorted according to their affinity to the carrier protein PDE6δ and the ability of Arl3 but not Arl2 to release high affinity cargo inside the cilia (Fansa, E. K., Kösling, S. K., Zent, E., Wittinghofer, A., and Ismail, S. (2016) Nat. Commun. 7, 11366). Here we address the question whether a similar principle governs the transport of myristoylated cargo by the carrier proteins Unc119a and Unc119b. We thus analyzed the binding strength of N-terminal myristoylated cargo peptides (GNAT1, NPHP3, Cystin1, RP2, and Src) to Unc119a and Unc119b proteins. The affinity between myristoylated cargo and carrier protein, Unc119, varies between subnanomolar and micromolar. Peptides derived from ciliary localizing proteins (GNAT1, NPHP3, and Cystin1) bind with high affinity to Unc119 proteins, whereas a peptide derived from a non-ciliary localizing protein (Src) has low affinity. The peptide with intermediate affinity (RP2) is localized at the ciliary transition zone as a gate keeper. We show that the low affinity peptides are released by both Arl2·GppNHp and Arl3·GppNHp, whereas the high affinity peptides are exclusively released by only Arl3·GppNHp. Determination of the x-ray structure of myristoylated NPHP3 peptide in complex with Unc119a reveals the molecular details of high affinity binding and suggests the importance of the residues at the +2 and +3 positions relative to the myristoylated glycine for high and low affinities. The mutational analysis of swapping the residues at the +2 and +3 positions between high and low affinity peptides results in reversing their affinities for Unc119a and leads to a partial mislocalization of a low affinity mutant of NPHP3.
Collapse
Affiliation(s)
| | | | | | - Tom Mejuch
- the Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Herbert Waldmann
- the Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | | |
Collapse
|
8
|
Recruitment of β-Arrestin into Neuronal Cilia Modulates Somatostatin Receptor Subtype 3 Ciliary Localization. Mol Cell Biol 2015; 36:223-35. [PMID: 26503786 DOI: 10.1128/mcb.00765-15] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 10/20/2015] [Indexed: 01/09/2023] Open
Abstract
Primary cilia are essential sensory and signaling organelles present on nearly every mammalian cell type. Defects in primary cilia underlie a class of human diseases collectively termed ciliopathies. Primary cilia are restricted subcellular compartments, and specialized mechanisms coordinate the localization of proteins to cilia. Moreover, trafficking of proteins into and out of cilia is required for proper ciliary function, and this process is disrupted in ciliopathies. The somatostatin receptor subtype 3 (Sstr3) is selectively targeted to primary cilia on neurons in the mammalian brain and is implicated in learning and memory. Here, we show that Sstr3 localization to cilia is dynamic and decreases in response to somatostatin treatment. We further show that somatostatin treatment stimulates β-arrestin recruitment into Sstr3-positive cilia and this recruitment can be blocked by mutations in Sstr3 that impact agonist binding or phosphorylation. Importantly, somatostatin treatment fails to decrease Sstr3 ciliary localization in neurons lacking β-arrestin 2. Together, our results implicate β-arrestin in the modulation of Sstr3 ciliary localization and further suggest a role for β-arrestin in the mediation of Sstr3 ciliary signaling.
Collapse
|
9
|
Photoreceptor Sensory Cilium: Traversing the Ciliary Gate. Cells 2015; 4:674-86. [PMID: 26501325 PMCID: PMC4695852 DOI: 10.3390/cells4040674] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/07/2015] [Accepted: 10/09/2015] [Indexed: 01/13/2023] Open
Abstract
Cilia are antenna-like extensions of the plasma membrane found in nearly all cell types. In the retina of the eye, photoreceptors develop unique sensory cilia. Not much was known about the mechanisms underlying the formation and function of photoreceptor cilia, largely because of technical limitations and the specific structural and functional modifications that cannot be modeled in vitro. With recent advances in microscopy techniques and molecular and biochemical approaches, we are now beginning to understand the molecular basis of photoreceptor ciliary architecture, ciliary function and its involvement in human diseases. Here, I will discuss the studies that have revealed new knowledge of how photoreceptor cilia regulate their identity and function while coping with high metabolic and trafficking demands associated with processing light signal.
