1
|
Boehme JT, Sun X, Lu Q, Barton J, Wu X, Gong W, Raff GW, Datar SA, Wang T, Fineman JR, Black SM. Simvastatin restores pulmonary endothelial function in the setting of pulmonary over-circulation. Nitric Oxide 2024; 142:58-68. [PMID: 38061411 PMCID: PMC11045265 DOI: 10.1016/j.niox.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/20/2023]
Abstract
Statin therapy is a cornerstone in the treatment of systemic vascular diseases. However, statins have failed to translate as therapeutics for pulmonary vascular disease. Early pulmonary vascular disease in the setting of congenital heart disease (CHD) is characterized by endothelial dysfunction, which precedes the more advanced stages of vascular remodeling. These features make CHD an ideal cohort in which to re-evaluate the potential pulmonary vascular benefits of statins, with a focus on endothelial biology. However, it is critical that the full gamut of the pleiotropic effects of statins in the endothelium are uncovered. The purpose of this investigation was to evaluate the therapeutic potential of simvastatin for children with CHD and pulmonary over-circulation, and examine mechanisms of simvastatin action on the endothelium. Our data demonstrate that daily simvastatin treatment preserves endothelial function in our shunt lamb model of pulmonary over-circulation. Further, using pulmonary arterial endothelial cells (PAECs) isolated from Shunt and control lambs, we identified a new mechanism of statin action mediated by increased expression of the endogenous Akt1 inhibitor, C-terminal modifying protein (CTMP). Increases in CTMP were able to decrease the Akt1-mediated mitochondrial redistribution of endothelial nitric oxide synthase (eNOS) which correlated with increased enzymatic coupling, identified by increases in NO generation and decreases in NOS-derived superoxide. Together our data identify a new mechanism by which simvastatin enhances NO signaling in the pulmonary endothelium and identify CTMP as a potential therapeutic target to prevent the endothelial dysfunction that occurs in children born with CHD resulting in pulmonary over-circulation.
Collapse
Affiliation(s)
- Jason T Boehme
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Xutong Sun
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Qing Lu
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Jubilee Barton
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Xiaomin Wu
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, 85719, USA
| | - Wenhui Gong
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Gary W Raff
- Department of Surgery, University of California Davis, Davis, CA, 95817, USA
| | - Sanjeev A Datar
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Ting Wang
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Jeffrey R Fineman
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, 94143, USA; Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Stephen M Black
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA; Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
2
|
Wu X, Sun X, Sharma S, Lu Q, Yegambaram M, Hou Y, Wang T, Fineman JR, Black SM. Arginine recycling in endothelial cells is regulated BY HSP90 and the ubiquitin proteasome system. Nitric Oxide 2020; 108:12-19. [PMID: 33338599 DOI: 10.1016/j.niox.2020.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/01/2020] [Accepted: 12/11/2020] [Indexed: 12/26/2022]
Abstract
Despite the saturating concentrations of intracellular l-arginine, nitric oxide (NO) production in endothelial cells (EC) can be stimulated by exogenous arginine. This phenomenon, termed the "arginine paradox" led to the discovery of an arginine recycling pathway in which l-citrulline is recycled to l-arginine by utilizing two important urea cycle enzymes argininosuccinate synthetase (ASS) and argininosuccinate lyase (ASL). Prior work has shown that ASL is present in a NO synthetic complex containing hsp90 and endothelial NO synthase (eNOS). However, it is unclear whether hsp90 forms functional complexes with ASS and ASL and if it is involved regulating their activity. Thus, elucidating the role of hsp90 in the arginine recycling pathway was the goal of this study. Our data indicate that both ASS and ASL are chaperoned by hsp90. Inhibiting hsp90 activity with geldanamycin (GA), decreased the activity of both ASS and ASL and decreased cellular l-arginine levels in bovine aortic endothelial cells (BAEC). hsp90 inhibition led to a time-dependent decrease in ASS and ASL protein, despite no changes in mRNA levels. We further linked this protein loss to a proteasome dependent degradation of ASS and ASL via the E3 ubiquitin ligase, C-terminus of Hsc70-interacting protein (CHIP) and the heat shock protein, hsp70. Transient over-expression of CHIP was sufficient to stimulate ASS and ASL degradation while the over-expression of CHIP mutant proteins identified both TPR- and U-box-domain as essential for ASS and ASL degradation. This study provides a novel insight into the molecular regulation l-arginine recycling in EC and implicates the proteasome pathway as a possible therapeutic target to stimulate NO signaling.
