1
|
Tseng PT, Zeng BY, Hsu CW, Liang CS, Stubbs B, Chen YW, Chen TY, Lei WT, Chen JJ, Shiue YL, Su KP. The Optimal Dosage and Duration of ω-3 PUFA Supplementation in Heart Failure Management: Evidence from a Network Meta-Analysis. Adv Nutr 2025; 16:100366. [PMID: 39805484 PMCID: PMC11836506 DOI: 10.1016/j.advnut.2025.100366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/26/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025] Open
Abstract
Heart failure is a progressive condition associated with a high mortality rate. Despite advancements in treatment, many patients continue to experience less-than-ideal outcomes. ω-3 (n-3) polyunsaturated fatty acids (PUFAs) have been studied as a potential supplementary therapy for heart failure, but the optimal dosage and duration of supplementation remain unclear. This network meta-analysis (NMA) aimed to assess the efficacy of various n-3 PUFA supplementation regimens in patients with heart failure, focusing on dose-dependent and time-dependent effects. We conducted a systematic search for randomized controlled trials (RCTs) on n-3 PUFA supplementation in heart failure till 13 September, 2024. The primary outcome was the change in heart function, specifically left ventricular ejection fraction. Secondary outcomes included changes in peak oxygen consumption (VO2), blood B-type natriuretic peptide concentrations, and quality of life. The safety analysis focused on dropout rates (i.e., patients leaving the study for any reason before completion) and all-cause mortality. A frequentist-based NMA was performed. This NMA, which included 14 RCTs with 9075 participants (mean age, 66.0 y; 23.3% female), found that high-dose n-3 PUFA supplementation (2000-4000 mg/d) over a duration of ≥1 y significantly improved left ventricular ejection fraction and peak VO2 compared with those of control groups. Lower doses and shorter treatment periods did not produce the same benefits. No significant differences were found in dropout rates or all-cause mortality between the n-3 PUFAs and control groups. Long-term, high-dose n-3 PUFA supplementation, particularly with a predominance of docosahexaenoic acid or eicosapentaenoic acid, enhances cardiac function in patients with heart failure without increasing risk of adverse events. Further well-designed RCTs with long treatment durations (i.e., >1 y) and stringent heart failure inclusion criteria are necessary to confirm these findings and reduce potential biases. This trial was registered at PROSPERO as CRD42024590476.
Collapse
Affiliation(s)
- Ping-Tao Tseng
- Institute of Precision Medicine, National Sun Yat-sen University, Kaohsiung City, Taiwan; Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan; Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan; Prospect Clinic for Otorhinolaryngology and Neurology, Kaohsiung, Taiwan.
| | - Bing-Yan Zeng
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan; Department of Internal Medicine, E-Da Dachang Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Chih-Wei Hsu
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Sung Liang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, Taipei, Taiwan; School of Medicine, National Defense Medical Center, Taipei, Taiwan; Department of Psychiatry, National Defense Medical Center, Taipei, Taiwan
| | - Brendon Stubbs
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Department of Sport Science, University of Vienna, Wien, Austria
| | - Yen-Wen Chen
- Prospect Clinic for Otorhinolaryngology and Neurology, Kaohsiung, Taiwan
| | - Tien-Yu Chen
- School of Medicine, National Defense Medical Center, Taipei, Taiwan; Department of Psychiatry, Tri-Service General Hospital, Taipei, Taiwan; Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Te Lei
- Section of Immunology, Rheumatology, and Allergy Department of Pediatrics, Hsinchu Mackay Memorial Hospital, Hsinchu City, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Jiann-Jy Chen
- Prospect Clinic for Otorhinolaryngology and Neurology, Kaohsiung, Taiwan; Department of Otorhinolaryngology, E-Da Cancer Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Yow-Ling Shiue
- Institute of Precision Medicine, National Sun Yat-sen University, Kaohsiung City, Taiwan; Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.
| | - Kuan-Pin Su
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; College of Medicine, China Medical University, Taichung, Taiwan; An-Nan Hospital, China Medical University, Tainan, Taiwan
| |
Collapse
|
2
|
Benkhoff M, Polzin A. Lipoprotection in cardiovascular diseases. Pharmacol Ther 2024; 264:108747. [PMID: 39491757 DOI: 10.1016/j.pharmthera.2024.108747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/14/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Cardioprotection is a well-established term in the scientific world. It describes the protection of various mediators on the cardiovascular system. These protective effects can also be provided by certain lipids. Since lipids are a very specific and clearly definable class of substances, we define the term lipoprotection as lipid-mediated cardioprotection. In this review, we highlight high-density lipoprotein (HDL), sphingosine-1-phosphate (S1P) and omega-3 polyunsaturated fatty acids (n-3 PUFA) as the most important lipoprotective mediators and show their beneficial impact on coronary artery disease (CAD), acute myocardial infarction (AMI) and heart failure (HF).
Collapse
Affiliation(s)
- Marcel Benkhoff
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Amin Polzin
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Düsseldorf, Germany.
| |
Collapse
|
3
|
Kelling M, Dimza M, Bartlett A, Traktuev DO, Duarte JD, Keeley EC. Omega-3 fatty acids in the treatment of heart failure. Curr Probl Cardiol 2024; 49:102730. [PMID: 38950721 DOI: 10.1016/j.cpcardiol.2024.102730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024]
Abstract
Omega-3 polyunsaturated fatty acids (Ω-3 PUFAs) have garnered increased attention as a therapeutic option in cardiovascular disease. Most of the research to date has focused on their lipid altering effects and clinical benefits in patients with coronary artery disease, however, there are data supporting their use in the treatment of heart failure. We review the mechanisms through which Ω-3 PUFAs exert their positive effects on the cardiovascular system and highlight the observational and treatment studies that assessed their effects in patients with heart failure.
Collapse
Affiliation(s)
- Matthew Kelling
- Department of Medicine, University of Florida, Gainesville, Florida; Division of Cardiovascular Medicine, University of Florida, Gainesville, Florida
| | - Michelle Dimza
- Department of Medicine, University of Florida, Gainesville, Florida; Division of Cardiovascular Medicine, University of Florida, Gainesville, Florida
| | - Alec Bartlett
- Department of Medicine, University of Arizona, Phoenix, Arizona, United States
| | - Dmitry O Traktuev
- Department of Medicine, University of Florida, Gainesville, Florida; Division of Pulmonary, Critical care and Sleep Medicine, University of Florida
| | - Julio D Duarte
- Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, Florida
| | - Ellen C Keeley
- Department of Medicine, University of Florida, Gainesville, Florida; Division of Cardiovascular Medicine, University of Florida, Gainesville, Florida.
| |
Collapse
|
4
|
Lv L, Guo Y, Zheng Z, Li B. Blood metabolites mediate effects of breakfast skipping on heart failure via Mendelian randomization analysis. Sci Rep 2024; 14:18957. [PMID: 39147796 PMCID: PMC11327247 DOI: 10.1038/s41598-024-69874-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024] Open
Abstract
Numerous observational studies have suggested a potential causal relationship between skipping breakfast and cardiovascular diseases, including heart failure (HF). However, these studies are susceptible to inherent confounders and the challenge of reverse causation, and the underlying metabolic factors are not yet clear. Therefore, our aim is to assess the causal impact of breakfast skipping on HF and the role of potential mediating metabolic products from a genetic perspective, by conducting Mendelian Randomization (MR) studies and mediation analysis. We leveraged summary data from the most extensive genome-wide association studies to date on breakfast skipping (with 193,860 participants), blood metabolites (with 118,461 participants), and HF (involving 47,309 cases and 930,014 controls). To explore the causal relationship between breakfast skipping and HF, as well as the role of 249 potential blood metabolite mediators, we conducted bidirectional MR and mediation MR analyses. We primarily employed the Inverse Variance Weighted (IVW) method, complemented by various other techniques to ensure the comprehensiveness and reliability of our analysis. Our research confirms a causal association between breakfast skipping and an increased risk of HF (odds ratio [OR]: 1.378, 95% confidence interval [CI]: 1.047-1.813; p = 0.022). Furthermore, our research findings demonstrate that breakfast skipping is positively correlated with 6 blood metabolites and negatively correlated with 2 others. Notably, our mediation MR analysis further reveals that three blood metabolites act as mediators in the relationship between breakfast skipping and the risk of HF. Specifically, the mediating effects are attributed to the ratio of docosahexaenoic acid (DHA) to total fatty acids (proportion mediated = 9.41%, 95% CI: 2.10-28.61%), glucose (proportion mediated = 6.17%, 95% CI: 0.97-28.53%), and glycoprotein acetyls (GlycA) (proportion mediated = 5.68%, 95% CI: 0.94-21.62%). The combined mediating effects of these three factors total 20.53% (95%CI: 8.59-91.06%). Our research confirms the causal relationship between genetically instrumented breakfast skipping and HF, underscoring the potential mediating roles played by three key blood metabolites: ratio of DHA to total fatty acids, glucose and GlycA. This discovery offers valuable perspectives for clinical strategies targeting HF.