Collapse
|
10
|
Primary cilia enhance kisspeptin receptor signaling on gonadotropin-releasing hormone neurons. Proc Natl Acad Sci U S A 2014; 111:10335-40. [PMID: 24982149 DOI: 10.1073/pnas.1403286111] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Most central neurons in the mammalian brain possess an appendage called a primary cilium that projects from the soma into the extracellular space. The importance of these organelles is highlighted by the fact that primary cilia dysfunction is associated with numerous neuropathologies, including hyperphagia-induced obesity, hypogonadism, and learning and memory deficits. Neuronal cilia are enriched for signaling molecules, including certain G protein-coupled receptors (GPCRs), suggesting that neuronal cilia sense and respond to neuromodulators in the extracellular space. However, the impact of cilia on signaling to central neurons has never been demonstrated. Here, we show that the kisspeptin receptor (Kiss1r), a GPCR that is activated by kisspeptin to regulate the onset of puberty and adult reproductive function, is enriched in cilia projecting from mouse gonadotropin-releasing hormone (GnRH) neurons. Interestingly, GnRH neurons in adult animals are multiciliated and the percentage of GnRH neurons possessing multiple Kiss1r-positive cilia increases during postnatal development in a progression that correlates with sexual maturation. Remarkably, disruption of cilia selectively on GnRH neurons leads to a significant reduction in kisspeptin-mediated GnRH neuronal activity. To our knowledge, this result is the first demonstration of cilia disruption affecting central neuronal activity and highlights the importance of cilia for proper GPCR signaling.
Collapse
|
11
|
Abstract
The primary cilium compartmentalizes a tiny fraction of the cell surface and volume, yet many proteins are highly enriched in this area and so efficient mechanisms are necessary to concentrate them in the ciliary compartment. Here we review mechanisms that are thought to deliver protein cargo to the base of cilia and are likely to interact with ciliary gating mechanisms. Given the immense variety of ciliary cytosolic and transmembrane proteins, it is almost certain that multiple, albeit frequently interconnected, pathways mediate this process. It is also clear that none of these pathways is fully understood at the present time. Mechanisms that are discussed below facilitate ciliary localization of structural and signaling molecules, which include receptors, G-proteins, ion channels, and enzymes. These mechanisms form a basis for every aspect of cilia function in early embryonic patterning, organ morphogenesis, sensory perception and elsewhere.
Collapse
Affiliation(s)
- Jarema Malicki
- MRC Centre for Developmental and Biomedical Genetics; Department of Biomedical Science; The University of Sheffield; Sheffield, UK
| | | |
Collapse
|
12
|
Hao H, Veleri S, Sun B, Kim DS, Keeley PW, Kim JW, Yang HJ, Yadav SP, Manjunath SH, Sood R, Liu P, Reese BE, Swaroop A. Regulation of a novel isoform of Receptor Expression Enhancing Protein REEP6 in rod photoreceptors by bZIP transcription factor NRL. Hum Mol Genet 2014; 23:4260-71. [PMID: 24691551 DOI: 10.1093/hmg/ddu143] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The Maf-family leucine zipper transcription factor NRL is essential for rod photoreceptor development and functional maintenance in the mammalian retina. Mutations in NRL are associated with human retinopathies, and loss of Nrl in mice leads to a cone-only retina with the complete absence of rods. Among the highly down-regulated genes in the Nrl(-/-) retina, we identified receptor expression enhancing protein 6 (Reep6), which encodes a member of a family of proteins involved in shaping of membrane tubules and transport of G-protein coupled receptors. Here, we demonstrate the expression of a novel Reep6 isoform (termed Reep6.1) in the retina by exon-specific Taqman assay and rapid analysis of complementary deoxyribonucleic acid (cDNA) ends (5'-RACE). The REEP6.1 protein includes 27 additional amino acids encoded by exon 5 and is specifically expressed in rod photoreceptors of developing and mature retina. Chromatin immunoprecipitation assay identified NRL binding within the Reep6 intron 1. Reporter assays in cultured cells and transfections in retinal explants mapped an intronic enhancer sequence that mediated NRL-directed Reep6.1 expression. We also demonstrate that knockdown of Reep6 in mouse and zebrafish resulted in death of retinal cells. Our studies implicate REEP6.1 as a key functional target of NRL-centered transcriptional regulatory network in rod photoreceptors.
