1
|
Wang Y, Wong J, Duncan JL, Roorda A, Tuten WS. Enhanced S-Cone Syndrome: Elevated Cone Counts Confer Supernormal Visual Acuity in the S-Cone Pathway. Invest Ophthalmol Vis Sci 2023; 64:17. [PMID: 37459066 PMCID: PMC10362924 DOI: 10.1167/iovs.64.10.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Purpose To measure photoreceptor packing density and S-cone spatial resolution as a function of retinal eccentricity in patients with enhanced S-cone syndrome (ESCS) and to discuss the possible mechanisms supporting their supernormal S-cone acuity. Methods We used an adaptive optics scanning laser ophthalmoscope (AOSLO) to characterize photoreceptor packing. A custom non-AO display channel was used to measure L/M- and S-cone-mediated visual acuity during AOSLO imaging. Acuity measurements were obtained using a four-alternative, forced-choice, tumbling E paradigm along the temporal meridian between the fovea and 4° eccentricity in five of six patients and in seven control subjects. L/M acuity was tested by presenting long-pass-filtered optotypes on a black background, excluding wavelengths to which S-cones are sensitive. S-cone isolation was achieved using a two-color, blue-on-yellow chromatic adaptation method that was validated on three control subjects. Results Inter-cone spacing measurements revealed a near-uniform cone density profile (ranging from 0.9-1.5 arcmin spacing) throughout the macula in ESCS. For comparison, normal cone density decreases by a factor of 14 from the fovea to 6°. Cone spacing of ESCS subjects was higher than normal in the fovea and subnormal beyond 2°. Compared to the control subjects (n = 7), S-cone-mediated acuities in patients with ESCS were normal near the fovea and became increasingly supernormal with retinal eccentricity. Beyond 2°, S-cone acuities were superior to L/M-cone-mediated acuity in the ESCS cohort, a reversal of the trend observed in normal retinas. Conclusions Higher than normal parafoveal cone densities (presumably dominated by S-cones) confer better than normal S-cone-mediated acuity in ESCS subjects.
Collapse
Affiliation(s)
- Yiyi Wang
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, California, United States
| | - Jessica Wong
- Department of Ophthalmology, University of California, San Francisco, California, United States
| | - Jacque L Duncan
- Department of Ophthalmology, University of California, San Francisco, California, United States
| | - Austin Roorda
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, California, United States
| | - William S Tuten
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, California, United States
| |
Collapse
|
2
|
Wang Y, Wong J, Duncan JL, Roorda A, Tuten WS. Enhanced S-cone Syndrome, a Mini-review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:189-194. [PMID: 37440033 DOI: 10.1007/978-3-031-27681-1_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Enhanced S-cone Syndrome (ESCS) is an autosomal recessive inherited retinal disease mostly associated with disease-causing variants in the NR2E3 gene. During retinal development in ESCS, rod photoreceptor precursors are misdirected to form photoreceptors similar to short-wavelength cones, or S-cones. Compared to a normal human retina, patients with ESCS have no rods and significantly increased numbers of S-cones. Night blindness is the main visual symptom, and visual acuity and color vision can be normal at early disease stages. Histology of donor eyes and adaptive optics imaging revealed increased S-cone density outside of the fovea compared to normal. Visual function testing reveals absent rod function and abnormally enhanced sensitivity to short-wavelength light. Unlike most retinal degenerative diseases, ESCS results in a gain in S-cone photoreceptor function. Research involving ESCS could improve understanding of this rare retinal condition and also shed light on the role of NR2E3 expression in photoreceptor survival.
Collapse
Affiliation(s)
- Yiyi Wang
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, USA.
| | - Jessica Wong
- Department of Ophthalmology, University of California, San Francisco, CA, USA
| | - Jacque L Duncan
- Department of Ophthalmology, University of California, San Francisco, CA, USA
| | - Austin Roorda
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, USA
| | - William S Tuten
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, USA
| |
Collapse
|
3
|
Chung STL, Patel SS. Spatial and temporal proximity of objects for maximal crowding. Vision Res 2022; 194:108012. [PMID: 35042087 DOI: 10.1016/j.visres.2022.108012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/14/2021] [Accepted: 01/06/2022] [Indexed: 11/16/2022]
Abstract
Crowding refers to the deleterious visual interaction among nearby objects. Does maximal crowding occur when objects are closest to one another in space and time? We examined how crowding depends on the spatial and temporal proximity, retinally and perceptually, between a target and flankers. Our target was a briefly flashed T-stimulus presented at 10° right of fixation (3-o'clock position). It appeared at different target-onset-to-flanker asynchronies with respect to the instant when a pair of flanking Ts, revolving around the fixation target, reached the 3-o'clock position. Observers judged the orientation of the target-T (the crowding task), or its position relative to the revolving flankers (the flash-lag task). Performance was also measured in the absence of flanker motion: target and flankers were either presented simultaneously (closest retinal temporal proximity) with different angular spatial offsets, or were presented collinearly (closest retinal spatial proximity) with different temporal onset asynchronies. We found that neither retinal nor perceptual spatial or temporal proximity could account for when maximal crowding occurred. Simulations using a model based on feed-forward interactions between sustained and transient channels in static and motion pathways, taking into account the differential response latencies, can explain the crowding functions observed under various spatio-temporal conditions between the target and flankers.