Collapse
Affiliation(s)
- Luo Lv
- Department of Cardiology, The Second Hospital of Shanxi Medical University, School of Medicine, Shanxi Medical University, Taiyuan, China
| | - Yuli Guo
- Department of Cardiology, The Frist Hospital of Shanxi Medical University, School of Medicine, Shanxi Medical University, Taiyuan, China
| | - Zhongyi Zheng
- Department of Urology, The First Hospital of Shanxi Medical University, School of Medicine, Shanxi Medical University, Taiyuan, China
| | - Bao Li
- Department of Cardiology, The Second Hospital of Shanxi Medical University, School of Medicine, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
5
|
Seth J, Sharma S, Leong CJ, Rabkin SW. Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) Ameliorate Heart Failure through Reductions in Oxidative Stress: A Systematic Review and Meta-Analysis. Antioxidants (Basel) 2024; 13:955. [PMID: 39199201 PMCID: PMC11351866 DOI: 10.3390/antiox13080955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 09/01/2024] Open
Abstract
The objectives of this study were to explore the role that eicosapentaenoic acid (EPA) and/or docosahexaenoic acid (DHA) plays in heart failure (HF), highlighting the potential connection to oxidative stress pathways. Following PRISMA guidelines, we conducted electronic searches of the literature in MEDLINE and EMBASE focusing on serum EPA and/or DHA and EPA and/or DHA supplementation in adult patients with heart failure or who had heart failure as an outcome of this study. We screened 254 studies, encompassing RCTs, observational studies, and cohort studies that examined HF outcomes in relation to either serum concentrations or dietary supplementation of EPA and/or DHA. The exclusion criteria were pediatric patients, non-HF studies, abstracts, editorials, case reports, and reviews. Eleven studies met our criteria. In meta-analyses, high serum concentrations of DHA were associated with a lower rate of heart failure with a hazard ratio of 0.74 (CI = 0.59-0.94). High serum concentrations of EPA also were associated with an overall reduction in major adverse cardiovascular events with a hazard ratio of 0.60 (CI = 0.46-0.77). EPA and DHA, or n3-PUFA administration, were associated with an increased LVEF with a mean difference of 1.55 (CI = 0.07-3.03)%. A potential explanation for these findings is the ability of EPA and DHA to inhibit pathways by which oxidative stress damages the heart or impairs cardiac systolic or diastolic function producing heart failure. Specifically, EPA may lower oxidative stress within the heart by reducing the concentration of reactive oxygen species (ROS) within cardiac tissue by (i) upregulating nuclear factor erythroid 2-related factor 2 (Nrf2), which increases the expression of antioxidant enzyme activity, including heme oxygenase-1, thioredoxin reductase 1, ferritin light chain, ferritin heavy chain, and manganese superoxide dismutase (SOD), (ii) increasing the expression of copper-zinc superoxide dismutase (MnSOD) and glutathione peroxidase, (iii) targeting Free Fatty Acid Receptor 4 (Ffar4), (iv) upregulating expression of heme-oxygenase-1, (v) lowering arachidonic acid levels, and (vi) inhibiting the RhoA/ROCK signaling pathway. DHA may lower oxidative stress within the heart by (i) reducing levels of mitochondrial-fission-related protein DRP-1(ser-63), (ii) promoting the incorporation of cardiolipin within the mitochondrial membrane, (iii) reducing myocardial fibrosis, which leads to diastolic heart failure, (iv) reducing the expression of genes such as Appa, Myh7, and Agtr1α, and (v) reducing inflammatory cytokines such as IL-6, TNF-α. In conclusion, EPA and/or DHA have the potential to improve heart failure, perhaps mediated by their ability to modulate oxidative stress.
Collapse
Affiliation(s)
- Jayant Seth
- Faculty of Medicine, University of British Columbia, 9th Floor 2775 Laurel St., Vancouver, BC V5Z 1M9, Canada; (J.S.); (S.S.); (C.J.L.)
| | - Sohat Sharma
- Faculty of Medicine, University of British Columbia, 9th Floor 2775 Laurel St., Vancouver, BC V5Z 1M9, Canada; (J.S.); (S.S.); (C.J.L.)
| | - Cameron J. Leong
- Faculty of Medicine, University of British Columbia, 9th Floor 2775 Laurel St., Vancouver, BC V5Z 1M9, Canada; (J.S.); (S.S.); (C.J.L.)
| | - Simon W. Rabkin
- Faculty of Medicine, University of British Columbia, 9th Floor 2775 Laurel St., Vancouver, BC V5Z 1M9, Canada; (J.S.); (S.S.); (C.J.L.)
- Department of Medicine, Division of Cardiology, University of British Columbia, 9th Floor 2775 Laurel St., Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
6
|
Drouard G, Mykkänen J, Heiskanen J, Pohjonen J, Ruohonen S, Pahkala K, Lehtimäki T, Wang X, Ollikainen M, Ripatti S, Pirinen M, Raitakari O, Kaprio J. Exploring machine learning strategies for predicting cardiovascular disease risk factors from multi-omic data. BMC Med Inform Decis Mak 2024; 24:116. [PMID: 38698395 PMCID: PMC11064347 DOI: 10.1186/s12911-024-02521-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/29/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Machine learning (ML) classifiers are increasingly used for predicting cardiovascular disease (CVD) and related risk factors using omics data, although these outcomes often exhibit categorical nature and class imbalances. However, little is known about which ML classifier, omics data, or upstream dimension reduction strategy has the strongest influence on prediction quality in such settings. Our study aimed to illustrate and compare different machine learning strategies to predict CVD risk factors under different scenarios. METHODS We compared the use of six ML classifiers in predicting CVD risk factors using blood-derived metabolomics, epigenetics and transcriptomics data. Upstream omic dimension reduction was performed using either unsupervised or semi-supervised autoencoders, whose downstream ML classifier performance we compared. CVD risk factors included systolic and diastolic blood pressure measurements and ultrasound-based biomarkers of left ventricular diastolic dysfunction (LVDD; E/e' ratio, E/A ratio, LAVI) collected from 1,249 Finnish participants, of which 80% were used for model fitting. We predicted individuals with low, high or average levels of CVD risk factors, the latter class being the most common. We constructed multi-omic predictions using a meta-learner that weighted single-omic predictions. Model performance comparisons were based on the F1 score. Finally, we investigated whether learned omic representations from pre-trained semi-supervised autoencoders could improve outcome prediction in an external cohort using transfer learning. RESULTS Depending on the ML classifier or omic used, the quality of single-omic predictions varied. Multi-omics predictions outperformed single-omics predictions in most cases, particularly in the prediction of individuals with high or low CVD risk factor levels. Semi-supervised autoencoders improved downstream predictions compared to the use of unsupervised autoencoders. In addition, median gains in Area Under the Curve by transfer learning compared to modelling from scratch ranged from 0.09 to 0.14 and 0.07 to 0.11 units for transcriptomic and metabolomic data, respectively. CONCLUSIONS By illustrating the use of different machine learning strategies in different scenarios, our study provides a platform for researchers to evaluate how the choice of omics, ML classifiers, and dimension reduction can influence the quality of CVD risk factor predictions.
Collapse
Affiliation(s)
- Gabin Drouard
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.
| | - Juha Mykkänen
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Jarkko Heiskanen
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Joona Pohjonen
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Saku Ruohonen
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Katja Pahkala
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Paavo Nurmi Centre & Unit for Health and Physical Activity, University of Turku, Turku, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, 33520, Tampere, Finland
| | - Xiaoling Wang
- Georgia Prevention Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Miina Ollikainen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matti Pirinen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Olli Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
7
|
Zhang MJ, Karachenets S, Gyberg DJ, Puccini S, Healy CL, Wu SC, Shearer GC, O’Connell TD. Free fatty acid receptor 4 in cardiac myocytes ameliorates ischemic cardiomyopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589280. [PMID: 38659901 PMCID: PMC11042222 DOI: 10.1101/2024.04.12.589280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Aims Free fatty acid receptor 4 (Ffar4) is a receptor for long-chain fatty acids that attenuates heart failure driven by increased afterload. Recent findings suggest that Ffar4 prevents ischemic injury in brain, liver, and kidney, and therefore, we hypothesized that Ffar4 would also attenuate cardiac ischemic injury. Methods and Results Using a mouse model of ischemia-reperfusion (I/R), we found that mice with systemic deletion of Ffar4 (Ffar4KO) demonstrated impaired recovery of left ventricular systolic function post-I/R with no effect on initial infarct size. To identify potential mechanistic explanations for the cardioprotective effects of Ffar4, we performed bulk RNAseq to compare the transcriptomes from wild-type (WT) and Ffar4KO infarcted myocardium 3-days post-I/R. In the Ffar4KO infarcted myocardium, gene ontology (GO) analyses revealed augmentation of glycosaminoglycan synthesis, neutrophil activation, cadherin binding, extracellular matrix, rho signaling, and oxylipin synthesis, but impaired glycolytic and fatty acid metabolism, cardiac repolarization, and phosphodiesterase activity. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated impaired AMPK signaling and augmented cellular senescence in the Ffar4KO infarcted myocardium. Interestingly, phosphodiesterase 6c (PDE6c), which degrades cGMP, was the most upregulated gene in the Ffar4KO heart. Further, the soluble guanylyl cyclase stimulator, vericiguat, failed to increase cGMP in Ffar4KO cardiac myocytes, suggesting increased phosphodiesterase activity. Finally, cardiac myocyte-specific overexpression of Ffar4 prevented systolic dysfunction post-I/R, defining a cardioprotective role of Ffa4 in cardiac myocytes. Conclusions Our results demonstrate that Ffar4 in cardiac myocytes attenuates systolic dysfunction post-I/R, potentially by attenuating oxidative stress, preserving mitochondrial function, and modulation of cGMP signaling.