Collapse
Affiliation(s)
- Xiaomin Wu
- Department of Medicine, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, 85721, USA
| | - Xutong Sun
- Department of Medicine, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, 85721, USA
| | - Shruti Sharma
- Center for Biotechnology & Genomic Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Qing Lu
- Department of Medicine, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, 85721, USA
| | - Manivannan Yegambaram
- Department of Medicine, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, 85721, USA
| | - Yali Hou
- Center for Biotechnology & Genomic Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Ting Wang
- Department of Internal Medicine, University of Arizona, Phoenix, AZ, 85004, USA
| | - Jeffrey R Fineman
- The Department of Pediatrics, University of California San Francisco, San Francisco, CA, 94143, USA; The Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Stephen M Black
- Department of Medicine, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
3
|
Muralidharan P, Jones B, Allaway G, Biswal SS, Mansour HM. Design and development of innovative microparticulate/nanoparticulate inhalable dry powders of a novel synthetic trifluorinated chalcone derivative and Nrf2 agonist. Sci Rep 2020; 10:19771. [PMID: 33188247 PMCID: PMC7666129 DOI: 10.1038/s41598-020-76585-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/30/2020] [Indexed: 01/21/2023] Open
Abstract
Chalcone derivatives are shown to possess excellent anti-inflammatory and anti-oxidant properties which are of great interest in treating respiratory diseases such as acute lung injury (ALI), acute respiratory distress syndrome (ARDS), chronic obstructive pulmonary disease (COPD), and pulmonary fibrosis (PF). This study successfully designed and developed dry powder inhaler (DPI) formulations of TMC (2-trifluoromethyl-2'-methoxychalone), a new synthetic trifluorinated chalcone and Nrf2 agonist, for targeted pulmonary inhalation aerosol drug delivery. An advanced co-spray drying particle engineering technique was used to design and produce microparticulate/nanoparticulate formulations of TMC with a suitable excipient (mannitol) as inhalable particles with tailored particle properties for inhalation. Raw TMC and co-spray dried TMC formulations were comprehensively characterized for the first time using scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) spectroscopy, thermal analysis, X-ray powder diffraction (XRPD), and molecular fingerprinting as dry powders by ATR-FTIR spectroscopy and Raman spectroscopy. Further, biocompatibility and suitability of formulations were tested with in vitro cellular transepithelial electrical resistance (TEER) in air-interface culture (AIC) using a human pulmonary airway cell line. The ability of these TMC formulations to perform as aerosolized dry powders was systematically evaluated by design of experiments (DOEs) using three different FDA-approved human inhaler devices followed by interaction parameter analyses. Multiple spray drying pump rates (25%, 75%, and 100%) successfully produced co-spray dried TMC:mannitol powders. Raw TMC exhibited a first-order phase transition temperature at 58.15 ± 0.38 °C. Furthermore, the results demonstrate that these innovative TMC dry powder particles are suitable for targeted delivery to the airways by inhalation.
Collapse
Affiliation(s)
- Priya Muralidharan
- Colleges of Pharmacy and Medicine, University of Arizona, 1703 E. Mabel St, Tucson, AZ, 85721, USA
| | | | | | - Shyam S Biswal
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Heidi M Mansour
- Colleges of Pharmacy and Medicine, University of Arizona, 1703 E. Mabel St, Tucson, AZ, 85721, USA.
