1
|
Baudouin Gonzalez L, Schönauer A, Harper A, Arif S, Leite DJ, Steinhoff POM, Pechmann M, Telizhenko V, Pande A, Schultz ZX, Kosiol C, Aase-Remedios M, McGregor AP, Sumner-Rooney L. Development and patterning of a highly versatile visual system in spiders. Proc Biol Sci 2025; 292:20242069. [PMID: 40068820 PMCID: PMC11896711 DOI: 10.1098/rspb.2024.2069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/29/2024] [Accepted: 01/20/2025] [Indexed: 03/15/2025] Open
Abstract
Visual systems provide a key interface between organisms and their surroundings, and have evolved in many forms to perform diverse functions across the animal kingdom. Spiders exhibit a range of visual abilities and ecologies, the diversity of which is underpinned by a highly versatile, modular visual system architecture. This typically includes eight eyes of two developmentally distinct types, but the number, size, location and function of the eyes can vary dramatically between lineages. Previous studies of visual system development in spiders have confirmed that many components of the retinal determination gene (RDG) network are conserved with other arthropods, but so far, comparative studies among spiders are lacking. We characterized visual system development in seven species of spiders representing a range of morphologies, visual ecologies and phylogenetic positions, to determine how these diverse configurations are formed, and how they might evolve. Combining transcriptomics, in situ hybridization, and selection analyses, we characterize the repertoires and expression of key RDGs in relation to adult morphology. We identify key molecular players, timepoints and developmental events that may contribute to adult diversity, in particular the molecular and developmental underpinnings of eye size, number, position and identity across spiders.
Collapse
Affiliation(s)
- Luis Baudouin Gonzalez
- Oxford University Museum of Natural History, University of Oxford, Parks Road, OxfordOX1 3PW, UK
- Department of Biological and Biomedical Sciences, Oxford Brookes University, Gipsy Lane, OxfordOX3 0BP, UK
- Enara Bio, Science Park, Bellhouse Building Level 3, Sanders Rd, Littlemore, OxfordOX4 4GA, UK
| | - Anna Schönauer
- Department of Biological and Biomedical Sciences, Oxford Brookes University, Gipsy Lane, OxfordOX3 0BP, UK
| | - Amber Harper
- Department of Biological and Biomedical Sciences, Oxford Brookes University, Gipsy Lane, OxfordOX3 0BP, UK
| | - Saad Arif
- Department of Biological and Biomedical Sciences, Oxford Brookes University, Gipsy Lane, OxfordOX3 0BP, UK
| | - Daniel J. Leite
- Department of Biosciences, Durham University, Stockton Road, DurhamDH1 3LE, UK
| | - Philip O. M. Steinhoff
- Zoologisches Institut und Museum, Universität Greifswald, Loitzer Strasse 26, Greifswald17489, Germany
| | - Matthias Pechmann
- Department of Developmental Biology, Universität zu Köln, Zuelpicher Strasse 47B, Köln50674, Germany
| | | | - Atal Pande
- Leibniz Institute for Biodiversity and Evolution, Museum für Naturkunde, Invalidenstrasse 43, Berlin10115, Germany
| | - Zoe X. Schultz
- Department of Biosciences, Durham University, Stockton Road, DurhamDH1 3LE, UK
| | - Carolin Kosiol
- School of Biology, St Andrews University, St AndrewsKY16 9ST, UK
| | | | - Alistair P. McGregor
- Department of Biological and Biomedical Sciences, Oxford Brookes University, Gipsy Lane, OxfordOX3 0BP, UK
- Department of Biosciences, Durham University, Stockton Road, DurhamDH1 3LE, UK
| | - Lauren Sumner-Rooney
- Oxford University Museum of Natural History, University of Oxford, Parks Road, OxfordOX1 3PW, UK
- Leibniz Institute for Biodiversity and Evolution, Museum für Naturkunde, Invalidenstrasse 43, Berlin10115, Germany
| |
Collapse
|
2
|
Chong KL, Grahn A, Perl CD, Sumner-Rooney L. Allometry and ecology shape eye size evolution in spiders. Curr Biol 2024; 34:3178-3188.e5. [PMID: 38959880 DOI: 10.1016/j.cub.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/11/2024] [Accepted: 06/07/2024] [Indexed: 07/05/2024]
Abstract
