1
|
Gonzaga BMDS, Nisimura LM, Coelho LL, Ferreira RR, Horita SIM, Beghini DG, Estato V, de Araújo-Jorge TC, Garzoni LR. Unveiling Lovastatin's Anti-Inflammatory Potential in Mouse's Brain during Acute Trypanosoma cruzi Infection. BIOLOGY 2024; 13:301. [PMID: 38785783 PMCID: PMC11118176 DOI: 10.3390/biology13050301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 05/25/2024]
Abstract
Neurological commitment is a neglected manifestation of Chagas disease (CD). Meningoencephalitis mainly affects children and immunosuppressed patients, while stroke can occur with or without cardiac compromise. One of the possible causes of stroke development is microvascular commitment. Our group previously described that experimental Trypanossoma cruzi acute infection leads to cerebral microvasculopathy. This condition is characterized by decreased capillary density, increased leukocyte rolling and adhesion, and endothelial dysfunction. CD was discovered 114 years ago, and until today, only two drugs have been available for clinical treatment: benznidazole and nifurtimox. Both present a high cure rate for the acute phase (80%) and small cure rate for the chronic phase (20%). In addition, the high occurrence of side-effects, without proper medical follow-up, can result in treatment abandonment. Therefore, the search for new therapeutic schemes is necessary. Statins are drugs already used in the clinic that have several pleiotropic effects including endothelial function improvement, anti-inflammatory action, as well as trypanocidal effects, making them a potential alternative treatment for brain microvasculopathy in CD. Here, we investigate the effect of lovastatin (LOV) on brain microvasculopathy and inflammatory parameters. Swiss Webster mice were intraperitoneally inoculated with the Y strain of T. cruzi. Treatment with lovastatin (20 mg/kg/day) was initiated 24 h after the infection and continued for 14 consecutive days. We observed that LOV treatment did not affect parasitemia, brain microcirculation alterations, or the reduction in cerebral blood flow caused by T. cruzi infection. Also, LOV did not prevent the increased number of CD3+ cells and eNOS levels in the T. cruzi-infected brain. No alterations were observed on VCAM-1 and MCP-1 expressions, neither caused by infection nor LOV treatment. However, LOV prevented the increase in F4/80+ cells and ICAM-1 levels in the brain caused by acute infection with T. cruzi. These results suggest an anti-inflammatory activity of LOV, but more studies are needed to elucidate the role of LOV in CD acute infection.
Collapse
Affiliation(s)
- Beatriz Matheus de Souza Gonzaga
- Laboratório de Inovações Em Terapias, Ensino E Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil; (B.M.d.S.G.); (L.M.N.); (L.L.C.); (R.R.F.); (S.I.M.H.); (D.G.B.); (T.C.d.A.-J.)
| | - Líndice Mitie Nisimura
- Laboratório de Inovações Em Terapias, Ensino E Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil; (B.M.d.S.G.); (L.M.N.); (L.L.C.); (R.R.F.); (S.I.M.H.); (D.G.B.); (T.C.d.A.-J.)
| | - Laura Lacerda Coelho
- Laboratório de Inovações Em Terapias, Ensino E Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil; (B.M.d.S.G.); (L.M.N.); (L.L.C.); (R.R.F.); (S.I.M.H.); (D.G.B.); (T.C.d.A.-J.)
| | - Roberto Rodrigues Ferreira
- Laboratório de Inovações Em Terapias, Ensino E Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil; (B.M.d.S.G.); (L.M.N.); (L.L.C.); (R.R.F.); (S.I.M.H.); (D.G.B.); (T.C.d.A.-J.)
- Laboratório de Genômica Aplicada e Bioinovações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil
| | - Samuel Iwao Maia Horita
- Laboratório de Inovações Em Terapias, Ensino E Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil; (B.M.d.S.G.); (L.M.N.); (L.L.C.); (R.R.F.); (S.I.M.H.); (D.G.B.); (T.C.d.A.-J.)
- Laboratório de Pesquisa do Timo, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil
| | - Daniela Gois Beghini
- Laboratório de Inovações Em Terapias, Ensino E Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil; (B.M.d.S.G.); (L.M.N.); (L.L.C.); (R.R.F.); (S.I.M.H.); (D.G.B.); (T.C.d.A.-J.)
| | - Vanessa Estato
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-361, RJ, Brazil;
| | - Tania Cremonini de Araújo-Jorge
- Laboratório de Inovações Em Terapias, Ensino E Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil; (B.M.d.S.G.); (L.M.N.); (L.L.C.); (R.R.F.); (S.I.M.H.); (D.G.B.); (T.C.d.A.-J.)
| | - Luciana Ribeiro Garzoni
- Laboratório de Inovações Em Terapias, Ensino E Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil; (B.M.d.S.G.); (L.M.N.); (L.L.C.); (R.R.F.); (S.I.M.H.); (D.G.B.); (T.C.d.A.-J.)