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.
- The BIO5 Research Institute, The University of Arizona, Tucson, AZ, USA.
- Institute of the Environment, The University of Arizona, Tucson, AZ, USA.
- National Cancer Institute Comprehensive Cancer Center, The University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
4
|
López V, Uribe E, Moraga FA. Activation of arginase II by asymmetric dimethylarginine and homocysteine in hypertensive rats induced by hypoxia: a new model of nitric oxide synthesis regulation in hypertensive processes? Hypertens Res 2020; 44:263-275. [PMID: 33149269 DOI: 10.1038/s41440-020-00574-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 07/10/2020] [Accepted: 08/11/2020] [Indexed: 11/09/2022]
Abstract
In recent years, the increase in blood pressure at high altitudes has become an interesting topic among high-altitude researchers. In our animal studies using Wistar rats, we observed the existence of two rat populations that exhibit differential physiological responses during hypoxic exposure. These rats were classified as hypoxia-induced hypertensive rats and nonhypertensive rats. A decrease in nitric oxide levels was reported in different hypertension models associated with increased concentrations of asymmetric dimethylarginine (ADMA) and homocysteine, and we recently described an increase in arginase type II expression under hypoxia. ADMA and homocysteine decrease nitric oxide (NO) bioavailability; however, whether ADMA and homocysteine have a regulatory effect on arginase activity and therefore regulate another NO synthesis pathway is unknown. Therefore, the aim of this study was to measure basal ADMA and homocysteine levels in hypoxia-induced hypertensive rats and evaluate their effect on arginase II activity. Our results indicate that hypoxia-induced hypertensive rats presented lower nitric oxide concentrations than nonhypertensive rats, associated with higher concentrations of homocysteine and ADMA. Hypoxia-induced hypertensive rats also presented lower dimethylarginine dimethylaminohydrolase-2 and cystathionine β-synthase levels, which could explain the high ADMA and homocysteine levels. In addition, we observed that both homocysteine and ADMA had a significant effect on arginase II activation in the hypertensive rats. Therefore, we suggest that ADMA and homocysteine have dual regulatory effects on NO synthesis. The former has an inhibitory effect on eNOS, and the latter has a secondary activating effect on arginase II. We propose that arginase II is activated by AMDA and homocysteine in hypoxia-induced hypertensive rats.
Collapse
Affiliation(s)
- Vasthi López
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Elena Uribe
- Departamento de Bioquímica, Facultad de Ciencias Biológicas, Universidad de Concepción. Barrio Universitario s/n, Concepción, Chile
| | - Fernando A Moraga
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile.
| |
Collapse
|
5
|
Johnson Kameny R, Datar SA, Boehme JB, Morris C, Zhu T, Goudy BD, Johnson EG, Galambos C, Raff GW, Sun X, Wang T, Chiacchia SR, Lu Q, Black SM, Maltepe E, Fineman JR. Ovine Models of Congenital Heart Disease and the Consequences of Hemodynamic Alterations for Pulmonary Artery Remodeling. Am J Respir Cell Mol Biol 2019; 60:503-514. [PMID: 30620615 DOI: 10.1165/rcmb.2018-0305ma] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The natural history of pulmonary vascular disease associated with congenital heart disease (CHD) depends on associated hemodynamics. Patients exposed to increased pulmonary blood flow (PBF) and pulmonary arterial pressure (PAP) develop pulmonary vascular disease more commonly than patients exposed to increased PBF alone. To investigate the effects of these differing mechanical forces on physiologic and molecular responses, we developed two models of CHD using fetal surgical techniques: 1) left pulmonary artery (LPA) ligation primarily resulting in increased PBF and 2) aortopulmonary