Collapse
Affiliation(s)
- Hong Hao
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shobi Veleri
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bo Sun
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Douglas S Kim
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, VA, USA
| | - Patrick W Keeley
- Neuroscience Research Institute Department of Molecular, Cellular and Developmental Biology and
| | - Jung-Woong Kim
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hyun-Jin Yang
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sharda P Yadav
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Souparnika H Manjunath
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Raman Sood
- Oncogenesis and Development Section and Zebrafish Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Paul Liu
- Oncogenesis and Development Section and Zebrafish Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin E Reese
- Neuroscience Research Institute Department of Psychological and Brain Sciences, University of California at Santa Barbara, CA, USA
| | - Anand Swaroop
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
13
|
Breslow DK, Koslover EF, Seydel F, Spakowitz AJ, Nachury MV. An in vitro assay for entry into cilia reveals unique properties of the soluble diffusion barrier. ACTA ACUST UNITED AC 2013; 203:129-47. [PMID: 24100294 PMCID: PMC3798247 DOI: 10.1083/jcb.201212024] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ciliary permeability barrier is mechanistically distinct from other cellular diffusion barriers and allows soluble proteins under ∼100 kD in size to enter cilia in the absence of active transport. Specific proteins are concentrated within primary cilia, whereas others remain excluded. To understand the mechanistic basis of entry into cilia, we developed an in vitro assay using cells in which the plasma membrane was permeabilized, but the ciliary membrane was left intact. Using a diffusion-to-capture system and quantitative analysis, we find that proteins >9 nm in diameter (∼100 kD) are restricted from entering cilia, and we confirm these findings in vivo. Interference with the nuclear pore complex (NPC) or the actin cytoskeleton in permeabilized cells demonstrated that the ciliary diffusion barrier is mechanistically distinct from those of the NPC or the axon initial segment. Moreover, applying a mass transport model to this system revealed diffusion coefficients for soluble and membrane proteins within cilia that are compatible with rapid exploration of the ciliary space in the absence of active transport. Our results indicate that large proteins require active transport for entry into cilia but not necessarily for movement inside cilia.
Collapse
Affiliation(s)
- David K Breslow
- Department of Molecular and Cellular Physiology and 2 Department of Chemical Engineering, Stanford University School of Medicine, Stanford, CA 94305
| | | | | | | | | |
Collapse
|
14
|
Kee HL, Verhey KJ. Molecular connections between nuclear and ciliary import processes. Cilia 2013; 2:11. [PMID: 23985042 PMCID: PMC3765448 DOI: 10.1186/2046-2530-2-11] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 07/30/2013] [Indexed: 01/13/2023] Open
Abstract
As an organelle, the cilium contains a unique complement of protein and lipid. Recent work has begun to shed light on the mechanisms that regulate entry of ciliary proteins into the compartment. Here, we focus on the mechanisms that regulate ciliary entry of cytosolic molecules. Studies have revealed a size exclusion mechanism for ciliary entry that is similar to the barrier to nuclear entry. Active import into the ciliary compartment involves nuclear trafficking components including importins, a Ran-guanosine triphosphate gradient, and nucleoporins. Together, this work indicates that nuclei and cilia share molecular, structural and mechanistic components that regulate import into the compartments.
Collapse
Affiliation(s)
- H Lynn Kee
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | | |
Collapse
|