| |
Collapse
|
2
|
Volpini X, Natali L, Brugo MB, de la Cruz-Thea B, Baigorri RE, Cerbán FM, Fozzatti L, Motran CC, Musri MM. Trypanosoma cruzi Infection Promotes Vascular Remodeling and Coexpression of α-Smooth Muscle Actin and Macrophage Markers in Cells of the Aorta. ACS Infect Dis 2022; 8:2271-2290. [PMID: 36083791 DOI: 10.1021/acsinfecdis.2c00318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Chagas disease is an emerging global health problem; however, it remains neglected. Increased aortic stiffness (IAS), a predictor of cardiovascular events, has recently been reported in asymptomatic chronic Chagas patients. After vascular injury, smooth muscle cells (SMCs) can undergo alterations associated with phenotypic switch and transdifferentiation, promoting vascular remodeling and IAS. By studying different mouse aortic segments, we tested the hypothesis that Trypanosoma cruzi infection promotes vascular remodeling. Interestingly, the thoracic aorta was the most affected by the infection. Decreased expression of SMC markers and increased expression of proliferative markers were observed in the arteries of acutely infected mice. In acutely and chronically infected mice, we observed cells coexpressing SMC and macrophage (Mo) markers in the media and adventitia layers of the aorta, indicating that T. cruzi might induce cellular processes associated with SMC transdifferentiation into Mo-like cells or vice versa. In the adventitia, the Mo cell functional polarization was associated with an M2-like CD206+arginase-1+ phenotype despite the T. cruzi presence in the tissue. Only Mo-like cells in inflammatory foci were CD206+iNOS+. In addition to the disorganization of elastic fibers, we found thickening of the aortic layers during the acute and chronic phases of the disease. Our findings indicate that T. cruzi infection induces a vascular remodeling with SMC dedifferentiation and increased cell populations coexpressing α-SMA and Mo markers that could be associated with IAS promotion. These data highlight the importance of studying large vessel homeostasis in Chagas disease.
Collapse
Affiliation(s)
- Ximena Volpini
- Instituto de Investigaciones Médicas Mercedes y Martín Ferreyra. Consejo Nacional de Investigaciones Científicas y Tecnicas. Universidad Nacional de Córdoba (INIMEC-CONICET-UNC), Friuli 2434. Colinas de Velez Sarfield, Córdoba, PC X5016NST, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología. Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Haya de la Torre y Medina Allende. Ciudad Universitaria, Córdoba, PC X5000HUA, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (FCQ-UNC). Ciudad Universitaria, Córdoba, PC X5000HUA, Argentina
| | - Lautaro Natali
- Instituto de Investigaciones Médicas Mercedes y Martín Ferreyra. Consejo Nacional de Investigaciones Científicas y Tecnicas. Universidad Nacional de Córdoba (INIMEC-CONICET-UNC), Friuli 2434. Colinas de Velez Sarfield, Córdoba, PC X5016NST, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología. Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Haya de la Torre y Medina Allende. Ciudad Universitaria, Córdoba, PC X5000HUA, Argentina
| | - Maria Belén Brugo
- Centro de Investigaciones en Bioquímica Clínica e Inmunología. Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Haya de la Torre y Medina Allende. Ciudad Universitaria, Córdoba, PC X5000HUA, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (FCQ-UNC). Ciudad Universitaria, Córdoba, PC X5000HUA, Argentina
| | - Benjamin de la Cruz-Thea
- Instituto de Investigaciones Médicas Mercedes y Martín Ferreyra. Consejo Nacional de Investigaciones Científicas y Tecnicas. Universidad Nacional de Córdoba (INIMEC-CONICET-UNC), Friuli 2434. Colinas de Velez Sarfield, Córdoba, PC X5016NST, Argentina
| | - Ruth Eliana Baigorri
- Centro de Investigaciones en Bioquímica Clínica e Inmunología. Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Haya de la Torre y Medina Allende. Ciudad Universitaria, Córdoba, PC X5000HUA, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (FCQ-UNC). Ciudad Universitaria, Córdoba, PC X5000HUA, Argentina
| | - Fabio Marcelo Cerbán
- Centro de Investigaciones en Bioquímica Clínica e Inmunología. Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Haya de la Torre y Medina Allende. Ciudad Universitaria, Córdoba, PC X5000HUA, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (FCQ-UNC). Ciudad Universitaria, Córdoba, PC X5000HUA, Argentina
| | - Laura Fozzatti
- Centro de Investigaciones en Bioquímica Clínica e Inmunología. Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Haya de la Torre y Medina Allende. Ciudad Universitaria, Córdoba, PC X5000HUA, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (FCQ-UNC). Ciudad Universitaria, Córdoba, PC X5000HUA, Argentina
| | - Claudia Cristina Motran
- Centro de Investigaciones en Bioquímica Clínica e Inmunología. Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Haya de la Torre y Medina Allende. Ciudad Universitaria, Córdoba, PC X5000HUA, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (FCQ-UNC). Ciudad Universitaria, Córdoba, PC X5000HUA, Argentina
| | - Melina Mara Musri
- Instituto de Investigaciones Médicas Mercedes y Martín Ferreyra. Consejo Nacional de Investigaciones Científicas y Tecnicas. Universidad Nacional de Córdoba (INIMEC-CONICET-UNC), Friuli 2434. Colinas de Velez Sarfield, Córdoba, PC X5016NST, Argentina.,Departamento de Fisiología, Facultad de Ciencias Exactas Físicas y Naturales. Universidad Nacional de Córdoba (FCEFyN-UNC). Av. Velez Sarfield 299, Centro, Córdoba, PC X5000JJC, Argentina
| |
Collapse
|
3
|