Collapse
Affiliation(s)
- Susana T L Chung
- School of Optometry, University of California, Berkeley, Berkeley, CA, USA.
| | - Saumil S Patel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
4
|
Lee RJ, Reuther J, Chakravarthi R, Martinovic J. Emergence of crowding: The role of contrast and orientation salience. J Vis 2021; 21:20. [PMID: 34709355 PMCID: PMC8556554 DOI: 10.1167/jov.21.11.20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 09/22/2021] [Indexed: 11/27/2022] Open
Abstract
Crowding causes difficulties in judging attributes of an object surrounded by other objects. We investigated crowding for stimuli that isolated either S-cone or luminance mechanisms or combined them. By targeting different retinogeniculate mechanisms with contrast-matched stimuli, we aim to determine the earliest site at which crowding emerges. Discrimination was measured in an orientation judgment task where Gabor targets were presented parafoveally among flankers. In the first experiment, we assessed flanked and unflanked orientation discrimination thresholds for pure S-cone and achromatic stimuli and their combinations. In the second experiment, to capture individual differences, we measured unflanked detection and orientation sensitivity, along with performance under flanker interference for stimuli containing luminance only or combined with S-cone contrast. We confirmed that orientation sensitivity was lower for unflanked S-cone stimuli. When flanked, the pattern of results for S-cone stimuli was the same as for achromatic stimuli with comparable (i.e. low) contrast levels. We also found that flanker interference exhibited a genuine signature of crowding only when orientation discrimination threshold was reliably surpassed. Crowding, therefore, emerges at a stage that operates on signals representing task-relevant featural (here, orientation) information. Because luminance and S-cone mechanisms have very different spatial tuning properties, it is most parsimonious to conclude that crowding takes place at a neural processing stage after they have been combined.
Collapse
Affiliation(s)
| | - Josephine Reuther
- School of Psychology, University of Aberdeen, Aberdeen, Scotland, UK
| | | | - Jasna Martinovic
- Department of Psychology, School of Philosophy, Psychology and Language Sciences, University of Edinburgh & School of Psychology, University of Aberdeen, Aberdeen, Scotland, UK
| |
Collapse
|
5
|
Coates DR, Ludowici CJH, Chung STL. The generality of the critical spacing for crowded optotypes: From Bouma to the 21st century. J Vis 2021; 21:18. [PMID: 34694326 PMCID: PMC8556556 DOI: 10.1167/jov.21.11.18] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/22/2021] [Indexed: 11/24/2022] Open
Abstract
It is rare to find a crowding manuscript that fails to mention "Bouma's law," the rule of thumb stating that flankers within a distance of about one half of the target eccentricity will induce crowding. Here we investigate the generality of this rule (even for just optotypes), the factors that modulate the critical spacing, and the evidence for the rule in Bouma's own data. We explore these questions by reanalyzing a variety of studies from the literature, running several new control experiments, and by utilizing a model that unifies flanked identification measurements between psychophysical paradigms. Specifically, with minimal assumptions (equivalent psychometric slopes across conditions, for example), crowded acuity can be predicted for arbitrary target sizes and flanker spacings, revealing a performance "landscape" that delineates the critical spacing. Last, we present a compact quantitative summary of the effects of different types of stimulus manipulations on optotype crowding.
Collapse
Affiliation(s)
- Daniel R Coates
- College of Optometry, University of Houston, Houston, TX, USA
| | | | - Susana T L Chung
- School of Optometry, Vision Science Graduate Group, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
6
|
Abstract
Crowding is the substantial interference of neighboring items on target identification. Crowding with letter stimuli has been studied primarily in the visual periphery, with conflicting results for foveal stimuli. While a cortical locus for peripheral crowding is well established (with a large spatial extent up to half of the target eccentricity), disentangling the contributing factors in the fovea is more challenging due to optical limitations. Here, we used adaptive optics (AO) to overcome ocular aberrations and employed high-resolution stimuli to precisely characterize foveal lateral interactions with high-contrast letters flanked by letters. Crowding was present, with a maximal edge-to-edge interference zone of 0.75-1.3 minutes at typical unflanked performance levels. In agreement with earlier foveal contour interaction studies, performance was non-monotonic, revealing a recovery effect with proximal flankers. Modeling revealed that the deleterious effects of flankers can be described by a single function across stimulus sizes when the degradation is expressed as a reduction in sensitivity (expressed in Z-score units). The recovery, however, did not follow this pattern, likely reflecting a separate mechanism. Additional analysis reconciles multiple results from the literature, including the observed scale invariance of center-to-center spacing, as well as the size independence of edge-to-edge spacing.
Collapse
Affiliation(s)
- Daniel R Coates
- College of Optometry, University of Houston, Houston, TX, USA.
| | - Dennis M Levi
- School of Optometry, Vision Science Graduate Group, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Phanith Touch
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA, USA
| | - Ramkumar Sabesan
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|