shunt placement resulting in increased PBF and PAP. Hemodynamic, histologic, and molecular studies were performed on control, LPA, and shunt lambs as well as pulmonary artery endothelial cells (PAECs) derived from each. Physiologically, LPA, and to a greater extent shunt, lambs demonstrated an exaggerated increase in PAP in response to vasoconstricting stimuli compared with controls. These physiologic findings correlated with a pathologic increase in medial thickening in pulmonary arteries in shunt lambs but not in control or LPA lambs. Furthermore, in the setting of acutely increased afterload, the right ventricle of control and LPA but not shunt lambs demonstrates ventricular-vascular uncoupling and adverse ventricular-ventricular interactions. RNA sequencing revealed excellent separation between groups via both principal components analysis and unsupervised hierarchical clustering. In addition, we found hyperproliferation of PAECs from LPA lambs, and to a greater extent shunt lambs, with associated increased angiogenesis and decreased apoptosis in PAECs derived from shunt lambs. A further understanding of mechanical force-specific drivers of pulmonary artery pathology will enable development of precision therapeutics for pulmonary hypertension associated with CHD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Eric G Johnson
- 2 Department of Veterinary Surgical and Radiological Sciences, School of Veterinary Medicine, and
| | - Csaba Galambos
- 3 Departments of Pathology and Laboratory Medicine, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, Colorado; and
| | - Gary W Raff
- 4 Department of Surgery, University of California, Davis, Davis, California
| | - Xutong Sun
- 5 Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Ting Wang
- 5 Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | | | - Qing Lu
- 5 Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Stephen M Black
- 5 Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | | | - Jeffrey R Fineman
- 1 Department of Pediatrics and.,6 Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
| |
Collapse
|
6
|
Muralidharan P, Hayes D, Black SM, Mansour HM. Microparticulate/Nanoparticulate Powders of a Novel Nrf2 Activator and an Aerosol Performance Enhancer for Pulmonary Delivery Targeting the Lung Nrf2/Keap-1 Pathway. MOLECULAR SYSTEMS DESIGN & ENGINEERING 2016; 1:48-65. [PMID: 27774309 PMCID: PMC5072457 DOI: 10.1039/c5me00004a] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
This systematic and comprehensive study reports for the first time on the successful rational design of advanced inhalable therapeutic dry powders containing dimethyl fumarate, a first-in-class Nrf2 activator drug to treat pulmonary inflammation, using particle engineering design technology for targeted delivery to the lungs as advanced spray dried (SD) one-component DPIs. In addition, two-component co-spray dried (co-SD) DMF:D-Man DPIs with high drug loading were successfully designed for targeted lung delivery as advanced DPIs using organic solution advanced spray drying in closed mode. Regional targeted deposition using design of experiments (DoE) for in vitro predictive lung modeling based on aerodynamic properties was tailored based on composition and spray drying parameters. These findings indicate the significant potential of using D-Man in spray drying to improve particle formation and aerosol performance of small molecule with a relatively low melting point. These respirable microparticles/nanoparticles in the solid-state exhibited excellent aerosol dispersion performance with an FDA-approved human DPI device. Using in vitro predictive lung deposition modeling, the aerosol deposition patterns of these particles show the capability to reach lower airways to treat inflammation in this region in pulmonary diseases such as acute lung injury (ALI), chronic obstructive pulmonary disease (COPD), pulmonary hypertension (PH), and pulmonary endothelial disease.