Rigazio CS, Mariz-Ponte N, Caballero EP, Penas FN, Goren NB, Santamaría MH, Corral RS. Involvement of glycoinositolphospholipid from Trypanosoma cruzi and macrophage migration inhibitory factor in proinflammatory mechanisms promoting cardiovascular injury mechanisms promoting cardiovascular inflammation tThe combined action of glycoinositolphospholipid from Trypanosoma cruzi and macrophage migration inhibitory factor increases proinflammatory mediator production by cardiomyocytes and vascular endothelial cells. Microb Pathog 2022; 173:105881. [DOI: 10.1016/j.micpath.2022.105881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/14/2022]
|
4
|
Peixoto P, Vieira-Alves I, Couto GK, Lemos VS, Rossoni LV, Bissoli NS, Dos Santos RL. Sex differences in the participation of endothelial mediators and signaling pathways involved in the vasodilator effect of a selective GPER agonist in resistance arteries of gonadectomized Wistar rats. Life Sci 2022; 308:120917. [PMID: 36044974 DOI: 10.1016/j.lfs.2022.120917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/16/2022] [Accepted: 08/24/2022] [Indexed: 11/15/2022]
Abstract
AIM Endothelial mechanisms underlying the vascular effects of estrogen modulated by the G protein-coupled estrogen receptor (GPER) are not well understood, especially in gonadal sex hormone deprivation. Thus, we investigated vascular function and endothelial signaling pathways involved in the selective activation of GPER in resistance arteries of gonadectomized rats. METHODS Gonadectomy was performed in Wistar rats of both sexes. After 21 days, the animals were euthanized. Concentration-response curves were obtained by cumulative additions of G-1 in third-order mesenteric arteries. The vasodilatory effects of G-1 were evaluated before and after endothelium removal or incubation with pharmacological inhibitors. Tissue protein expression was measured by western blotting. Assays with 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF-FM) and 2',7' dichlorodihydrofluorescein-diacetate (DCF-DA) were performed in the arteries investigated. Immunolocalization was assessed by immunofluorescence. RESULTS G-1 induced partially endothelium-dependent relaxation in both sexes. The three isoforms of the enzyme nitric oxide synthase contributed to the production and release of nitric oxide in both gonadectomized groups, but the role of inducible nitric oxide synthase is more expressive in males. The mechanistic pathway by which endothelial nitric oxide synthase is phosphorylated appears to differ between sexes, with the rapid signaling pathway phosphatidylinositol-3-kinase/protein kinase B/endothelial nitric oxide synthase (PI3k-Akt-eNOS) being identified for males and mitogen-activated protein kinase/extracellular signal-regulated kinase/endothelial nitric oxide synthase (MEK-ERK-eNOS) for females. The contribution of hydrogen peroxide as an endothelial relaxation mediator seems to be greater in females. CONCLUSION These results provide new insights into the effects of estrogen-induced responses via GPER on vascular function in gonadal sex hormone deprivation.
Collapse
Affiliation(s)
- Pollyana Peixoto
- Department of Physiological Sciences, Universidade Federal do Espírito Santo, Vitoria, ES, Brazil
| | - Ildernandes Vieira-Alves
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gisele Kruger Couto
- Department of Physiology and Biophysics, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Virgínia Soares Lemos
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Nazaré Souza Bissoli
- Department of Physiological Sciences, Universidade Federal do Espírito Santo, Vitoria, ES, Brazil
| | - Roger Lyrio Dos Santos
- Department of Physiological Sciences, Universidade Federal do Espírito Santo, Vitoria, ES, Brazil.
| |
Collapse
|
5
|
Bąska P, Norbury LJ. The Role of Nuclear Factor Kappa B (NF-κB) in the Immune Response against Parasites. Pathogens 2022; 11:pathogens11030310. [PMID: 35335634 PMCID: PMC8950322 DOI: 10.3390/pathogens11030310] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/17/2022] [Accepted: 02/25/2022] [Indexed: 12/28/2022] Open
Abstract
The immune system consists of various cells, organs, and processes that interact in a sophisticated manner to defend against pathogens. Upon initial exposure to an invader, nonspecific mechanisms are raised through the activation of macrophages, monocytes, basophils, mast cells, eosinophils, innate lymphoid cells, or natural killer cells. During the course of an infection, more specific responses develop (adaptive immune responses) whose hallmarks include the expansion of B and T cells that specifically recognize foreign antigens. Cell to cell communication takes place through physical interactions as well as through the release of mediators (cytokines, chemokines) that modify cell activity and control and regulate the immune response. One regulator of cell states is the transcription factor Nuclear Factor kappa B (NF-κB) which mediates responses to various stimuli and is involved in a variety of processes (cell cycle, development, apoptosis, carcinogenesis, innate and adaptive immune responses). It consists of two protein classes with NF-κB1 (p105/50) and NF-κB2 (p100/52) belonging to class I, and RelA (p65), RelB and c-Rel belonging to class II. The active transcription factor consists of a dimer, usually comprised of both class I and class II proteins conjugated to Inhibitor of κB (IκB). Through various stimuli, IκB is phosphorylated and detached, allowing dimer migration to the nucleus and binding of DNA. NF-κB is crucial in regulating the immune response and maintaining a balance between suppression, effective response, and immunopathologies. Parasites are a diverse group of organisms comprised of three major groups: protozoa, helminths, and ectoparasites. Each group induces distinct effector immune mechanisms and is susceptible to different types of immune responses (Th1, Th2, Th17). This review describes the role of NF-κB and its activity during parasite infections and its contribution to inducing protective responses or immunopathologies.