Eye size affects many aspects of visual function, but eyes are costly to grow and maintain. The allometry of eyes can provide insight into this trade-off, but this has mainly been explored in species that have two eyes of equal size. By contrast, animals possessing larger visual systems can exhibit variable eye sizes within individuals. Spiders have up to four pairs of eyes whose sizes vary dramatically, but their ontogenetic, static, and evolutionary allometry has not yet been studied in a comparative context. We report variable dynamics in eye size across 1,098 individuals in 39 species and 8 families, indicating selective pressures and constraints driving the evolution of different eye pairs and lineages. Supplementing our sampling with a recently published phylogenetically comprehensive dataset, we confirmed these findings across more than 400 species; found that ecological factors such as visual hunting, web building, and circadian activity correlate with eye diameter; and identified significant allometric shifts across spider phylogeny using an unbiased approach, many of which coincide with visual hunting strategies. The modular nature of the spider visual system provides additional degrees of freedom and is apparent in the strong correlations between maximum/minimum investment and interocular variance and three key ecological factors. Our analyses suggest an antagonistic relationship between the anterior and posterior eye pairs. These findings shed light on the relationship between spider visual systems and their diverse ecologies and how spiders exploit their modular visual systems to balance selective pressures and optical and energetic constraints.
Collapse
Affiliation(s)
- Kaylin L Chong
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA; Oxford University Museum of Natural History, University of Oxford, Oxford OX1 3PW, UK.
| | - Angelique Grahn
- Institut für Biologie, Humboldt Universität, Invalidenstrasse 42, 10115 Berlin, Germany
| | - Craig D Perl
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Lauren Sumner-Rooney
- Oxford University Museum of Natural History, University of Oxford, Oxford OX1 3PW, UK.
| |
Collapse
|
3
|
De Agrò M, Rößler DC, Shamble PS. Eye-specific detection and a multi-eye integration model of biological motion perception. J Exp Biol 2024; 227:jeb247061. [PMID: 38752337 PMCID: PMC11418026 DOI: 10.1242/jeb.247061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/07/2024] [Indexed: 06/27/2024]
Abstract
'Biological motion' refers to the distinctive kinematics observed in many living organisms, where visually perceivable points on the animal move at fixed distances from each other. Across the animal kingdom, many species have developed specialized visual circuitry to recognize such biological motion and to discriminate it from other patterns. Recently, this ability has been observed in the distributed visual system of jumping spiders. These eight-eyed animals use six eyes to perceive motion, while the remaining two (the principal anterior medial eyes) are shifted across the visual scene to further inspect detected objects. When presented with a biologically moving stimulus and a random one, jumping spiders turn to face the latter, clearly demonstrating the ability to discriminate between them. However, it remains unclear whether the principal eyes are necessary for this behavior, whether all secondary eyes can perform this discrimination, or whether a single eye-pair is specialized for this task. Here, we systematically tested the ability of jumping spiders to discriminate between biological and random visual stimuli by testing each eye-pair alone. Spiders were able to discriminate stimuli only when the anterior lateral eyes were unblocked, and performed at chance levels in other configurations. Interestingly, spiders showed a preference for biological motion over random stimuli - unlike in past work. We therefore propose a new model describing how specialization of the anterior lateral eyes for detecting biological motion contributes to multi-eye integration in this system. This integration generates more complex behavior through the combination of simple, single-eye responses. We posit that this in-built modularity may be a solution to the limited resources of these invertebrates' brains, constituting a novel approach to visual processing.