Collapse
Affiliation(s)
- Priya Muralidharan
- College of Pharmacy, Skaggs Pharmaceutical Sciences Center, The University of Arizona, Tucson, AZ, 85721, USA
| | - Don Hayes
- Departments of Pediatrics and Internal Medicine, Lung and Heart-Lung Transplant Programs, The Ohio State University College of Medicine, Columbus, OH 43205, USA; The Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Stephen M Black
- Department of Medicine, Division of Translational and Regenerative Medicine, The University of Arizona, Tucson, AZ, 85724, USA
| | - Heidi M Mansour
- College of Pharmacy, Skaggs Pharmaceutical Sciences Center, The University of Arizona, Tucson, AZ, 85721, USA; Institute of the Environment, The University of Arizona, Tucson, AZ 85721, USA; National Cancer Institute Comprehensive Cancer Center, The University of Arizona, Tucson, AZ 85721, USA; The BIO5 Research Institute, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
7
|
Aggarwal S, Gross CM, Sharma S, Fineman JR, Black SM. Reactive oxygen species in pulmonary vascular remodeling. Compr Physiol 2013; 3:1011-34. [PMID: 23897679 DOI: 10.1002/cphy.c120024] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The pathogenesis of pulmonary hypertension is a complex multifactorial process that involves the remodeling of pulmonary arteries. This remodeling process encompasses concentric medial thickening of small arterioles, neomuscularization of previously nonmuscular capillary-like vessels, and structural wall changes in larger pulmonary arteries. The pulmonary arterial muscularization is characterized by vascular smooth muscle cell hyperplasia and hypertrophy. In addition, in uncontrolled pulmonary hypertension, the clonal expansion of apoptosis-resistant endothelial cells leads to the formation of plexiform lesions. Based upon a large number of studies in animal models, the three major stimuli that drive the vascular remodeling process are inflammation, shear stress, and hypoxia. Although, the precise mechanisms by which these stimuli impair pulmonary vascular function and structure are unknown, reactive oxygen species (ROS)-mediated oxidative damage appears to play an important role. ROS are highly reactive due to their unpaired valence shell electron. Oxidative damage occurs when the production of ROS exceeds the quenching capacity of the antioxidant mechanisms of the cell. ROS can be produced from complexes in the cell membrane (nicotinamide adenine dinucleotide phosphate-oxidase), cellular organelles (peroxisomes and mitochondria), and in the cytoplasm (xanthine oxidase). Furthermore, low levels of tetrahydrobiopterin (BH4) and L-arginine the rate limiting cofactor and substrate for endothelial nitric oxide synthase (eNOS), can cause the uncoupling of eNOS, resulting in decreased NO production and increased ROS production. This review will focus on the ROS generation systems, scavenger antioxidants, and oxidative stress associated alterations in vascular remodeling in pulmonary hypertension.
Collapse
Affiliation(s)
- Saurabh Aggarwal
- Pulmonary Disease Program, Vascular Biology Center, Georgia Health Sciences University, Augusta, Georgia, USA
| | | | | | | | | |
Collapse
|
8
|
Fike CD, Sidoryk-Wegrzynowicz M, Aschner M, Summar M, Prince LS, Cunningham G, Kaplowitz M, Zhang Y, Aschner JL. Prolonged hypoxia augments L-citrulline transport by system A in the newborn piglet pulmonary circulation. Cardiovasc Res 2012; 95:375-84. [PMID: 22673370 DOI: 10.1093/cvr/cvs186] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
AIMS Pulmonary arterial endothelial cells (PAECs) express the enzymes needed for generation of l-arginine from intracellular l-citrulline but do not express the enzymes needed for de novo l-citrulline synthesis. Hence, l-citrulline levels in PAECs are dependent on l-citrulline transport. Once generated, l-arginine can be converted to l-citrulline and nitric oxide (NO) by the enzyme NO synthase. We sought to determine whether hypoxia, a condition aetiologically linked to pulmonary hypertension, alters the transport of l-citrulline and the expression of the sodium-coupled neutral amino acid transporters (SNATs) in PAECs from newborn piglets. METHODS AND RESULTS PAECs isolated from newborn piglets were cultured under normoxic and hypoxic conditions and used to measure SNAT1, 2, 3, and 5 protein expression and (14)C-l-citrulline uptake. SNAT1 protein expression was increased, while SNAT2, SNAT3, and SNAT5 expression was unaltered in hypoxic PAECs. (14)C-l-citrulline uptake was increased in hypoxic PAECs. Studies with inhibitors of System A (SNAT1/2) and System N (SNAT3/5) revealed that the increased (14)C-l-citrulline uptake was largely due to System A-mediated transport. Additional studies were performed to evaluate SNAT protein expression and l-citrulline levels in lungs of piglets with chronic hypoxia-induced pulmonary hypertension and comparable age controls. Lungs from piglets raised in chronic hypoxia exhibited greater SNAT1 expression and higher l-citrulline levels than lungs from controls. CONCLUSION Increased SNAT1 expression and the concomitant enhanced ability to transport l-citrulline in PAECs could represent an important regulatory mechanism to counteract NO signalling impairments known to occur during the development of chronic hypoxia-induced pulmonary hypertension in newborns.