Collapse
Affiliation(s)
- Piotr Bąska
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-786 Warsaw, Poland
- Correspondence:
| | - Luke J. Norbury
- Department of Biosciences and Food Technology, School of Science, STEM College, RMIT University, Bundoora, VIC 3083, Australia;
| |
Collapse
|
6
|
Delgado NTB, Rouver WDN, Freitas-Lima LC, Vieira-Alves I, Lemos VS, dos Santos RL. Sex Differences in the Vasodilation Mediated by G Protein-Coupled Estrogen Receptor (GPER) in Hypertensive Rats. Front Physiol 2021; 12:659291. [PMID: 34393807 PMCID: PMC8359777 DOI: 10.3389/fphys.2021.659291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The protective effect of estrogen on the vasculature cannot be explained only by its action through the receptors ERα and ERβ. G protein-coupled estrogen receptors (GPER)-which are widely distributed throughout the cardiovascular system-may also be involved in this response. However, little is known about GPER actions in hypertension. Therefore, in this study we evaluated the vascular response mediated by GPER using a specific agonist, G-1, in spontaneously hypertensive rats (SHR). We hypothesized that G-1 would induce a relaxing response in resistance mesenteric arteries from SHR of both sexes. METHODS G-1 concentration-response curves (1 nM-10 μM) were performed in mesenteric arteries from SHR of both sexes (10-12-weeks-old, weighing 180-250 g). The effects of G-1 were evaluated before and after endothelial removal and incubation for 30 min with the inhibitors L-NAME (300 μM) and indomethacin (10 μM) alone or combined with clotrimazole (0.75 μM) or catalase (1,000 units/mL). GPER immunolocalization was also investigated, and vascular hydrogen peroxide (H2O2) and ROS were evaluated using dichlorofluorescein (DCF) and dihydroethidium (DHE) staining, respectively. RESULTS GPER activation promoted a similar relaxing response in resistance mesenteric arteries of female and male hypertensive rats, but with the participation of different endothelial mediators. Males appear to be more dependent on the NO pathway, followed by the H2O2 pathway, and females on the endothelium and H2O2 pathway. CONCLUSION These findings show that the GPER agonist G-1 can induce a relaxing response in mesenteric arteries from hypertensive rats of both sexes in a similar way, albeit with differential participation of endothelial mediators. These results contribute to the understanding of GPER activation on resistance mesenteric arteries in essential hypertension.
Collapse
Affiliation(s)
| | - Wender do Nascimento Rouver
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo, Vitoria, Brazil
| | | | - Ildernandes Vieira-Alves
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Virgínia Soares Lemos
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Roger Lyrio dos Santos
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo, Vitoria, Brazil
| |
Collapse
|
7
|
Varikuti S, Jha BK, Holcomb EA, McDaniel JC, Karpurapu M, Srivastava N, McGwire BS, Satoskar AR, Parinandi NL. The role of vascular endothelium and exosomes in human protozoan parasitic diseases. ACTA ACUST UNITED AC 2020; 4. [PMID: 33089078 PMCID: PMC7575144 DOI: 10.20517/2574-1209.2020.27] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The vascular endothelium is a vital component in maintaining the structure and function of blood vessels. The endothelial cells (ECs) mediate vital regulatory functions such as the proliferation of cells, permeability of various tissue membranes, and exchange of gases, thrombolysis, blood flow, and homeostasis. The vascular endothelium also regulates inflammation and immune cell trafficking, and ECs serve as a replicative niche for many bacterial, viral, and protozoan infectious diseases. Endothelial dysfunction can lead to vasodilation and pro-inflammation, which are the hallmarks of many severe diseases. Exosomes are nanoscale membrane-bound vesicles that emerge from cells and serve as important extracellular components, which facilitate communication between cells and maintain homeostasis during normal and pathophysiological states. Exosomes are also involved in gene transfer, inflammation and antigen presentation, and mediation of the immune response during pathogenic states. Protozoa are a diverse group of unicellular organisms that cause many infectious diseases in humans. In this regard, it is becoming increasingly evident that many protozoan parasites (such as Plasmodium, Trypanosoma, Leishmania, and Toxoplasma) utilize exosomes for the transfer of their virulence factors and effector molecules into the host cells, which manipulate the host gene expression, immune responses, and other biological activities to establish and modulate infection. In this review, we discuss the role of the vascular endothelium and exosomes in and their contribution to pathogenesis in malaria, African sleeping sickness, Chagas disease, and leishmaniasis and toxoplasmosis with an emphasis on their actions on the innate and adaptive immune mechanisms of resistance.
Collapse
Affiliation(s)
- Sanjay Varikuti
- Department of Pathology, The Ohio State University Medical Center, Columbus, OH 43201, USA.,Department of Bioscience & Biotechnology, Banasthali University, Banasthali 304022, India
| | - Bijay Kumar Jha
- Division of Infectious Diseases, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH 43201, USA
| | - Erin A Holcomb
- Department of Pathology, The Ohio State University Medical Center, Columbus, OH 43201, USA
| | - Jodi C McDaniel
- College of Nursing, The Ohio State University, Columbus, OH 43201, USA
| | - Manjula Karpurapu
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH 43201, USA
| | - Nidhi Srivastava
- Department of Bioscience & Biotechnology, Banasthali University, Banasthali 304022, India
| | - Bradford S McGwire
- Division of Infectious Diseases, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH 43201, USA
| | - Abhay R Satoskar
- Department of Pathology, The Ohio State University Medical Center, Columbus, OH 43201, USA
| | - Narasimham L Parinandi
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH 43201, USA
| |
Collapse
|
8
|