Collapse
Affiliation(s)
- Michael J. Zhang
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN
- Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
- Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, MN
| | - Sergey Karachenets
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN
| | - Dylan J. Gyberg
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN
| | - Sara Puccini
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN
| | - Chastity L. Healy
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN
| | - Steven C. Wu
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN
| | - Gregory C. Shearer
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA
| | - Timothy D. O’Connell
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN
- Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, MN
| |
Collapse
|
8
|
Bernhard B, Heydari B, Abdullah S, Francis SA, Lumish H, Wang W, Jerosch-Herold M, Harris WS, Kwong RY. Effect of six month's treatment with omega-3 acid ethyl esters on long-term outcomes after acute myocardial infarction: The OMEGA-REMODEL randomized clinical trial. Int J Cardiol 2024; 399:131698. [PMID: 38184150 DOI: 10.1016/j.ijcard.2023.131698] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/15/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND Omega-3 polyunsaturated fatty acids (O3-FA) have been shown to reduce inflammation and adverse cardiac remodeling after acute myocardial infarction (AMI). However, the impact of O3-FA on long-term clinical outcomes remains uncertain. AIMS To investigate the impact of O3-FA on adverse cardiac events in long-term follow up post AMI in a pilot-study. METHODS Consecutive patients with AMI were randomized 1:1 to receive 6 months of O3-FA (4 g/daily) or placebo in the prospective, multicenter OMEGA-REMODEL trial. Primary endpoint was a composite of major adverse cardiovascular events (MACE) encompassing all-cause death, heart failure hospitalizations, recurrent acute coronary syndrome, and late coronary artery bypass graft (CABG). RESULTS A total of 358 patients (62.8% male; 48.1 ± 16.1 years) were followed for a median of 6.6 (IQR: 5.0-9.1) years. Among those receiving O3-FA (n = 180), MACE occurred in 65 (36.1%) compared to 62 (34.8%) of 178 assigned to placebo. By intention-to-treat analysis, O3-FA treatment assignment did not reduce MACE (HR = 1.014; 95%CI = 0.716-1.436; p = 0.938), or its individual components. However, patients with a positive response to O3-FA treatment (n = 43), defined as an increase in the red blood cell omega-3 index (O3I) ≥5% after 6 months of treatment, had lower annualized MACE rates compared to those without (2.9% (95%CI = 1.2-5.1) vs 7.1% (95%CI = 5.7-8.9); p = 0.001). This treatment benefit persisted after adjustment for baseline characteristics (HRadjusted = 0.460; 95%CI = 0.218-0.970; p = 0.041). CONCLUSION In long-term follow-up of the OMEGA-REMODEL randomized trial, O3-FA did not reduce MACE after AMI by intention to treat principle, however, patients who achieved a ≥ 5% increase of O3I subsequent to treatment had favorable outcomes.
Collapse
Affiliation(s)
- Benedikt Bernhard
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Bobak Heydari
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Stephenson Cardiac Imaging Center, University of Calgary, Calgary, Alberta, Canada
| | - Shuaib Abdullah
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; VA North Texas Medical Center and University of Texas-Southwestern Medical School, Dallas, TX, USA
| | - Sanjeev A Francis
- Department of Cardiovascular Medicine, Maine Medical Center, Portland, USA
| | - Heidi Lumish
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Wei Wang
- Division of Sleep Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Michael Jerosch-Herold
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - William S Harris
- Fatty Acid Research Institute, Sioux Falls, SD 57106, USA; Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA
| | - Raymond Y Kwong
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
9
|
Nomali M, Heidari ME, Ayati A, Tayebi A, Shevchuk O, Mohammadrezaei R, Navid H, Khayyatzadeh SS, Palii S, Valizade Shiran F, Khorasanian AS, Veysi Z, Jamalzehi A, Lesani A, Assari G, Khani S, Hassanpour K, Gerami H. Omega-3 supplementation and outcomes of heart failure: A systematic review of clinical trials. Medicine (Baltimore) 2024; 103:e36804. [PMID: 38241565 PMCID: PMC10798699 DOI: 10.1097/md.0000000000036804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/06/2023] [Indexed: 01/21/2024] Open
Abstract
BACKGROUNDS Omega-3 supplements are endorsed for heart failure (HF) patients to reduce hospitalizations and mortality, offering anti-inflammatory and cardioprotective benefits. METHODS A comprehensive search was conducted in various databases until November 2022. Eligible studies included clinical trials on patients with HF. Data extraction covered study details, omega-3 specifics, outcomes, and limitations. The JADAD scale was used to assess the risk of bias in randomized controlled trials. RESULTS The review process involved 572 records from database searches, resulting in 19 studies after eliminating duplicates and screening. These studies assessed the impact of omega-3 on various clinical outcomes, such as mortality, hospitalization, cardiac function, and quality of life. Studied duration varied from weeks to years. Omega-3 supplementation demonstrated potential benefits such as improved heart function, reduced inflammation, and decreased risk of cardiovascular events. CONCLUSION Omega-3 supplementation could benefit heart disease treatment, potentially reducing therapy duration and improving outcomes. Starting omega-3 supplementation for HF patients seems favorable.
Collapse
Affiliation(s)
- Mahin Nomali
- Department of Epidemiology and Biostatistics, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Aryan Ayati
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Tayebi
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Oksana Shevchuk
- Department of Pharmacology and Clinical Pharmacology, Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Ramin Mohammadrezaei
- Fellowship of Advanced Heart Failure and Transplantation, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Navid
- Fellowship of Advanced Heart Failure and Transplantation, Cardiovascular Research Institute, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayyed Saeid Khayyatzadeh
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, Faculty of Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Svitlana Palii
- Department of Pharmacology and Clinical Pharmacology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | | | - Atie Sadat Khorasanian
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Veysi
- Department of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atena Jamalzehi
- Department of Nutrition, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Azadeh Lesani
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Golnoosh Assari
- Department of Nutrition and Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shiva Khani
- Department of Food and Nutritional Sciences, University of Reading, UK
| | - Kamyab Hassanpour
- School of Medicine, Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hadis Gerami
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Lazzarin T, Martins D, Ballarin RS, Monte MG, Minicucci MF, Polegato BF, Zornoff L. The Role of Omega-3 in Attenuating Cardiac Remodeling and Heart Failure through the Oxidative Stress and Inflammation Pathways. Antioxidants (Basel) 2023; 12:2067. [PMID: 38136187 PMCID: PMC10741242 DOI: 10.3390/antiox12122067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Cardiac remodeling is defined as molecular, cellular, and interstitial changes that manifest clinically as alterations in the size, shape, and function of the heart. Despite the pharmacological approaches, cardiac remodeling-related mortality rates remain high. Therefore, other therapeutic options are being increasingly studied. This review highlights the role of omega-3 as an adjunctive therapy to attenuate cardiac remodeling, with an emphasis on its antioxidant and anti-inflammatory actions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Leonardo Zornoff
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18600-000, Brazil; (T.L.); (D.M.); (R.S.B.); (M.G.M.); (M.F.M.); (B.F.P.)
| |
Collapse
|
11
|
Liu J, Meng Q, Zheng L, Yu P, Hu H, Zhuang R, Ge X, Liu Z, Liang X, Zhou X. Effect of n-3 PUFA on left ventricular remodelling in chronic heart failure: a systematic review and meta-analysis. Br J Nutr 2023; 129:1500-1509. [PMID: 35241186 DOI: 10.1017/s0007114521004979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Accumulating evidence suggests that supplementation of n-3 PUFA was associated with reduction in risk of major cardiovascular events. This meta-analysis was to systematically evaluate whether daily supplementation and accumulated intake of n-3 PUFA are associated with improved left ventricular (LV) remodelling in patients with chronic heart failure (CHF). Articles were obtained from Pubmed, Clinical key and Web of Science from inception to January 1 in 2021, and a total of twelve trials involving 2162 participants were eligible for inclusion. The sources of study heterogeneity were explained by I2 statistic and subgroup analysis. Compared with placebo groups, n-3 PUFA supplementation improved LV ejection fraction (LVEF) (eleven trials, 2112 participants, weighted mean difference (WMD) = 2·52, 95 % CI 1·25, 3·80, I2 = 87·8 %) and decreased LV end systolic volume (five studies, 905 participants, WMD = -3·22, 95 % CI 3·67, -2·77, I2 = 0·0 %) using the continuous variables analysis. Notably, the high accumulated n-3 PUFA dosage groups (≥ 600 g) presented a prominent improvement in LVEF, while the low and middle accumulated dosage (≤ 300 and 300-600 g) showed no effects on LVEF. In addition, n-3 PUFA supplementation decreased the levels of pro-inflammatory mediators including TNF-α, IL-6 (IL-6) and hypersensitive c-reactive protein. Therefore, the present meta-analysis demonstrated that n-3 PUFA consumption was associated with a substantial improvement of LV function and remodelling in patients subjected to CHF. The accumulated dosage of n-3 PUFA intake is vital for its cardiac protective role.