Collapse
Affiliation(s)
- Massimo De Agrò
- Faculty of Biology, University of Regensburg, 93053 Regensburg, Germany
- Department of Biology, University of Florence, 50121 Firenze, Italy
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
| | - Daniela C. Rößler
- Zukunftskolleg, Konstanz University, 78464 Konstanz, Germany
- Department of Biology, Konstanz University, 78464 Konstanz, Germany
- Department of Ecology of Animal Societies, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
| | - Paul S. Shamble
- Kavli Institute for Neuroscience, Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
4
|
Nutrition-induced macular-degeneration-like photoreceptor damage in jumping spider eyes. Vision Res 2023; 206:108185. [PMID: 36758462 DOI: 10.1016/j.visres.2023.108185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/13/2023] [Accepted: 01/22/2023] [Indexed: 02/09/2023]
Abstract
Age-related macular degeneration (AMD) is a leading cause of vision loss in humans. Despite its prevalence and medical significance, many aspects of AMD remain elusive and treatment options are limited. Here, we present data that suggest jumping spiders offer a unique opportunity for understanding the fundamentals underlying retinal degeneration, thereby shedding light on a process that impacts millions of people globally. Using a micro-ophthalmoscope and histological evidence, we demonstrate that significant photoreceptor damage can occur during development in the image-forming anterior lateral eyes of the jumping spider Phidippus audax. Furthermore, we find that this photoreceptor degeneration is exacerbated by inadequate nutrition and is most prevalent in the high-density region of the retina, like AMD in humans. This suggests that similar to those in vertebrates, the retinas in P. audax are challenged to meet high-energy cellular demands.
Collapse
|
5
|
Bartos M. Visual prey categorization by a generalist jumping spider. THE EUROPEAN ZOOLOGICAL JOURNAL 2022. [DOI: 10.1080/24750263.2022.2143583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Maciej Bartos
- Department of Biodiversity Studies and Bioeducation, University of Łódź, Poland
| |
Collapse
|
6
|
Lavin R, Rathore S, Bauer B, Disalvo J, Mosley N, Shearer E, Elia Z, Cook TA, Buschbeck EK. EyeVolve, a modular PYTHON based model for simulating developmental eye type diversification. Front Cell Dev Biol 2022; 10:964746. [PMID: 36092740 PMCID: PMC9459020 DOI: 10.3389/fcell.2022.964746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Vision is among the oldest and arguably most important sensory modalities for animals to interact with their external environment. Although many different eye types exist within the animal kingdom, mounting evidence indicates that the genetic networks required for visual system formation and function are relatively well conserved between species. This raises the question as to how common developmental programs are modified in functionally different eye types. Here, we approached this issue through EyeVolve, an open-source PYTHON-based model that recapitulates eye development based on developmental principles originally identified in Drosophila melanogaster. Proof-of-principle experiments showed that this program’s animated timeline successfully simulates early eye tissue expansion, neurogenesis, and pigment cell formation, sequentially transitioning from a disorganized pool of progenitor cells to a highly organized lattice of photoreceptor clusters wrapped with support cells. Further, tweaking just five parameters (precursor pool size, founder cell distance and placement from edge, photoreceptor subtype number, and cell death decisions) predicted a multitude of visual system layouts, reminiscent of the varied eye types found in larval and adult arthropods. This suggests that there are universal underlying mechanisms that can explain much of the existing arthropod eye diversity. Thus, EyeVolve sheds light on common principles of eye development and provides a new computational system for generating specific testable predictions about how development gives rise to diverse visual systems from a commonly specified neuroepithelial ground plan.