Costa ED, Silva JF, Garcia DC, Wainstein AJ, Rezende BA, Tostes RC, Teixeira MM, Cortes SF, Lemos VS. Decreased expression of neuronal nitric oxide synthase contributes to the endothelial dysfunction associated with cigarette smoking in human. Nitric Oxide 2020; 98:20-28. [DOI: 10.1016/j.niox.2020.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 02/01/2020] [Accepted: 02/18/2020] [Indexed: 12/27/2022]
|
9
|
Cunha TRD, Giesen JAS, Rouver WN, Costa ED, Grando MD, Lemos VS, Bendhack LM, Santos RLD. Effects of progesterone treatment on endothelium-dependent coronary relaxation in ovariectomized rats. Life Sci 2020; 247:117391. [PMID: 32017871 DOI: 10.1016/j.lfs.2020.117391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/22/2020] [Accepted: 01/30/2020] [Indexed: 12/24/2022]
Abstract
AIM Although progesterone (P4) has a beneficial effect on the cardiovascular system, P4 actions on the coronary bed have not yet been fully elucidated. This study evaluated the effect of progesterone treatment on endothelium-dependent coronary vascular reactivity in Wistar rats. MAIN METHODS Eight-week-old adult rats were divided into Sham, Ovariectomized (OVX), Ovariectomized and progesterone treated (OVX P4). The OVX P4 group received daily doses of progesterone (2 mg/kg/day). Vascular reactivity was assessed by a modified Langendorff technique. The intensity of eNOS, Akt, and gp91phox protein expression was quantified by Western blotting. Superoxide anion (O2●-) and hydrogen peroxide (H2O2) production was measured by dihydroethidium and 2',7'-dichlorofluorescein, respectively. KEY FINDINGS Treatment with P4 was able to prevent the reduction in baseline coronary perfusion pressure induced by ovariectomy. We observed that endothelium-dependent coronary vasodilation was reduced in the OVX group and potentiated in the OVX P4 group. Following the inhibition of the nitric oxide (NO) pathway, the bradykinin-induced relaxing response was potentiated in the OVX P4 group. With regard to the combined inhibition of NO and prostanoids pathways, the OVX P4 group showed a greater relaxing response, similar to what was found upon individual inhibition of NO. After the combined inhibition of NO, prostanoids and epoxyeicosatrienoic acids' pathways, the vasodilatory response induced by BK was abolished in all groups. SIGNIFICANCE Treatment with P4 prevented oxidative stress induced by ovariectomy. These results suggest that progesterone has a beneficial action on the coronary vascular bed.
Collapse
Affiliation(s)
- Tagana Rosa da Cunha
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | | | - Wender Nascimento Rouver
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | - Eduardo Damasceno Costa
- Department of Physiology and Biophysics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marcella Daruge Grando
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Virgínia Soares Lemos
- Department of Physiology and Biophysics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lusiane Maria Bendhack
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Roger Lyrio Dos Santos
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, Brazil.
| |
Collapse
|
10
|
Abstract
Parasitic infections are responsible for significant morbidity and mortality throughout the world. Management strategies rely primarily on antiparasitic drugs that have side effects and risk of drug resistance. Therefore, novel strategies are needed for treatment of parasitic infections. Host-directed therapy (HDT) is a viable alternative, which targets host pathways responsible for parasite invasion/survival/pathogenicity. Recent innovative combinations of genomics, proteomics and computational biology approaches have led to discovery of several host pathways that could be promising targets for HDT for treating parasitic infections. Herein, we review major advances in HDT for parasitic disease with regard to core regulatory pathways and their interactions.
Collapse
|
11
|
Valbusa F, Angheben A, Mantovani A, Zerbato V, Chiampan A, Bonapace S, Rodari P, Agnoletti D, Arcaro G, Fava C, Bisoffi Z, Targher G. Increased aortic stiffness in adults with chronic indeterminate Chagas disease. PLoS One 2019; 14:e0220689. [PMID: 31374101 PMCID: PMC6677385 DOI: 10.1371/journal.pone.0220689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/22/2019] [Indexed: 11/19/2022] Open
Abstract
An ever-increasing number of patients with chronic indeterminate Chagas disease are diagnosed with early vascular and cardiac abnormalities, as cardiovascular imaging becomes more sensitive. However, the currently available information on aortic stiffness (a prognostic marker for adverse cardiovascular outcomes) in these patients is scarce. In this study, we consecutively recruited 21 asymptomatic Bolivian adult patients with chronic indeterminate Chagas disease and 14 Bolivian adults, who were seronegative for Trypanosoma cruzi infection. No participants had a prior history of heart disease, hypertension, diabetes, chronic kidney disease or atrial fibrillation. Carotid-femoral pulse wave velocity (cf-PWV), carotid-radial PWV (cr-PWV), carotid intima-media thickness and conventional echocardiographic measurements were recorded in all participants. Patients with chronic indeterminate Chagas disease had significantly higher cf-PWV (7.9±1.3 vs. 6.4±1.1 m/s, p = 0.003) and greater HOMA-estimated insulin resistance than subjects without Chagas disease. The two groups did not significantly differ in terms of age, sex, smoking, adiposity measures, blood pressure, plasma lipids, fasting glucose levels as well as cr-PWV, carotid intima-media thickness measurements, left ventricular mass and function. Presence of chronic indeterminate Chagas disease was significantly associated with increasing cf-PWV values (β coefficient: 1.31, 95% coefficient interval 0.44 to 2.18, p = 0.005), even after adjustment for age, sex, heart rate, systolic blood pressure and insulin resistance. In conclusion, asymptomatic Bolivian adult patients with chronic indeterminate Chagas disease have an early and marked increase in aortic stiffness, as measured by cf-PWV, when compared to Bolivian adults who were seronegative for Trypanosoma cruzi infection.