Collapse
Affiliation(s)
- Jing Liu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai200120, People's Republic of China
- Department of Burn & Plastic Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing100045, People's Republic of China
| | - Qingshu Meng
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai200120, People's Republic of China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic Diseases, Tongji University School of Medicine, Shanghai200120, People's Republic of China
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai200120, People's Republic of China
| | - Liang Zheng
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai200120, People's Republic of China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic Diseases, Tongji University School of Medicine, Shanghai200120, People's Republic of China
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai200120, People's Republic of China
| | - Ping Yu
- Department of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai200120, People's Republic of China
| | - Hao Hu
- Department of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai200120, People's Republic of China
| | - Rulin Zhuang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai200120, People's Republic of China
- Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai200120, People's Republic of China
| | - Xinyu Ge
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai200120, People's Republic of China
- Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai200120, People's Republic of China
| | - Zhongmin Liu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai200120, People's Republic of China
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai200120, People's Republic of China
- Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai200120, People's Republic of China
| | - Xiaoting Liang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai200120, People's Republic of China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic Diseases, Tongji University School of Medicine, Shanghai200120, People's Republic of China
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai200120, People's Republic of China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai200120, People's Republic of China
| | - Xiaohui Zhou
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai200120, People's Republic of China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic Diseases, Tongji University School of Medicine, Shanghai200120, People's Republic of China
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai200120, People's Republic of China
| |
Collapse
|
12
|
Are exercise-induced changes of fatty acids associated with cardiac hypertrophy in athletes? A pilot study. BIOMEDICAL HUMAN KINETICS 2021. [DOI: 10.2478/bhk-2021-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Study aim: In this study, we evaluated the effects of acute and chronic exercise on the plasma FAs and their association with cardiac hypertrophy indices.
Material and methods: In this pilot study, 15 sedentary and 15 athlete women underwent acute and long-term water aerobic exercise and their plasma FA levels and a number of electrocardiographic parameters, such as left ventricular end-diastolic diameter index (LVEDDI), left ventricular ejection fraction (LVEF), left ventricular mass index (LVMI), and wall thickness were evaluated before and after the exercise program.
Results: The acute exercise significantly increased palmitic and oleic acid levels in non-athletes and stearic acid in both groups. However, the same type of exercise decreased linoleic acid only in non-athlete women (p < 0.05). The water aerobics training caused a significant decrease in the levels of palmitic, stearic, and arachidonic acid, SFA/UFA, and ω3/ ω6 ratios and also an increase in α-Linolenic acid and MUFA in non-athletes. We found positive and negative correlations between LVEF with ω3 and SFA/UFA ratio in both groups, respectively. In the non-athlete group, the ω3/ω6 ratio showed negative correlations with LVMI and LVEDDI.
Conclusions: The study indicated that the 12-week exercise by sedentary women could make their plasma FAs composition similar to athlete women. Moreover, the plasma FA levels were associated with cardiac hypertrophy indices, showing the importance of FAs in physiological hypertrophy.
Collapse
|
13
|
Omega-3 fatty acid blood levels are inversely associated with cardiometabolic risk factors in HFpEF patients: the Aldo-DHF randomized controlled trial. Clin Res Cardiol 2021; 111:308-321. [PMID: 34453204 PMCID: PMC8873063 DOI: 10.1007/s00392-021-01925-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/16/2021] [Indexed: 12/23/2022]
Abstract
Objectives To evaluate associations of omega-3 fatty acid (O3-FA) blood levels with cardiometabolic risk markers, functional capacity and cardiac function/morphology in patients with heart failure with preserved ejection fraction (HFpEF). Background O3-FA have been linked to reduced risk for HF and associated phenotypic traits in experimental/clinical studies. Methods This is a cross-sectional analysis of data from the Aldo-DHF-RCT. From 422 patients, the omega-3-index (O3I = EPA + DHA) was analyzed at baseline in n = 404 using the HS-Omega-3-Index® methodology. Patient characteristics were; 67 ± 8 years, 53% female, NYHA II/III (87/13%), ejection fraction ≥ 50%, E/e′ 7.1 ± 1.5; median NT-proBNP 158 ng/L (IQR 82–298). Pearson’s correlation coefficient and multiple linear regression analyses, using sex and age as covariates, were used to describe associations of the O3I with metabolic phenotype, functional capacity, echocardiographic markers for LVDF, and neurohumoral activation at baseline/12 months. Results The O3I was below (< 8%), within (8–11%), and higher (> 11%) than the target range in 374 (93%), 29 (7%), and 1 (0.2%) patients, respectively. Mean O3I was 5.7 ± 1.7%. The O3I was inversely associated with HbA1c (r = − 0.139, p = 0.006), triglycerides-to-HDL-C ratio (r = − 0.12, p = 0.017), triglycerides (r = − 0.117, p = 0.02), non-HDL-C (r = − 0.101, p = 0.044), body-mass-index (r = − 0.149, p = 0.003), waist circumference (r = − 0.121, p = 0.015), waist-to-height ratio (r = − 0.141, p = 0.005), and positively associated with submaximal aerobic capacity (r = 0.113, p = 0.023) and LVEF (r = 0.211, p < 0.001) at baseline. Higher O3I at baseline was predictive of submaximal aerobic capacity (β = 15.614, p < 0,001), maximal aerobic capacity (β = 0.399, p = 0.005) and LVEF (β = 0.698, p = 0.007) at 12 months. Conclusions Higher O3I was associated with a more favorable cardiometabolic risk profile and predictive of higher submaximal/maximal aerobic capacity and lower BMI/truncal adiposity in HFpEF patients. Graphic abstract Omega-3 fatty acid blood levels are inversely associated with cardiometabolic risk factors in HFpEF patients. Higher O3I was associated with a more favorable cardiometabolic risk profile and aerobic capacity (left) but did not correlate with echocardiographic markers for left ventricular diastolic function or neurohumoral activation (right). An O3I-driven intervention trial might be warranted to answer the question whether O3-FA in therapeutic doses (with the target O3I 8–11%) impact on echocardiographic markers for left ventricular diastolic function and neurohumoral activation in patients with HFpEF. This figure contains modified images from Servier Medical Art (https://smart.servier.com) licensed by a Creative Commons Attribution 3.0 Unported License. ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s00392-021-01925-9.
Collapse
|
14
|
Oppedisano F, Mollace R, Tavernese A, Gliozzi M, Musolino V, Macrì R, Carresi C, Maiuolo J, Serra M, Cardamone A, Volterrani M, Mollace V. PUFA Supplementation and Heart Failure: Effects on Fibrosis and Cardiac Remodeling. Nutrients 2021; 13:nu13092965. [PMID: 34578843 PMCID: PMC8471017 DOI: 10.3390/nu13092965] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
Heart failure (HF) characterized by cardiac remodeling is a condition in which inflammation and fibrosis play a key role. Dietary supplementation with n-3 polyunsaturated fatty acids (PUFAs) seems to produce good results. In fact, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have anti-inflammatory and antioxidant properties and different cardioprotective mechanisms. In particular, following their interaction with the nuclear factor erythropoietin 2 related factor 2 (NRF2), the free fatty acid receptor 4 (Ffar4) receptor, or the G-protein coupled receptor 120 (GPR120) fibroblast receptors, they inhibit cardiac fibrosis and protect the heart from HF onset. Furthermore, n-3 PUFAs increase the left ventricular ejection fraction (LVEF), reduce global longitudinal deformation, E/e ratio (early ventricular filling and early mitral annulus velocity), soluble interleukin-1 receptor-like 1 (sST2) and high-sensitive C Reactive protein (hsCRP) levels, and increase flow-mediated dilation. Moreover, lower levels of brain natriuretic peptide (BNP) and serum norepinephrine (sNE) are reported and have a positive effect on cardiac hemodynamics. In addition, they reduce cardiac remodeling and inflammation by protecting patients from HF onset after myocardial infarction (MI). The positive effects of PUFA supplementation are associated with treatment duration and a daily dosage of 1–2 g. Therefore, both the European Society of Cardiology (ESC) and the American College of Cardiology/American Heart Association (ACC/AHA) define dietary supplementation with n-3 PUFAs as an effective therapy for reducing the risk of hospitalization and death in HF patients. In this review, we seek to highlight the most recent studies related to the effect of PUFA supplementation in HF. For that purpose, a PubMed literature survey was conducted with a focus on various in vitro and in vivo studies and clinical trials from 2015 to 2021.
Collapse
Affiliation(s)
- Francesca Oppedisano
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (A.T.); (M.G.); (V.M.); (R.M.); (C.C.); (J.M.); (M.S.); (A.C.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
- Correspondence: (F.O.); (V.M.)
| | - Rocco Mollace
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (A.T.); (M.G.); (V.M.); (R.M.); (C.C.); (J.M.); (M.S.); (A.C.)