Collapse
Affiliation(s)
- Ryan Lavin
- Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
| | - Shubham Rathore
- Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Brian Bauer
- Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
| | - Joe Disalvo
- Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
| | - Nick Mosley
- Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
| | - Evan Shearer
- Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
| | - Zachary Elia
- Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
| | - Tiffany A. Cook
- Center of Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Elke K. Buschbeck
- Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
- *Correspondence: Elke K. Buschbeck,
| |
Collapse
|
7
|
Rößler DC, De Agrò M, Kim K, Shamble PS. Static visual predator recognition in jumping spiders. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Daniela C. Rößler
- John Harvard Distinguished Science Fellows Program Harvard University Cambridge MA USA
- Zukunftskolleg University of Konstanz Konstanz Germany
- Department of Collective Behavior Max Planck Institute of Animal Behavior Konstanz Germany
| | - Massimo De Agrò
- John Harvard Distinguished Science Fellows Program Harvard University Cambridge MA USA
- Institute of Zoology University of Regensburg Regensburg Germany
| | - Kris Kim
- John Harvard Distinguished Science Fellows Program Harvard University Cambridge MA USA
| | - Paul S. Shamble
- John Harvard Distinguished Science Fellows Program Harvard University Cambridge MA USA
| |
Collapse
|
8
|
Cerveira AM, Nelson XJ, Jackson RR. Spatial acuity-sensitivity trade-off in the principal eyes of a jumping spider: possible adaptations to a 'blended' lifestyle. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:437-448. [PMID: 33885956 DOI: 10.1007/s00359-021-01486-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 11/26/2022]
Abstract
Jumping spiders (Salticidae) are diurnal visual predators known for elaborate, vision-mediated behaviour achieved through the coordinated work of four pairs of camera-type eyes. One pair ('principal' eyes) is responsible for colour and high spatial acuity vision, while three pairs ('secondary' eyes) are mostly responsible for motion detection. Based on its unusual capacity to visually discriminate specific prey in very low, but also under bright light settings, we investigated the structure of the principal and one pair of secondary eyes (antero-lateral eyes) of Cyrba algerina to determine how these eyes achieve the sensitivity, while maintaining spatial acuity, needed to sustain behaviour in low light. Compared to salticids that live in bright light, the principal eyes of C. algerina have a short focal length, and wide contiguous twin rhabdomeres that support optical pooling, overall favouring sensitivity (0.39 μm2), but without fully compromising acuity (12.4 arc min). The antero-lateral eye retinae have large receptors surrounded by pigment granules, providing effective shielding from scattered light. These adaptations may be beneficial for a xeric salticid species with a 'blended' lifestyle: generally living and hunting under stones in the dark, but sometimes venturing above them, in dramatically different light conditions.
Collapse
Affiliation(s)
- Ana M Cerveira
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand.
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
- CESAM-Centre for Environmental and Marine Studies, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal.
| | - Ximena J Nelson
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| | - Robert R Jackson
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
- International Centre of Insect Physiology and Ecology (ICIPE), Thomas Odhiambo Campus, P.O. Box 30, Mbita Point, Kenya
| |
Collapse
|
9
|
Cross FR, Jackson RR. Odour priming of a mosquito-specialist predator's vision-based detouring decisions. Biochem Biophys Res Commun 2020; 564:18-26. [PMID: 33375956 DOI: 10.1016/j.bbrc.2020.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/09/2020] [Accepted: 12/02/2020] [Indexed: 10/22/2022]
Abstract
A capacity to execute long detours that are planned ahead of time has cognitive implications pertaining to reliance on internal representation. Here we investigate the detouring behaviour of Evarcha culicivora, an East African salticid spider that specializes at preying on blood-carrying mosquitoes. The findings from our experiments are the first evidence of a salticid making detouring plans based on whether the path chosen leads to more preferred instead of less preferred prey, as well as the first evidence of olfactory priming effects on motivation and selective attention in the context of detouring. Test spiders began on top of a starting platform from which, in some trials, they could view lures on top of two poles and, in some trials, the odour of blood-carrying mosquitoes was also present. When odour was present and prey were visible, significantly more test spiders took a detour and chose a pole than when only odour was present (prey not visible) or when prey were visible but odour was absent. When odour was present, test spiders also significantly more often chose the pole holding a blood-carrying mosquito instead of the pole holding another prey type.