Collapse
Affiliation(s)
- Filippo Valbusa
- Division of Internal Medicine, IRCCS Sacro Cuore – Don Calabria Hospital, Negrar, Verona, Italy
| | - Andrea Angheben
- Department of Infectious and Tropical Diseases, IRCCS Sacro Cuore – Don Calabria Hospital, Negrar, Verona, Italy
| | - Alessandro Mantovani
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Verena Zerbato
- Department of Infectious and Tropical Diseases, IRCCS Sacro Cuore – Don Calabria Hospital, Negrar, Verona, Italy
| | - Andrea Chiampan
- Division of Cardiology, IRCCS Sacro Cuore – Don Calabria Hospital, Negrar, Verona, Italy
| | - Stefano Bonapace
- Division of Cardiology, IRCCS Sacro Cuore – Don Calabria Hospital, Negrar, Verona, Italy
| | - Paola Rodari
- Department of Infectious and Tropical Diseases, IRCCS Sacro Cuore – Don Calabria Hospital, Negrar, Verona, Italy
| | - Davide Agnoletti
- Division of Internal Medicine, IRCCS Sacro Cuore – Don Calabria Hospital, Negrar, Verona, Italy
| | - Guido Arcaro
- Division of Internal Medicine, IRCCS Sacro Cuore – Don Calabria Hospital, Negrar, Verona, Italy
| | - Cristiano Fava
- Section of General Medicine and Hypertension, Department of Medicine, University of Verona, Verona, Italy
| | - Zeno Bisoffi
- Department of Infectious and Tropical Diseases, IRCCS Sacro Cuore – Don Calabria Hospital, Negrar, Verona, Italy
- Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
- * E-mail:
| |
Collapse
|
12
|
ECG Multilead QT Interval Estimation Using Support Vector Machines. JOURNAL OF HEALTHCARE ENGINEERING 2019; 2019:6371871. [PMID: 31178988 PMCID: PMC6501152 DOI: 10.1155/2019/6371871] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/27/2019] [Accepted: 02/12/2019] [Indexed: 01/01/2023]
Abstract
This work reports a multilead QT interval measurement algorithm for a high-resolution digital electrocardiograph. The software enables off-line ECG processing including QRS detection as well as an accurate multilead QT interval detection algorithm using support vector machines (SVMs). Two fiducial points (Qini and Tend) are estimated using the SVM algorithm on each incoming beat. This enables segmentation of the current beat for obtaining the P, QRS, and T waves. The QT interval is estimated by updating the QT interval on each lead, considering shifting techniques with respect to a valid beat template. The validation of the QT interval measurement algorithm is attained using the Physionet PTB diagnostic ECG database showing a percent error of 2.60 ± 2.25 msec with respect to the database annotations. The usefulness of this software tool is also tested by considering the analysis of the ECG signals for a group of 60 patients acquired using our digital electrocardiograph. In this case, the validation is performed by comparing the estimated QT interval with respect to the estimation obtained using the Cardiosoft software providing a percent error of 2.49 ± 1.99 msec.
Collapse
|
13
|
Varikuti S, Jha BK, Volpedo G, Ryan NM, Halsey G, Hamza OM, McGwire BS, Satoskar AR. Host-Directed Drug Therapies for Neglected Tropical Diseases Caused by Protozoan Parasites. Front Microbiol 2018; 9:2655. [PMID: 30555425 PMCID: PMC6284052 DOI: 10.3389/fmicb.2018.02655] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022] Open
Abstract
The neglected tropical diseases (NTDs) caused by protozoan parasites are responsible for significant morbidity and mortality worldwide. Current treatments using anti-parasitic drugs are toxic and prolonged with poor patient compliance. In addition, emergence of drug-resistant parasites is increasing worldwide. Hence, there is a need for safer and better therapeutics for these infections. Host-directed therapy using drugs that target host pathways required for pathogen survival or its clearance is a promising approach for treating infections. This review will give a summary of the current status and advances of host-targeted therapies for treating NTDs caused by protozoa.
Collapse
Affiliation(s)
- Sanjay Varikuti
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Bijay Kumar Jha
- Division of Infectious Diseases, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Greta Volpedo
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States.,Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Nathan M Ryan
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Gregory Halsey
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Omar M Hamza
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Bradford S McGwire
- Division of Infectious Diseases, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Abhay R Satoskar
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States.,Department of Microbiology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
14
|
Discovery of Non-Peptidic Compounds against Chagas Disease Applying Pharmacophore Guided Molecular Modelling Approaches. Molecules 2018; 23:molecules23123054. [PMID: 30469538 PMCID: PMC6321154 DOI: 10.3390/molecules23123054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 01/07/2023] Open
Abstract
Chagas disease is one of the primary causes of heart diseases accounting to 50,000 lives annually and is listed as the neglected tropical disease. Because the currently available therapies have greater toxic effects with higher resistance, there is a dire need to develop new drugs to combat the disease. In this pursuit, the 3D QSAR ligand-pharmacophore (pharm 1) and receptor-based pharmacophore (pharm 2) search was initiated to retrieve the candidate compounds from universal natural compounds database. The validated models were allowed to map the universal natural compounds database. The obtained lead candidates were subjected to molecular docking against cysteine protease (PDB code: 1ME3) employing -Cdocker available on the discovery studio. Subsequently, two Hits have satisfied the selection criteria and were escalated to molecular dynamics simulation and binding free energy calculations. These Hits have demonstrated higher dock scores, displayed interactions with the key residues portraying an ideal binding mode complemented by mapping to all the features of pharm 1 and pharm 2. Additionally, they have rendered stable root mean square deviation (RMSD) and potential energy profiles illuminating their potentiality as the prospective antichagastic agents. The study further demonstrates the mechanism of inhibition by tetrad residues compromising of Gly23 and Asn70 holding the ligand at each ends and the residues Gly65 and Gly160 clamping the Hits at the center. The notable feature is that the Hits lie in close proximity with the residues Glu66 and Leu67, accommodating within the S1, S2 and S3 subsites. Considering these findings, the study suggests that the Hits may be regarded as effective therapeutics against Chagas disease.