- Division of Cardiology, University Hospital Policlinico Tor Vergata, 00133 Rome, Italy
- Department of Cardiology, IRCCS San Raffaele Pisana, 00166 Rome, Italy;
| | - Annamaria Tavernese
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (A.T.); (M.G.); (V.M.); (R.M.); (C.C.); (J.M.); (M.S.); (A.C.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Micaela Gliozzi
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (A.T.); (M.G.); (V.M.); (R.M.); (C.C.); (J.M.); (M.S.); (A.C.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Vincenzo Musolino
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (A.T.); (M.G.); (V.M.); (R.M.); (C.C.); (J.M.); (M.S.); (A.C.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Roberta Macrì
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (A.T.); (M.G.); (V.M.); (R.M.); (C.C.); (J.M.); (M.S.); (A.C.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Cristina Carresi
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (A.T.); (M.G.); (V.M.); (R.M.); (C.C.); (J.M.); (M.S.); (A.C.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Jessica Maiuolo
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (A.T.); (M.G.); (V.M.); (R.M.); (C.C.); (J.M.); (M.S.); (A.C.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Maria Serra
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (A.T.); (M.G.); (V.M.); (R.M.); (C.C.); (J.M.); (M.S.); (A.C.)
| | - Antonio Cardamone
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (A.T.); (M.G.); (V.M.); (R.M.); (C.C.); (J.M.); (M.S.); (A.C.)
| | | | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (A.T.); (M.G.); (V.M.); (R.M.); (C.C.); (J.M.); (M.S.); (A.C.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
- Department of Cardiology, IRCCS San Raffaele Pisana, 00166 Rome, Italy;
- Correspondence: (F.O.); (V.M.)
| |
Collapse
|
15
|
Matsuo N, Miyoshi T, Takaishi A, Kishinoue T, Yasuhara K, Tanimoto M, Nakano Y, Onishi N, Ueeda M, Ito H. High Plasma Docosahexaenoic Acid Associated to Better Prognoses of Patients with Acute Decompensated Heart Failure with Preserved Ejection Fraction. Nutrients 2021; 13:nu13020371. [PMID: 33530352 PMCID: PMC7911271 DOI: 10.3390/nu13020371] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/31/2022] Open
Abstract
The clinical relevance of polyunsaturated fatty acids (PUFAs) in heart failure remains unclear. The aim of this study was to investigate the association between PUFA levels and the prognosis of patients with heart failure with preserved ejection fraction (HFpEF). This retrospective study included 140 hospitalized patients with acute decompensated HFpEF (median age 84.0 years, 42.9% men). The patients' nutritional status was assessed, using the geriatric nutritional risk index (GNRI), and their plasma levels of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), arachidonic acid (AA), and dihomo-gamma-linolenic acid (DGLA) were measured before discharge. The primary outcome was all-cause mortality. During a median follow-up of 23.3 months, the primary outcome occurred in 37 patients (26.4%). A Kaplan-Meier analysis showed that lower DHA and DGLA levels, but not EPA or AA levels, were significantly associated with an increase in all-cause death (log-rank; p < 0.001 and p = 0.040, respectively). A multivariate Cox regression analysis also revealed that DHA levels were significantly associated with the incidence of all-cause death (HR: 0.16, 95% CI: 0.06-0.44, p = 0.001), independent of the GNRI. Our results suggest that low plasma DHA levels may be a useful predictor of all-cause mortality and potential therapeutic target in patients with acute decompensated HFpEF.
Collapse
Affiliation(s)
- Naoaki Matsuo
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (N.M.); (H.I.)
| | - Toru Miyoshi
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (N.M.); (H.I.)
- Correspondence: ; Tel.: +81-86-235-7351
| | - Atsushi Takaishi
- Department of Cardiovascular Medicine, Mitoyo General Hospital, Kagawa 769-1601, Japan; (A.T.); (T.K.); (K.Y.); (M.T.); (N.O.)
| | - Takao Kishinoue
- Department of Cardiovascular Medicine, Mitoyo General Hospital, Kagawa 769-1601, Japan; (A.T.); (T.K.); (K.Y.); (M.T.); (N.O.)
| | - Kentaro Yasuhara
- Department of Cardiovascular Medicine, Mitoyo General Hospital, Kagawa 769-1601, Japan; (A.T.); (T.K.); (K.Y.); (M.T.); (N.O.)
| | - Masafumi Tanimoto
- Department of Cardiovascular Medicine, Mitoyo General Hospital, Kagawa 769-1601, Japan; (A.T.); (T.K.); (K.Y.); (M.T.); (N.O.)
| | - Yukari Nakano
- Nakano Cardiovascular Clinic, Kagawa 762-0012, Japan;
| | - Nobuhiko Onishi
- Department of Cardiovascular Medicine, Mitoyo General Hospital, Kagawa 769-1601, Japan; (A.T.); (T.K.); (K.Y.); (M.T.); (N.O.)
| | | | - Hiroshi Ito
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (N.M.); (H.I.)
| |
Collapse
|
16
|
Oppedisano F, Macrì R, Gliozzi M, Musolino V, Carresi C, Maiuolo J, Bosco F, Nucera S, Caterina Zito M, Guarnieri L, Scarano F, Nicita C, Coppoletta AR, Ruga S, Scicchitano M, Mollace R, Palma E, Mollace V. The Anti-Inflammatory and Antioxidant Properties of n-3 PUFAs: Their Role in Cardiovascular Protection. Biomedicines 2020; 8:biomedicines8090306. [PMID: 32854210 PMCID: PMC7554783 DOI: 10.3390/biomedicines8090306] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
Polyunsaturated fatty acids (n-3 PUFAs) are long-chain polyunsaturated fatty acids with 18, 20 or 22 carbon atoms, which have been found able to counteract cardiovascular diseases. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), in particular, have been found to produce both vaso- and cardio-protective response via modulation of membrane phospholipids thereby improving cardiac mitochondrial functions and energy production. However, antioxidant properties of n-3 PUFAs, along with their anti-inflammatory effect in both blood vessels and cardiac cells, seem to exert beneficial effects in cardiovascular impairment. In fact, dietary supplementation with n-3 PUFAs has been demonstrated to reduce oxidative stress-related mitochondrial dysfunction and endothelial cell apoptosis, an effect occurring via an increased activity of endogenous antioxidant enzymes. On the other hand, n-3 PUFAs have been shown to counteract the release of pro-inflammatory cytokines in both vascular tissues and in the myocardium, thereby restoring vascular reactivity and myocardial performance. Here we summarize the molecular mechanisms underlying the anti-oxidant and anti-inflammatory effect of n-3 PUFAs in vascular and cardiac tissues and their implication in the prevention and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Francesca Oppedisano
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Roberta Macrì
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Micaela Gliozzi
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Vincenzo Musolino
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Cristina Carresi
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Jessica Maiuolo
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Francesca Bosco
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Saverio Nucera
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Maria Caterina Zito
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Lorenza Guarnieri
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Federica Scarano
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Caterina Nicita
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Anna Rita Coppoletta
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Stefano Ruga
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Miriam Scicchitano
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Rocco Mollace
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
- Division of Cardiology, University Hospital Policlinico Tor Vergata, 00133 Rome, Italy
| | - Ernesto Palma
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Vincenzo Mollace
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
- IRCCS San Raffaele Pisana, 00163 Roma, Italy
- Correspondence:
| |
Collapse
|
17
|
Nutraceutical support in heart failure: a position paper of the International Lipid Expert Panel (ILEP). Nutr Res Rev 2020; 33:155-179. [PMID: 32172721 DOI: 10.1017/s0954422420000049] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Heart failure (HF) is a complex clinical syndrome that represents a major cause of morbidity and mortality in Western countries. Several nutraceuticals have shown interesting clinical results in HF prevention as well as in the treatment of the early stages of the disease, alone or in combination with pharmacological therapy. The aim of the present expert opinion position paper is to summarise the available clinical evidence on the role of phytochemicals in HF prevention and/or treatment that might be considered in those patients not treated optimally as well as in those with low therapy adherence. The level of evidence and the strength of recommendation of particular HF treatment options were weighed up and graded according to predefined scales. A systematic search strategy was developed to identify trials in PubMed (January 1970 to June 2019). The terms 'nutraceuticals', 'dietary supplements', 'herbal drug' and 'heart failure' or 'left verntricular dysfunction' were used in the literature search. The experts discussed and agreed on the recommendation levels. Available clinical trials reported that the intake of some nutraceuticals (hawthorn, coenzyme Q10, l-carnitine, d-ribose, carnosine, vitamin D, probiotics, n-3 PUFA and beet nitrates) might be associated with improvements in self-perceived quality of life and/or functional parameters such as left ventricular ejection fraction, stroke volume and cardiac output in HF patients, with minimal or no side effects. Those benefits tended to be greater in earlier HF stages. Available clinical evidence supports the usefulness of supplementation with some nutraceuticals to improve HF management in addition to evidence-based pharmacological therapy.
Collapse
|
18
|
Sakamoto A, Saotome M, Iguchi K, Maekawa Y. Marine-Derived Omega-3 Polyunsaturated Fatty Acids and Heart Failure: Current Understanding for Basic to Clinical Relevance. Int J Mol Sci 2019; 20:ijms20164025. [PMID: 31426560 PMCID: PMC6719114 DOI: 10.3390/ijms20164025] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/13/2022] Open
Abstract
Heart failure (HF) is a rapidly growing global public health problem. Since HF results in high mortality and re-hospitalization, new effective treatments are desired. Although it remains controversial, omega 3 polyunsaturated fatty acids (n-3 PUFAs), such as the eicosapentaenoic acid and docosahexaenoic acid, have been widely recognized to have benefits for HF. In a large-scale clinical trial regarding secondary prevention of HF by n-3 PUFA (GISSI-HF trial), the supplementation of n-3 PUFA significantly reduced cardiovascular mortality and hospitalization. Other small clinical studies proposed that n-3 PUFA potentially suppresses the ventricular remodeling and myocardial fibrosis, which thereby improves the ventricular systolic and diastolic function both in ischemic and non-ischemic HF. Basic investigations have further supported our understanding regarding the cardioprotective mechanisms of n-3 PUFA against HF. In these reports, n-3 PUFA has protected hearts through (1) anti-inflammatory effects, (2) intervention of cardiac energy metabolism, (3) modification of cardiac ion channels, (4) improvement of vascular endothelial response, and (5) modulation of autonomic nervous system activity. To clarify the pros and cons of n-3 PUFA on HF, we summarized recent evidence regarding the beneficial effects of n-3 PUFA on HF both from the clinical and basic studies.