Collapse
Affiliation(s)
- Candice D Fike
- Department of Pediatrics, University School of Medicine, Vanderbilt University Medical Center, 2215 B Garland Ave., Nashville, TN 37232-0656, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Aggarwal S, Gross C, Fineman JR, Black SM. Oxidative stress and the development of endothelial dysfunction in congenital heart disease with increased pulmonary blood flow: lessons from the neonatal lamb. Trends Cardiovasc Med 2012; 20:238-46. [PMID: 22293025 DOI: 10.1016/j.tcm.2011.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Congenital heart diseases associated with increased pulmonary blood flow commonly leads to the development of pulmonary hypertension. However, most patients who undergo histological evaluation have advanced pulmonary hypertension, and therefore it has been difficult to investigate aberrations in signaling cascades that precede the development of overt vascular remodeling. This review discusses the role played by both oxidative and nitrosative stress in the lung and their impact on the signaling pathways that regulate vasodilation, vessel growth, and vascular remodeling in the neonatal lung exposed to increased pulmonary blood flow.
Collapse
Affiliation(s)
- Saurabh Aggarwal
- Pulmonary Disease Program, Vascular Biology Center, Georgia Health Sciences University, Augusta, GA 30912, USA
| | | | | | | |
Collapse
|
10
|
Chuang IC, Yang RC, Chou SH, Huang LR, Tsai TN, Dong HP, Huang MS. Effect of carbon dioxide inhalation on pulmonary hypertension induced by increased blood flow and hypoxia. Kaohsiung J Med Sci 2011; 27:336-43. [DOI: 10.1016/j.kjms.2011.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 11/10/2010] [Indexed: 11/16/2022] Open
|
11
|
Fratz S, Fineman JR, Görlach A, Sharma S, Oishi P, Schreiber C, Kietzmann T, Adatia I, Hess J, Black SM. Early determinants of pulmonary vascular remodeling in animal models of complex congenital heart disease. Circulation 2011; 123:916-23. [PMID: 21357846 DOI: 10.1161/circulationaha.110.978528] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Sohrab Fratz
- Vascular Biology Center, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Endothelial nitric oxide synthase gene polymorphism (Glu298Asp) and acute pulmonary hypertension post cardiopulmonary bypass in children with congenital cardiac diseases. Cardiol Young 2011; 21:161-9. [PMID: 21144100 DOI: 10.1017/s1047951110001630] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Intra-cardiac repair of congenital cardiac diseases in children with left-right shunt is often associated with acute elevation of pulmonary artery pressure following cardiopulmonary bypass. We studied the correlation between the Glu298Asp polymorphism of the endothelial nitric oxide synthase gene and pulmonary hypertension in children with congenital cardiac diseases. METHODS AND RESULTS A total of 80 children with congenital cardiac diseases at a median age of 3.8 years, ranged 0.1-36.2 years, and 136 controls were enrolled. Most patients presented with significant left-to-right shunt - pulmonary-to-systemic blood flow of 2.8, with a range from 0.6 to 7.5. In all, 40 out of 80 children showed pulmonary hypertension with mean pressure of 42, ranged 26-82, millimetres of mercury. Thirty-one out of 40 children underwent intra-cardiac