Collapse
|
15
|
Peixoto P, da Silva JF, Aires RD, Costa ED, Lemos VS, Bissoli NS, dos Santos RL. Sex difference in GPER expression does not change vascular relaxation or reactive oxygen species generation in rat mesenteric resistance arteries. Life Sci 2018; 211:198-205. [DOI: 10.1016/j.lfs.2018.09.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/29/2018] [Accepted: 09/18/2018] [Indexed: 01/01/2023]
|
16
|
Costa ED, Silva JF, Aires RD, Garcia DC, Kansaon MJ, Wainstein AJ, Rezende BA, Teixeira MM, Silva RF, Cortes SF, Lemos VS. Neuronal nitric oxide synthase contributes to the normalization of blood pressure in medicated hypertensive patients. Nitric Oxide 2018; 80:98-107. [PMID: 30261273 DOI: 10.1016/j.niox.2018.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/06/2018] [Accepted: 09/23/2018] [Indexed: 02/01/2023]
Abstract
Neuronal nitric oxide synthase (nNOS) is expressed in the cardiovascular system and besides NO, generates H2O2. nNOS has been proposed to contribute to the control of blood pressure in healthy humans. The aim of this study was to verify the hypothesis that nNOS can contribute to the control of vascular relaxation and blood pressure in hypertensive patients undergoing drug treatment. The study was conducted in resistance mesenteric arteries from 63 individuals, as follows: 1) normotensive patients; 2) controlled hypertensive patients (patients on antihypertensive treatment with blood pressure normalized); 3) uncontrolled hypertensive patients (patients on antihypertensive treatment that remained hypertensive). Only mesenteric arteries from uncontrolled hypertensive patients showed impaired endothelium-dependent vasorelaxation in response to acetylcholine (ACh). Selective nNOS blockade with inhibitor 1 and catalase, which decomposes H2O2, decreased vasorelaxation in the three groups. However, the inhibitory effect was greater in controlled hypertensive patients. Decreased eNOS expression was detected in both uncontrolled and controlled hypertensive groups. Interestingly nNOS expression and ACh-stimulated H2O2 production were greater in controlled hypertensive patients, than in the other groups. ACh-stimulated NO production was lower in controlled hypertensive when compared to normotensive patients, while uncontrolled hypertensive patients showed the lowest levels. Catalase and nNOS blockade inhibited ACh-induced H2O2 production. In conclusion, nNOS-derived H2O2 contributes to the endothelium-dependent vascular relaxation in human resistance mesenteric arteries. The endothelial dysfunction observed in uncontrolled hypertensive patients involves decreased eNOS expression and NO production. The normalization of vascular relaxation and blood pressure in controlled hypertensive patients involves increased nNOS-derived H2O2 and NO production.
Collapse
Affiliation(s)
- Eduardo D Costa
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Josiane F Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rosária D Aires
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniela C Garcia
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Milhem J Kansaon
- Department of Health Sciences, Post-graduate Institute, Medical Sciences College, Belo Horizonte, Brazil
| | - Alberto J Wainstein
- Department of Health Sciences, Post-graduate Institute, Medical Sciences College, Belo Horizonte, Brazil
| | - Bruno A Rezende
- Department of Health Sciences, Post-graduate Institute, Medical Sciences College, Belo Horizonte, Brazil
| | - Mauro M Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rafaela F Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Steyner F Cortes
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Virginia S Lemos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
17
|
Therapeutic effects of vaccine derived from amastigote surface protein-2 (ASP-2) against Chagas disease in mouse liver. Cytokine 2018; 113:285-290. [PMID: 30037707 DOI: 10.1016/j.cyto.2018.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 12/26/2022]
Abstract
This study investigated the efficacy of the vaccine in liver of mice infected with the Trypanosoma cruzi (T. cruzi) and immunized with AdASP-2. For this purpose, histopathological analysis and gene expression of COX-2, TNF-alpha, TNFR, iNOS, cytochrome C, caspase-3, TLR4, IL-6 and IL10 were evaluated. The following groups were used in this study: Group 1 - Control Group (CTRL) animals received AdβGal vehicle; Group 2 - Infected Group (TC) animals were infected with T. cruzi; Group 3 - Immunized Group (AdASP-2): animals were immunized by AdASP-2 vaccine; Group 4 - Immunized and Infected Group (AdASP-2+TC) animals were infected with T. cruzi and immunized by AdSP-2 vaccine. A significant decrease of amastigote nests was noticed in the group of animals that were immunized with AdASP-2 and infected on the same day. COX-2 and TNF-alpha gene expressions increased in TC group, whereas TNF-alpha decreased in the TC+AdASP-2 group. TNFR expression was high in AdASP-2+TC group. iNOS expression was high for all experimental groups whereas cytochrome C decreased for all experimental groups. Caspase 3 increased in TC and TC+AdASP-2 groups. The gene expression of TLR4 and IL-10 showed an increase in AdASP-2+TC group. Finally, hepatic fibrosis was noticed to TC and AdASP-2 + TC groups. Taken together, our results demonstrated that vaccination with AdASP-2 was effective against the acute phase of experimental Chagas disease as a result of a more powerful and rapid immune response closely related to expression of some inflammatory genes, such as iNOS, TNF-alpha, TLR 4, and IL-10.