Collapse
Affiliation(s)
- Atsushi Sakamoto
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Masao Saotome
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan.
| | - Keisuke Iguchi
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Yuichiro Maekawa
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| |
Collapse
|
19
|
Predicting Risk for Incident Heart Failure With Omega-3 Fatty Acids: From MESA. JACC-HEART FAILURE 2019; 7:651-661. [PMID: 31302044 DOI: 10.1016/j.jchf.2019.03.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The aim of this study was to determine if plasma eicosapentaenoic acid (EPA) abundance (%EPA) is associated with reduced hazard for primary heart failure (HF) events in the MESA (Multi-Ethnic Study of Atherosclerosis) trial. BACKGROUND Clinical trials suggest that omega-3 polyunsaturated fatty acids (ω3 PUFAs) prevent sudden death in coronary heart disease and HF, but this is controversial. In mice, the authors demonstrated that the ω3 PUFA EPA prevents contractile dysfunction and fibrosis in an HF model, but whether this extends to humans is unclear. METHODS In the MESA cohort, the authors tested if plasma phospholipid EPA predicts primary HF incidence, including HF with reduced ejection fraction (EF) (EF <45%) and HF with preserved EF (EF ≥45%) using Cox proportional hazards modeling. RESULTS A total of 6,562 participants 45 to 84 years of age had EPA measured at baseline (1,794 black, 794 Chinese, 1,442 Hispanic, and 2,532 white; 52% women). Over a median follow-up period of 13.0 years, 292 HF events occurred: 128 HF with reduced EF, 110 HF with preserved EF, and 54 with unknown EF status. %EPA in HF-free participants was 0.76% (0.75% to 0.77%) but was lower in participants with HF at 0.69% (0.64% to 0.74%) (p = 0.005). Log %EPA was associated with lower HF incidence (hazard ratio: 0.73 [95% confidence interval: 0.60 to 0.91] per log-unit difference in %EPA; p = 0.001). Adjusting for age, sex, race, body mass index, smoking, diabetes mellitus, blood pressure, lipids and lipid-lowering drugs, albuminuria, and the lead fatty acid for each cluster did not change this relationship. Sensitivity analyses showed no dependence on HF type. CONCLUSIONS Higher plasma EPA was significantly associated with reduced risk for HF, with both reduced and preserved EF. (Multi-Ethnic Study of Atherosclerosis [MESA]; NCT00005487).
Collapse
|
20
|
Oikonomou E, Vogiatzi G, Karlis D, Siasos G, Chrysohoou C, Zografos T, Lazaros G, Tsalamandris S, Mourouzis K, Georgiopoulos G, Toutouza M, Tousoulis D. Effects of omega-3 polyunsaturated fatty acids on fibrosis, endothelial function and myocardial performance, in ischemic heart failure patients. Clin Nutr 2019; 38:1188-1197. [PMID: 29752009 DOI: 10.1016/j.clnu.2018.04.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/11/2018] [Accepted: 04/25/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND & AIMS Polyunsaturated fatty acids (PUFAs) may affect the cardiovascular system with a multiplicity of mechanisms. We assessed the effects of omega-3 PUFAs supplements on inflammation, fibrosis, left ventricle performance and endothelial function of ischemic heart failure (HF) patients. METHODS In this double-blind, placebo controlled, cross-over trial we enrolled 31 patients with ischemic HF, followed by a 6-week wash-out period. Omega-3 PUFAs (2 g daily, 8 weeks) were administered PO in the intervention arm. Left ventricle ejection fraction (EF), global longitudinal strain and the ratio E/e' (early ventricular filling to early mitral annulus velocities)were measured. Endothelial function was evaluated by flow mediated dilation and myocardial fibrosis by soluble ST2. High sensitive C Reactive protein (hsCRP) levels were measured as an inflammatory marker. RESULTS Treatment with omega-3 PUFA, compared to placebo, improved: left ventricle EF (percent increased by 4.7% vs 1.7%); global longitudinal strain (decreased by -10.6% vs -2.3%); the E/e' ratio (decreased by -9.47% vs -2.1%); ST2 levels (decreased by -4.53% vs -2.37%); flow mediated dilation (percent increased by 44% vs. 11% and hsCRP levels (decreased by -6.13% vs 4.35%) (p < 0.05 for all). CONCLUSION Short term treatment with omega-3 PUFAs in subjects with stable ischemic HF improved inflammatory and fibrotic status as well as endothelial function in parallel with systolic and diastolic performance of left ventricle. These findings provide further insights regarding the impact of omega-3 PUFAs administration on left ventricle performance indices, systemic inflammation and fibrosis biomarkers in patients with ischemic HF.
Collapse
Affiliation(s)
- Evangelos Oikonomou
- First Cardiology Clinic, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece.
| | - Georgia Vogiatzi
- First Cardiology Clinic, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Dimitrios Karlis
- First Cardiology Clinic, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Gerasimos Siasos
- First Cardiology Clinic, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece; Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School and Harvard, Boston, MA, USA
| | - Christina Chrysohoou
- First Cardiology Clinic, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Theodoros Zografos
- First Cardiology Clinic, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - George Lazaros
- First Cardiology Clinic, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Sotirios Tsalamandris
- First Cardiology Clinic, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Konstantinos Mourouzis
- First Cardiology Clinic, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Georgios Georgiopoulos
- First Cardiology Clinic, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Marina Toutouza
- First Cardiology Clinic, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Dimitris Tousoulis
- First Cardiology Clinic, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| |
Collapse
|
21
|
Ma H, Chen P, Sang C, Huang D, Geng Q, Wang L. Modulation of apoptosis-related microRNAs following myocardial infarction in fat-1 transgenic mice vs wild-type mice. J Cell Mol Med 2018; 22:5698-5707. [PMID: 30589501 PMCID: PMC6201345 DOI: 10.1111/jcmm.13846] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/15/2018] [Accepted: 07/18/2018] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND microRNAs (miRNAs) post-transcriptionally regulate cardiac repair following myocardial infarction (MI). Omega-3 polyunsaturated fatty acid (ω-3 PUFAs) may support cardiac healing after MI, but the mechanism is unclear. METHODS The fat-1 transgenic mouse expresses a ω-3 fatty acid desaturase which converts ω-6 PUFAs to ω-3 PUFAs in vivo. MI was induced in fat-1 transgenic (n = 30) and wild-type (WT) mice (n = 30) using permanent ligation. Other transgenic and WT mice underwent sham procedure (n = 30 and n = 30, respectively). One week after occlusion, cardiac function was measured by echocardiography and the infarct size was assessed using histology and miRNA microarray profiling. Expression of selected miRNA was confirmed using quantitative real-time PCR. RESULTS One week following MI, the fat-1 transgenic myocardium had better cardiac function, a smaller fibrotic area, and fewer apoptotic cardiomyocytes than WT myocardium. Post-MI profiling showed 33 miRNAs that were significantly up-regulated, and 35 were down-regulated, in fat-1 group compared to the WT group (n = 3 and n = 2 mice, respectively). Among selected apoptosis-associated miRNAs, 9 miRNAs were up-regulated (miR-101a-3p, miR-128-3p,miR-133a-5p,miR-149-5p,miR-192-5p,miR-1a-3p,miR-208a-3p,miR-29c-5p,miR-30c-2-3p), and 3 were down-regulated (miR-210-3p,miR-21a-3p,miR-214-3p) in fat-1 transgenic mice compared with WT mice. Kyoto encyclopaedia of genes and genomes (KEGG) pathway analysis indicated likely roles for these miRNAs in MI. Furthermore, Bcl-2 expression was increased, and caspase-3 decreased, in infarcted fat-1 transgenic mouse hearts compared to WT hearts. CONCLUSIONS ω-3 PUFAs may have a protective effect on cardiomyocytes following MI through their modulation of apoptosis-related miRNAs and target genes.
Collapse
Affiliation(s)
- Huan Ma
- Cardic Rehabilitation DepartmentGuangdong General HospitalGuangdong Cardiovascular InstituteGuangdong Academy of Medical SciencesGuangzhouChina
| | - Peipei Chen
- Intensive Care Research Team of Traditional Chinese Medicine2nd Affiliated Hospital of Guangzhou University of Chinese MedicineGuangdong Provincial Hospital of Chinese MedicineGuangzhouChina
| | - Chuanlan Sang
- Laboratory of Experimental AnimalGuangzhou University of Chinese MedicineGuangzhouChina
| | - Daozheng Huang
- Intensive Care Unit of Guangdong Geriatric InstituteGuangdong General Hospital and Guangdong Academy of Medical SciencesGuangzhouChina
| | - Qingshan Geng
- Guangdong General HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Lei Wang
- Department of Cardiovascular Medicine2nd Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
| |
Collapse
|
22
|
Dietary patterns and components to prevent and treat heart failure: a comprehensive review of human studies. Nutr Res Rev 2018; 32:1-27. [DOI: 10.1017/s0954422418000148] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractGrowing evidence has emerged about the role of dietary patterns and components in heart failure (HF) incidence and severity. The objective here is to provide a comprehensive summary of the current evidence regarding dietary patterns/components and HF. A comprehensive search of online databases was conducted using multiple relevant keywords to identify relevant human studies. The Dietary Approaches to Stop Hypertension (DASH) and Mediterranean diets have consistently been associated with decreased HF incidence and severity. Regarding specific dietary components, fruit, vegetables, legumes and whole grains appear beneficial. Current evidence suggests that red/processed meats, eggs and refined carbohydrates are harmful, while fish, dairy products and poultry remain controversial. However, there is a notable lack of human intervention trials. The existing but limited observational and interventional evidence from human studies suggests that a plant-based dietary pattern high in antioxidants, micronutrients, nitrate and fibre but low in saturated/trans-fat and Na may decrease HF incidence/severity. Potential mechanisms include decreased oxidative stress, homocysteine and inflammation but higher antioxidant defence and NO bioavailability and gut microbiome modulation. Randomised, controlled trials are urgently required.