Collapse
Affiliation(s)
- Fiona R Cross
- School of Biological Sciences, University of Canterbury, Private Bag, 4800, Christchurch, New Zealand; International Centre of Insect Physiology and Ecology, Thomas Odhiambo Campus, P.O. Box 30, Mbita Point, Kenya.
| | - Robert R Jackson
- School of Biological Sciences, University of Canterbury, Private Bag, 4800, Christchurch, New Zealand; International Centre of Insect Physiology and Ecology, Thomas Odhiambo Campus, P.O. Box 30, Mbita Point, Kenya
| |
Collapse
|
10
|
Cronin T, Marshall J, Nilsson D, Osorio D. The astonishing diversity of vision: Introduction to an issue of Vision Research on animal vision. Vision Res 2020; 172:62-63. [PMID: 32241576 DOI: 10.1016/j.visres.2020.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Tom Cronin
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
| | - Justin Marshall
- The Queensland Brain Institute, The University of Queensland, St Lucia QLD 4072, Australia
| | - Dan Nilsson
- Lund Vision Group, Department of Biology, Sölvegatan 35, S223 62, Lund, Sweden
| | - Daniel Osorio
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| |
Collapse
|
11
|
Nelson XJ, Aguilar-Arguello S, Jackson RR. Widespread army ant aversion among East African jumping spiders (Salticidae). J ETHOL 2020. [DOI: 10.1007/s10164-020-00639-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractJumping spiders (Salticidae) typically prey on a variety of arthropods of similar size to themselves, but rarely on ants. Using 28 salticid species from East Africa, we first investigated vision-based aversion to ants by recording latency to enter a transparent sealed chamber flanked by chambers containing living army ants (Dorylus sp.) or tsetse flies (Glossina pallidipes) of comparable size. For all species, entry latency was significantly longer when the stimuli were ants. In another experiment, we used dead ants and tsetse flies mounted in a life-like posture as stimuli; except for Goleba puella, a species with unusual retinal ultrastructure, we again found significantly longer entry latency when the stimuli were ants. Our findings imply that these salticids express an aversion specifically to ants even when restricted to using vision alone and, except for G. puella, even when relying on solely the static appearance of the insects. Having used salticids from laboratory cultures with no prior experience with ants, our findings are consistent with vision-based aversion to army ants being innate.
Collapse
|
12
|
Owens M, Giordullo I, Buschbeck EK. Establishment of correctly focused eyes may not require visual input in arthropods. ACTA ACUST UNITED AC 2020; 223:jeb.216192. [PMID: 31796609 DOI: 10.1242/jeb.216192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/27/2019] [Indexed: 12/14/2022]
Abstract
For proper function, vertebrate and invertebrate visual systems must be able to achieve and maintain emmetropia, a state where distant objects are in focus on the retina. In vertebrates, this is accomplished through a combination of genetic control during early development and homeostatic visual input that fine-tunes the optics of the eye. While emmetropization has long been researched in vertebrates, it is largely unknown how emmetropia is established in arthropods. We used a micro-ophthalmoscope to directly measure how the lens projects images onto the retina in the eyes of small, live arthropods, allowing us to compare the refractive states of light-reared and dark-reared arthropods. First, we measured the image-forming larval eyes of diving beetles (Thermonectus marmoratus), which are known to grow rapidly and dramatically between larval instars. Then, we measured the image-forming principal anterior-median eyes of jumping spiders (Phidippus audax) after emergence from their egg cases. Finally, we measured individual ommatidia in the compound eyes of flesh flies (Sarcophaga bullata) that had developed and emerged under either light or dark conditions. Surprisingly, and in sharp contrast to vertebrates, our data for this diverse set of arthropods suggest that visual input is inconsequential in regard to achieving well-focused eyes. Although it remains unclear whether visual input that is received after the initial development further improves focusing, these results suggest that at least the initial coordination between the lens refractive power and eye size in arthropods may be more strongly predetermined by developmental factors than is typically the case in vertebrates.
Collapse
Affiliation(s)
- Madeline Owens
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Isaiah Giordullo
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Elke K Buschbeck
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|