Collapse
|
18
|
Hernández M, Wicz S, Santamaría MH, Corral RS. Curcumin exerts anti-inflammatory and vasoprotective effects through amelioration of NFAT-dependent endothelin-1 production in mice with acute Chagas cardiomyopathy. Mem Inst Oswaldo Cruz 2018; 113:e180171. [PMID: 30020318 PMCID: PMC6048587 DOI: 10.1590/0074-02760180171] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/11/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The anti-inflammatory and cardioprotective properties of curcumin (Cur), a natural polyphenolic flavonoid isolated from the rhizomes of Curcuma longa, are increasingly considered to have beneficial effects on the progression of Chagas heart disease, caused by the protozoan parasite Trypanosoma cruzi. OBJECTIVE To evaluate the effects of oral therapy with Cur on T. cruzi-mediated cardiovasculopathy in acutely infected mice and analyse the in vitro response of parasite-infected human microvascular endothelial cells treated with this phytochemical. METHODS Inflammation of heart vessels from Cur-treated and untreated infected mice were analysed by histology, with benznidazole (Bz) as the reference compound. Parasitaemia was monitored by the direct method. Capillary permeability was visualised by Evans-blue assay. Myocardial ET-1, IL-6, and TNF-α mRNA expressions were measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Microvascular endothelial HMEC-1 cells were infected in vitro with or without addition of Cur or Bz. Induction of the Ca2+/NFAT pathway was assessed by fluorometry, immunoblotting, and reporter assay. FINDINGS Oral Cur therapy of recently infected mice reduced inflammatory cell infiltration of myocardial arteries without lowering parasite levels. Compared to that of the phosphate-buffered saline-receiving group, hearts from Cur-treated mice showed significantly decreased vessel inflammation scores (p < 0.001), vascular permeabilities (p < 0.001), and levels of IL-6/TNF-α (p < 0.01) and ET-1 (p < 0.05) mRNA. Moreover, Cur significantly (p < 0.05 for transcript; p < 0.01 for peptide) downregulated ET-1 secretion from infected HMEC-1 cells. Remarkably, Cur addition significantly (p < 0.05 at 27.0 μM) interfered with T. cruzi-dependent activation of the Ca2+/NFATc1 signalling pathway that promotes generation of inflammatory agents in HMEC-1 cells. CONCLUSIONS Oral treatment with Cur dampens cardiovasculopathy in acute Chagas mice. Cur impairs the Ca2+/NFATc1-regulated release of ET-1 from T. cruzi-infected vascular endothelium. These findings identify new perspectives for exploring the potential of Cur-based interventions to ameliorate Chagas heart disease.
Collapse
Affiliation(s)
- Matías Hernández
- Universidad Nacional de San Luis, Facultad de Química, Bioquímica y Farmacia, Laboratorio de Biomedicina Molecular, San Luis, Argentina
| | - Susana Wicz
- Universidad Nacional de San Luis, Facultad de Química, Bioquímica y Farmacia, Laboratorio de Biomedicina Molecular, San Luis, Argentina
| | - Miguel H Santamaría
- Centro de Estudios Metabólicos, Laboratorio de Biología Experimental, Santander, Spain
| | - Ricardo S Corral
- Hospital de Niños Dr Ricardo Gutiérrez, Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas, Servicio de Parasitología-Chagas, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
19
|
Silva JF, Correa IC, Diniz TF, Lima PM, Santos RL, Cortes SF, Coimbra CC, Lemos VS. Obesity, Inflammation, and Exercise Training: Relative Contribution of iNOS and eNOS in the Modulation of Vascular Function in the Mouse Aorta. Front Physiol 2016; 7:386. [PMID: 27656148 PMCID: PMC5013134 DOI: 10.3389/fphys.2016.00386] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/22/2016] [Indexed: 12/27/2022] Open
Abstract
Background: The understanding of obsesity-related vascular dysfunction remains controversial mainly because of the diseases associated with vascular injury. Exercise training is known to prevent vascular dysfunction. Using an obesity model without comorbidities, we aimed at investigating the underlying mechanism of vascular dysfunction and how exercise interferes with this process. Methods: High-sugar diet was used to induce obesity in mice. Exercise training was performed 5 days/week. Body weight, energy intake, and adipose tissues were assessed; blood metabolic and hormonal parameters were determined; and serum TNFα was measured. Blood pressure and heart rate were assessed by plethysmography. Changes in aortic isometric tension were recorded on myograph. Western blot was used to analyze protein expression. Nitric oxide (NO) was evaluated using fluorescence microscopy. Antisense oligodeoxynucleotides were used for inducible nitric oxide synthase isoform (iNOS) knockdown. Results: Body weight, fat mass, total cholesterol, low-density lipoprotein cholesterol fraction, insulin, and leptin were higher in the sedentary obese group (SD) than in the sedentary control animals (SS). Exercise training prevented these changes. No difference in glucose tolerance, insulin sensitivity, blood pressure, and heart rate was found. Decreased vascular relaxation and reduced endothelial nitric oxide synthase (eNOS) functioning in the SD group were prevented by exercise. Contractile response to phenylephrine was decreased in the aortas of the wild SD mice, compared with that of the SS group; however, no alteration was noted in the SD iNOS−/− animals. The decreased contractility was endothelium-dependent, and was reverted by iNOS inhibition or iNOS silencing. The aortas from the SD group showed increased basal NO production, serum TNFα, TNF receptor-1, and phospho-IκB. Exercise training attenuated iNOS-dependent reduction in contractile response in high-sugar diet–fed animals, decreased iNOS expression, and increased eNOS expression. Conclusion: Obesity caused endothelium dysfunction, TNFα, and iNOS pathway up-regulation, decreasing vascular contractility in the obese animals. Exercise training was an effective therapy to control iNOS-dependent NO production and to preserve endothelial function in obese individuals.
Collapse
Affiliation(s)
- Josiane F Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Izabella C Correa
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Thiago F Diniz
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Paulo M Lima
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Roger L Santos
- Department of Physiological Science, Universidade Federal do Espírito Santo Espírito Santo, Brazil
| | - Steyner F Cortes
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Cândido C Coimbra
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Virginia S Lemos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| |
Collapse
|