Collapse
|
23
|
Cardiac function in children with premature ventricular contractions: the effect of omega-3 polyunsaturated fatty acid supplementation. Cardiol Young 2018; 28:949-954. [PMID: 29759092 DOI: 10.1017/s1047951118000574] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Premature ventricular contractions are accepted as benign in structurally normal hearts. However, reversible cardiomyopathy can sometimes develop. Omega-3 polyunsaturated fatty acids have anti-arrhythmic properties in animals and humans.AimWe evaluated left ventricular function in children with premature ventricular contractions with normal cardiac anatomy and assessed the impact of omega-3 fatty acid supplementation on left ventricular function in a prospective trial. METHODS A total of 25 patients with premature ventricular contraction, with more than 2% premature ventricular contractions on 24-hour Holter electrocardiography, and 30 healthy patients were included into study. All patients underwent electrocardiography, left ventricular M-mode echocardiography, and myocardial performance index testing. Patients with premature ventricular contraction were given omega-3 fatty acids at a dose of 1 g/day for 3 months, and control echocardiography and 24-hour Holter electrocardiography were performed. Neither placebo nor omega-3 fatty acids were given to the control group. RESULTS Compared with the values of the control group, the patients with premature ventricular contraction had significantly lower fractional shortening. The myocardial performance index decreased markedly in the patient groups. The mean heart rate and mean premature ventricular contraction percentage of Group 2 significantly decreased in comparison with their baseline values after the omega-3 supplementation. CONCLUSION In conclusion, premature ventricular contractions can lead to systolic cardiac dysfunction in children. Omega-3 supplementation may improve cardiac function in children with premature ventricular contractions. This is the first study conducted in children to investigate the possible role of omega-3 fatty acid supplementation on treatment of premature ventricular contractions.
Collapse
|
24
|
Oikonomou E, Mourouzis K, Fountoulakis P, Papamikroulis GA, Siasos G, Antonopoulos A, Vogiatzi G, Tsalamadris S, Vavuranakis M, Tousoulis D. Interrelationship between diabetes mellitus and heart failure: the role of peroxisome proliferator-activated receptors in left ventricle performance. Heart Fail Rev 2018; 23:389-408. [PMID: 29453696 DOI: 10.1007/s10741-018-9682-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heart failure (HF) is a common cardiac syndrome, whose pathophysiology involves complex mechanisms, some of which remain unknown. Diabetes mellitus (DM) constitutes not only a glucose metabolic disorder accompanied by insulin resistance but also a risk factor for cardiovascular disease and HF. During the last years though emerging data set up, a bidirectional interrelationship between these two entities. In the case of DM impaired calcium homeostasis, free fatty acid metabolism, redox state, and advance glycation end products may accelerate cardiac dysfunction. On the other hand, when HF exists, hypoperfusion of the liver and pancreas, b-blocker and diuretic treatment, and autonomic nervous system dysfunction may cause impairment of glucose metabolism. These molecular pathways may be used as therapeutic targets for novel antidiabetic agents. Peroxisome proliferator-activated receptors (PPARs) not only improve insulin resistance and glucose and lipid metabolism but also manifest a diversity of actions directly or indirectly associated with systolic or diastolic performance of left ventricle and symptoms of HF. Interestingly, they may beneficially affect remodeling of the left ventricle, fibrosis, and diastolic performance but they may cause impaired water handing, sodium retention, and decompensation of HF which should be taken into consideration in the management of patients with DM. In this review article, we present the pathophysiological data linking HF with DM and we focus on the molecular mechanisms of PPARs agonists in left ventricle systolic and diastolic performance providing useful insights in the molecular mechanism of this class of metabolically active regiments.
Collapse
Affiliation(s)
- Evangelos Oikonomou
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece.
| | - Konstantinos Mourouzis
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece
| | - Petros Fountoulakis
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece
| | - Georgios Angelos Papamikroulis
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece
| | - Gerasimos Siasos
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece
| | - Alexis Antonopoulos
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece
| | - Georgia Vogiatzi
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece
| | - Sotiris Tsalamadris
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece
| | - Manolis Vavuranakis
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece
| | - Dimitris Tousoulis
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece
| |
Collapse
|
25
|
Jamieson KL, Endo T, Darwesh AM, Samokhvalov V, Seubert JM. Cytochrome P450-derived eicosanoids and heart function. Pharmacol Ther 2017; 179:47-83. [PMID: 28551025 DOI: 10.1016/j.pharmthera.2017.05.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Luciani M, Del Monte F. Insights from Second-Line Treatments for Idiopathic Dilated Cardiomyopathy. J Cardiovasc Dev Dis 2017; 4:jcdd4030012. [PMID: 29367542 PMCID: PMC5715707 DOI: 10.3390/jcdd4030012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/18/2017] [Accepted: 08/19/2017] [Indexed: 12/20/2022] Open
Abstract
Background: Dilated cardiomyopathy (DCM) is an independent nosographic entity characterized by left ventricular dilatation and contractile dysfunction leading to heart failure (HF). The idiopathic form of DCM (iDCM) occurs in the absence of coronaropathy or other known causes of DCM. Despite being different from other forms of HF for demographic, clinical, and prognostic features, its current pharmacological treatment does not significantly diverge. Methods: In this study we performed a Pubmed library search for placebo-controlled clinical investigations and a post-hoc analysis recruiting iDCM from 1985 to 2016. We searched for second-line pharmacologic treatments to reconsider drugs for iDCM management and pinpoint pathological mechanisms. Results: We found 33 clinical studies recruiting a total of 3392 patients of various durations and sizes, as well as studies that tested different drug classes (statins, pentoxifylline, inotropes). A metanalysis was unfeasible, although a statistical significance for changes upon treatment for molecular results, morphofunctional parameters, and clinical endpoints was reported. Statins appeared to be beneficial in light of their pleiotropic effects; inotropes might be tolerated more for longer times in iDCM compared to ischemic patients. General anti-inflammatory therapies do not significantly improve outcomes. Metabolic and growth modulation remain appealing fields to be investigated. Conclusions: The evaluation of drug effectiveness based on direct clinical benefit is an inductive method providing evidence-based insights. This backward approach sheds light on putative and underestimated pathologic mechanisms and thus therapeutic targets for iDCM management.
Collapse
Affiliation(s)
- Marco Luciani
- Department of Cardiovascular Sciences, Università Cattolica del Sacro Cuore, Largo A. Gemelli, 8, 00168 Rome, Italy.
| | - Federica Del Monte
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
27
|
Silva PSD, Mediano MFF, Silva GMSD, Brito PDD, Cardoso CSDA, Almeida CFD, Sangenis LHC, Pinheiro RO, Hasslocher-Moreno AM, Brasil PEAAD, Sousa ASD. Omega-3 supplementation on inflammatory markers in patients with chronic Chagas cardiomyopathy: a randomized clinical study. Nutr J 2017; 16:36. [PMID: 28599665 PMCID: PMC5466785 DOI: 10.1186/s12937-017-0259-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/05/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Several studies have been focusing on the effect of omega-3 polyunsaturated fatty acids on modulation of inflammatory markers in several cardiopathies. Although immunoregulatory dysfunction has been associated to the chronic cardiac involvement in Chagas disease, there is no study examining the effects of omega-3 supplementation in these patients. We investigated the effects of omega-3 PUFAs on markers of inflammation and lipid profile in chronic Chagas cardiomyopathy patients. METHODS The present study was a single-center double-blind clinical trial including patients with chronic Chagas cardiomyopathy. Patients were randomly assigned to receive omega-3 PUFAs capsules (1.8g EPA and 1.2g DHA) or placebo (corn oil) during an 8-week period. Cytokines, fasting glucose, lipid, and anthropometric profiles were evaluated. RESULTS Forty-two patients (23 women and 19 men) were included in the study and there were only two losses to follow-up during the 8-week period. Most of sociodemographic and clinical characteristics were similar between the groups at baseline, except for the cytokines IL-1β, IL-6, IL-8, IL-10, IL-17α, and IFNγ. The omega-3 PUFAs group demonstrated greater improvements in serum triglycerides (-21.1 vs. -4.1; p = 0.05) and IL-10 levels (-10.6 vs. -35.7; p = 0.01) in comparison to controls after 8 weeks of intervention. No further differences were observed between groups. CONCLUSION Omega-3 PUFAs supplementation may favorably affect lipid and inflammatory profile in chronic Chagas cardiomyopathy patients, demonstrated by a decrease in triglycerides and improvements on IL-10 concentration. Further studies examining the clinical effects of omega-3 fatty acids supplementation in chronic Chagas cardiomyopathy are necessary. TRIAL REGISTRATION NCT01863576.
