1
|
Tseng TL, Chen MF, Hsu YH, Lee TJF. OroxylinA reverses lipopolysaccharide-induced adhesion molecule expression and endothelial barrier disruption in the rat aorta. Toxicol Appl Pharmacol 2020; 400:115070. [PMID: 32464219 DOI: 10.1016/j.taap.2020.115070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022]
Abstract
Vascular dysfunction plays a critical role in the pathogenesis of sepsis. We elucidated the mechanisms underlying the amelioration of lipopolysaccharide (LPS)-induced vascular inflammation by oroxylin A (OroA) post-treatment in rats. The animals were intraperitoneally injected with LPS (10 mg/kg) to induce systemic inflammation and intravenously (iv) administered OroA (15 mg/kg) 6 h after the LPS treatment. The assessments included biochemical changes in peripheral blood, vascular reactivity which was evaluated by blood-vessel myography, morphological/histological assessment of inflammation, toll-like receptor (TLR)-4-mediated interleukin-1-receptor-associated-kinase (IRAK)-4 activation, changes in adhesion molecule expression, and endothelial junctional stability in the aorta. LPS significantly enhanced the proinflammatory cytokine release, increased vascular cell adhesion molecule (VCAM)-1 expression, disrupted endothelial tight junction, reduced vascular endothelial barrier stability, and increased macrophage infiltration and accumulation in the aorta. All observed pathological changes and vascular inflammation were significantly reversed by the OroA post-treatment. Importantly, OroA suppressed the increased adhesion molecule expression and the endothelial barrier disruption by inhibiting LPS-activated IRAK-4-targeted inhibitory nuclear factor kappa B kinase (IKK) α/β complex phosphorylation, without directly affecting the interaction between LPS and TLR-4. Moreover, the iNOS activity induced by the LPS challenge was inhibited by the OroA pretreatment of the isolated aortic rings. These results suggest that OroA regulates the vascular tone by inhibiting vascular hyporeactivity caused by NO overproduction and reverses the endothelial barrier dysfunction and inflammation by inhibiting the IRAK-4-mediated IKKα/β phosphorylation. Overall, these findings suggest OroA administration as a potentially useful therapeutic approach for clinical interventions in septic shock.
Collapse
Affiliation(s)
- Tzu-Ling Tseng
- Department of Medical Research, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; CardioVascular Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan,; Tzu Chi University of Science and Technology, Hualien, Taiwan.
| | - Mei-Fang Chen
- Department of Medical Research, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; CardioVascular Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan,; Tzu Chi University of Science and Technology, Hualien, Taiwan.
| | - Yung-Hsiang Hsu
- Department of Pathology, College of Medicine, Tzu Chi University, Hualien, Taiwan.
| | - Tony J F Lee
- Department of Medical Research, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; CardioVascular Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan,; Department of Life Sciences, Tzu Chi University, Hualien, Taiwan; Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|