repair and 15 out of 31 operated patients were found to have an acute elevation of pulmonary artery pressure after cardiopulmonary bypass. The Glu298Asp polymorphism was identified using polymerase chain reaction and restriction fragment length polymorphism. Both in patients and in controls, the genotype distribution corresponded to the Hardy-Weinberg equilibrium. The gene frequency for Glu298Glu, Glu298Asp and Asp298Asp was not different in the control group compared to the patients (Armitage trend test: p = 0.37). The endothelial nitric oxide synthase polymorphism was related to acute post-operative elevation of pulmonary artery pressure (genotypic frequency 53.3 versus 25%; Armitage trend test: p = 0.038). In addition, the allelic frequency of the Glu298Asp was related to post-operative pulmonary hypertension (Fischer's exact test: p = 0.048). The positive predictive value was 71.43%. CONCLUSION Patients with left-to-right shunt are more likely to develop acute elevation of pulmonary artery pressure after cardiopulmonary bypass when presenting with the Glu298Asp polymorphism of the gene endothelial nitric oxide synthase. This could be used as a genetic marker for the predisposition for the development of pulmonary hypertension after intra-cardiac repair.
Collapse
|
13
|
Zuckerbraun BS, George P, Gladwin MT. Nitrite in pulmonary arterial hypertension: therapeutic avenues in the setting of dysregulated arginine/nitric oxide synthase signalling. Cardiovasc Res 2010; 89:542-52. [PMID: 21177703 DOI: 10.1093/cvr/cvq370] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is an insidious disease of the small pulmonary arteries that is progressive in nature and results in right heart strain/hypertrophy and eventually failure. The aetiologies may vary but several common pathophysiological changes result in this phenotype, including vasoconstriction, thrombosis, and vascular proliferation. Data suggest that nitric oxide (NO) signalling is vasoprotective in the setting of PAH. The classic arginine-NO synthase (NOS)-NO signalling pathway may represent an adaptive response that is eventually dysregulated during disease progression. Dysregulation occurs secondary to NOS enzyme down-regulation, enzymatic uncoupling, and arginine catabolism by vascular and red cell arginases and by direct NO inactivation via catabolic reactions with superoxide or cell-free plasma haemoglobin (in the case of haemolytic disease). The anion nitrite, which has recently been recognized as a source of NO that circumvents the arginine-NOS pathway, may serve as an additional adaptive signalling pathway that is now appreciated to have a vasoregulatory role in the pulmonary and systemic vasculature. Inhaled nebulized sodium nitrite is a relatively potent pulmonary vasodilator in the setting of hypoxia and is also anti-proliferative in multiple experimental models of pulmonary hypertension. Multiple nitrite reductases have been shown to be relevant in the conversion of nitrite to metabolically active NO, including deoxy-haemoglobin and myoglobin in the circulation and heart, respectively, and xanthine oxidoreductase in the lung parenchyma.
Collapse
Affiliation(s)
- Brian S Zuckerbraun
- Department of Surgery, University of Pittsburgh, NW 607 MUH, 3459 Fifth Avenue, Pittsburgh, PA 15213, USA.