Collapse
Affiliation(s)
- Paula Simplício da Silva
- Serviço de Nutrição, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Av. Brasil 4365, Manguinhos, Rio de Janeiro, Brazil.
| | - Mauro Felippe Felix Mediano
- Laboratório de Pesquisa Clínica em Doença de Chagas, Instituto de Pesquisa Clínica Evandro Chagas, Fundação Oswaldo Cruz, Av. Brasil 4365, Manguinhos, Rio de Janeiro, Brazil
| | - Gilberto Marcelo Sperandio da Silva
- Laboratório de Pesquisa Clínica em Doença de Chagas, Instituto de Pesquisa Clínica Evandro Chagas, Fundação Oswaldo Cruz, Av. Brasil 4365, Manguinhos, Rio de Janeiro, Brazil
| | - Patricia Dias de Brito
- Serviço de Nutrição, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Av. Brasil 4365, Manguinhos, Rio de Janeiro, Brazil
| | - Claudia Santos de Aguiar Cardoso
- Serviço de Nutrição, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Av. Brasil 4365, Manguinhos, Rio de Janeiro, Brazil
| | - Cristiane Fonseca de Almeida
- Serviço de Nutrição, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Av. Brasil 4365, Manguinhos, Rio de Janeiro, Brazil
| | - Luiz Henrique Conde Sangenis
- Laboratório de Pesquisa Clínica em Doença de Chagas, Instituto de Pesquisa Clínica Evandro Chagas, Fundação Oswaldo Cruz, Av. Brasil 4365, Manguinhos, Rio de Janeiro, Brazil
| | - Roberta Olmo Pinheiro
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, Manguinhos, Rio de Janeiro, Brazil
| | - Alejandro Marcel Hasslocher-Moreno
- Laboratório de Pesquisa Clínica em Doença de Chagas, Instituto de Pesquisa Clínica Evandro Chagas, Fundação Oswaldo Cruz, Av. Brasil 4365, Manguinhos, Rio de Janeiro, Brazil
| | | | - Andrea Silvestre de Sousa
- Laboratório de Pesquisa Clínica em Doença de Chagas, Instituto de Pesquisa Clínica Evandro Chagas, Fundação Oswaldo Cruz, Av. Brasil 4365, Manguinhos, Rio de Janeiro, Brazil
| |
Collapse
|
28
|
Roy J, Fauconnier J, Oger C, Farah C, Angebault-Prouteau C, Thireau J, Bideaux P, Scheuermann V, Bultel-Poncé V, Demion M, Galano JM, Durand T, Lee JCY, Le Guennec JY. Non-enzymatic oxidized metabolite of DHA, 4(RS)-4-F 4t-neuroprostane protects the heart against reperfusion injury. Free Radic Biol Med 2017; 102:229-239. [PMID: 27932075 DOI: 10.1016/j.freeradbiomed.2016.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 11/28/2016] [Accepted: 12/04/2016] [Indexed: 10/20/2022]
Abstract
Acute myocardial infarction leads to an increase in oxidative stress and lipid peroxidation. 4(RS)-4-F4t-Neuroprostane (4-F4t-NeuroP) is a mediator produced by non-enzymatic free radical peroxidation of the cardioprotective polyunsaturated fatty acid, docosahexaenoic acid (DHA). In this study, we investigated whether intra-cardiac delivery of 4-F4t-NeuroP (0.03mg/kg) prior to occlusion (ischemia) prevents and protects rat myocardium from reperfusion damages. Using a rat model of ischemic-reperfusion (I/R), we showed that intra-cardiac infusion of 4-F4t-NeuroP significantly decreased infarct size following reperfusion (-27%) and also reduced ventricular arrhythmia score considerably during reperfusion (-41%). Most notably, 4-F4t-NeuroP decreased ventricular tachycardia and post-reperfusion lengthening of QT interval. The evaluation of the mitochondrial homeostasis indicates a limitation of mitochondrial swelling in response to Ca2+ by decreasing the mitochondrial permeability transition pore opening and increasing mitochondria membrane potential. On the other hand, mitochondrial respiration measured by oxygraphy, and mitochondrial ROS production measured with MitoSox red® were unchanged. We found decreased cytochrome c release and caspase 3 activity, indicating that 4-F4t-NeuroP prevented reperfusion damages and reduced apoptosis. In conclusion, 4-F4t-NeuroP derived from DHA was able to protect I/R cardiac injuries by regulating the mitochondrial homeostasis.
Collapse
Affiliation(s)
- Jérôme Roy
- Inserm U1046 - UMR CNRS 9214 PHYMEDEX, Université de Montpellier, Montpellier, France.
| | - Jérémy Fauconnier
- Inserm U1046 - UMR CNRS 9214 PHYMEDEX, Université de Montpellier, Montpellier, France
| | - Camille Oger
- IBMM, CNRS UMR 5247, Université de Montpellier, ENSCM, Montpellier, France
| | - Charlotte Farah
- Inserm U1046 - UMR CNRS 9214 PHYMEDEX, Université de Montpellier, Montpellier, France
| | | | - Jérôme Thireau
- Inserm U1046 - UMR CNRS 9214 PHYMEDEX, Université de Montpellier, Montpellier, France
| | - Patrice Bideaux
- Inserm U1046 - UMR CNRS 9214 PHYMEDEX, Université de Montpellier, Montpellier, France
| | - Valérie Scheuermann
- Inserm U1046 - UMR CNRS 9214 PHYMEDEX, Université de Montpellier, Montpellier, France
| | | | - Marie Demion
- Inserm U1046 - UMR CNRS 9214 PHYMEDEX, Université de Montpellier, Montpellier, France
| | - Jean-Marie Galano
- IBMM, CNRS UMR 5247, Université de Montpellier, ENSCM, Montpellier, France
| | - Thierry Durand
- IBMM, CNRS UMR 5247, Université de Montpellier, ENSCM, Montpellier, France
| | | | - Jean-Yves Le Guennec
- Inserm U1046 - UMR CNRS 9214 PHYMEDEX, Université de Montpellier, Montpellier, France
| |
Collapse
|
29
|
The Role of Omega-3 Polyunsaturated Fatty Acids in Heart Failure: A Meta-Analysis of Randomised Controlled Trials. Nutrients 2016; 9:nu9010018. [PMID: 28042816 PMCID: PMC5295062 DOI: 10.3390/nu9010018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 12/19/2022] Open
Abstract
Many new clinical trials about the effect of omega-3 polyunsaturated fatty acids (PUFAs) in heart failure (HF) patients have shown inconsistent results. Therefore, a meta-analysis of randomised controlled trials (RCTs) was performed to determine the benefits of omega-3 PUFAs in HF patients. Articles were obtained from PubMed, EMBASE, and the Cochrane Library. RCTs comparing omega-3 PUFAs with placebo for HF were included. Two reviewers independently extracted the data from the selected publications. The I² statistic was used to assess heterogeneity. The pooled mean difference and associated 95% confidence intervals were calculated, and a fixed or random-effects model was used for the meta-analysis. A total of nine RCTs involving 800 patients were eligible for inclusion. Compared with patients taking placebo, HF patients who received omega-3 PUFAs experienced decreased brain natriuretic peptide levels and serum norepinephrine levels. Although the left ventricular ejection fraction (LVEF) and clinical outcomes (Tei index, peak oxygen consumption) did not improve, subgroup analysis showed that the LVEF increased in dilated cardiomyopathy (DCM) patients. Overall, omega-3 PUFA supplements might be beneficial in HF patients, especially in DCM patients, but further studies are needed to confirm these benefits.
Collapse
|
30
|
O'Connell TD, Block RC, Huang SP, Shearer GC. ω3-Polyunsaturated fatty acids for heart failure: Effects of dose on efficacy and novel signaling through free fatty acid receptor 4. J Mol Cell Cardiol 2016; 103:74-92. [PMID: 27986444 DOI: 10.1016/j.yjmcc.2016.12.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/22/2016] [Accepted: 12/09/2016] [Indexed: 12/28/2022]
Abstract
Heart failure (HF) affects 5.7 million in the U.S., and despite well-established pharmacologic therapy, the 5-year mortality rate remains near 50%. Furthermore, the mortality rate for HF has not declined in years, highlighting the need for new therapeutic options. Omega-3 polyunsaturated fatty acids (ω3-PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are important regulators of cardiovascular health. However, questions of efficacy and mechanism of action have made the use of ω3-PUFAs in all cardiovascular disease (CVD) controversial. Here, we review recent studies in animal models of HF indicating that ω3-PUFAs, particularly EPA, are cardioprotective, with the results indicating a threshold for efficacy. We also examine clinical studies suggesting that ω3-PUFAs improve outcomes in patients with HF. Due to the relatively small number of clinical studies of ω3-PUFAs in HF, we discuss EPA concentration-dependency on outcomes in clinical trials of CVD to gain insight into the perceived questionable efficacy of ω3-PUFAs clinically, with the results again indicating a threshold for efficacy. Ultimately, we suggest that the main failing of ω3-PUFAs in clinical trials might be a failure to reach a therapeutically effective concentration. We also examine mechanistic studies suggesting that ω3-PUFAs signal through free fatty acid receptor 4 (Ffar4), a G-protein coupled receptor (GPR) for long-chain fatty acids (FA), thereby identifying an entirely novel mechanism of action for ω3-PUFA mediated cardioprotection. Finally, based on mechanistic animal studies suggesting that EPA prevents interstitial fibrosis and diastolic dysfunction, we speculate about a potential benefit for EPA-Ffar4 signaling in heart failure preserved with ejection fraction.
Collapse
Affiliation(s)
- Timothy D O'Connell
- Department of Integrative Biology and Physiology, The University of Minnesota, United States.
| | - Robert C Block
- Department of Public Health Sciences and Cardiology Division, Department of Medicine, University of Rochester, United States
| | - Shue P Huang
- Department of Nutritional Sciences, The Pennsylvania State University, United States
| | - Gregory C Shearer
- Department of Nutritional Sciences, The Pennsylvania State University, United States.
| |
Collapse
|