| | | | | |
Collapse
|
14
|
Ou ZJ, Wei W, Huang DD, Luo W, Luo D, Wang ZP, Zhang X, Ou JS. L-arginine restores endothelial nitric oxide synthase-coupled activity and attenuates monocrotaline-induced pulmonary artery hypertension in rats. Am J Physiol Endocrinol Metab 2010; 298:E1131-9. [PMID: 20215577 DOI: 10.1152/ajpendo.00107.2010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
L-arginine can attenuate pulmonary hypertension (PH) by a mechanism that are not fully understood. This study investigated the molecule mechanism of L-arginine attenuating PH. Sprague Dawley rats were treated with monocrotaline (MCT) with or without L-arginine for 3 or 5 wk. Right ventricular systolic pressure (RVSP), right heart hypertrophy, survival rate, pulmonary artery wall thickness, nitric oxide (NO) concentration, and superoxide anion (O(2)(*-)) generation in the lung were measured. Expressions of endothelial nitric oxide synthase (eNOS) and heat shock protein 90 (HSP90), phosphorylation of eNOS at Ser(1177), and the association of eNOS and HSP90 in the lung were determined by Western blot and immunoprecipitation experiments. MCT increased RVSP, right heart hypertrophy, mortality, pulmonary artery wall thickness, and O(2)(*-) generation and decreased eNOS and HSP90 expression and association, phosphorylation of eNOS at Ser(1177), and NO production. L-arginine decreased RVSP, right heart hypertrophy, mortality, O(2)(*-) generation, and pulmonary artery wall thickness and increased NO production. L-arginine increased eNOS expression, phosphorylation of eNOS at Ser(1177), and association of eNOS and HSP90 without significantly altering HSP90 expression. L-arginine may act through three pathways, providing a substrate for NO generation, preserving eNOS expression/phosphorylation, and maintaining the association of eNOS and HSP90, which allows restoration of eNOS activity and coupling activity, to maintain the balance between NO and O(2)(*-) and delay the development of PH.
Collapse
Affiliation(s)
- Zhi-Jun Ou
- Division of Hypertension and Vascular Diseases, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Sharma S, Kumar S, Wiseman DA, Kallarackal S, Ponnala S, Elgaish M, Tian J, Fineman JR, Black SM. Perinatal changes in superoxide generation in the ovine lung: Alterations associated with increased pulmonary blood flow. Vascul Pharmacol 2010; 53:38-52. [PMID: 20362073 DOI: 10.1016/j.vph.2010.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 03/12/2010] [Accepted: 03/18/2010] [Indexed: 02/07/2023]
Abstract
Although alterations in ROS generating systems are well described in several vascular disorders, there is very limited information on the perinatal regulation of these systems in the lung both during normal development and in pulmonary hypertension. Thus, this study was undertaken to explore how the two predominant superoxide generating systems, nicotinamide adenine dinucleotide phosphate-oxidase (NADPH oxidase) and xanthine oxidase (XO), are developmentally regulated in control lambs and in our established lamb model of increased pulmonary blood flow (Shunt) over the first 2months of life. We found that the levels of p47(phox), p67(phox), and Rac1 subunits of NADPH oxidase complex were altered. During the first two months of life there was no change in p47(phox) protein levels in either normal or Shunt lambs. However, both p67(phox) and Rac1 protein levels decreased over time. In addition, p47(phox) protein levels were significantly increased in shunt lambs at 2- and 4-, but not 8-weeks of age compared to age-matched controls while levels of the p67(phox) subunit were decreased at 8-weeks of age in the Shunts but unchanged at other time periods. Furthermore, Rac1 protein expression was significantly increased in the Shunts only at 4weeks of age. These data correlated with a significant increase in NADPH oxidase dependent superoxide generation at 2- and 4-, but not 8-weeks of age in the Shunts. During normal development XO levels significantly increased over time in normal lambs but significantly decreased in the Shunts. In addition, XO protein levels were significantly increased in the Shunt at 2- and 4-weeks of age but significantly decreased at 8-weeks. Again this correlated with a significant increase in XO dependent superoxide generation at 2- and 4-, but not 8-weeks of age in the Shunts. Collectively, our findings suggest that NADPH oxidase and XO are major contributors to superoxide generation both during the normal development and during the development of pulmonary hypertension.
Collapse
Affiliation(s)
- Shruti Sharma
- Vascular Biology Center, Medical College of Georgia, Augusta, GA 30912, United States
| | | | | | | | | | | | | | | | | |
Collapse
|