1
|
Dong X, Li Q, Li R, Li Y, Jin F, Li H, Tu K, Wu G. Inhibition of tRF- 02514 in Extracellular Vesicles Preserves Microglia Pyroptosis and Protects Against Parkinson's Disease. Mol Neurobiol 2025:10.1007/s12035-025-04925-2. [PMID: 40254704 DOI: 10.1007/s12035-025-04925-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 04/05/2025] [Indexed: 04/22/2025]
Abstract
Extracellular vesicles (EVs), ubiquitous in peripheral blood and bodily fluids, are important regulators of neuronal communication, facilitating the intercellular transfer of bioactive molecules crucial for maintaining homeostasis. Uncovering EV-mediated mechanisms is pivotal for Parkinson's disease (PD) therapy. tRNA-derived fragments (tRFs) are a novel class of small non-coding RNAs found in EVs. They are essential for gene regulation, directly binding to target mRNAs to inhibit their translation, and hold promise as innovative therapeutic targets. We isolated EVs from the serum of patients with PD (PD-EVs) and co-cultured them with microglial cells to systematically investigate the modulation of inflammatory mediators and autophagy-related proteins. Small-RNA sequencing was performed to identify significantly differentially expressed target genes in PD-EVs. This analysis led to the identification of tRF-02514, whose associated molecular pathways were found to be involved in pyroptosis. Subsequently, the target genes of tRF-02514 were identified. To validate the findings in a physiological context, in vivo experiments were performed using mice with PD. Behavioral changes in mice were observed before and after the targeted inhibition of tRF-02514. Additionally, the whole brain tissue, substantia nigra, and peripheral blood samples of mice were collected to evaluate the expression of inflammatory factors, autophagy markers, pyroptosis-related proteins, and neuroprotective genes, including brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), which are necessary for defense against neuronal damage. tRF-02514 promoted the release of inflammatory factors, induced pyroptosis in microglia, and accelerated neuronal loss in PD by targeting ATG5 and inhibiting autophagy. Inhibition of tRF-02514 effectively mitigated these detrimental effects, protecting neurons, promoting autophagy, and delaying the progression of PD. These findings offer valuable insights into the role of tRF-02514 in the pathogenesis of PD and highlight its potential as a therapeutic target for PD.
Collapse
Affiliation(s)
- Xiaolin Dong
- Department of Neurology, The Affiliated Yan'an Hospital of Kunming Medical University, No. 245, Renmin East Road, Kunming, Yunnan, China
| | - Qingyun Li
- Department of Neurology, The Affiliated Yan'an Hospital of Kunming Medical University, No. 245, Renmin East Road, Kunming, Yunnan, China
| | - Rui Li
- Department of Neurology, The Affiliated Yan'an Hospital of Kunming Medical University, No. 245, Renmin East Road, Kunming, Yunnan, China
| | - Yanping Li
- Department of Neurology, The Affiliated Yan'an Hospital of Kunming Medical University, No. 245, Renmin East Road, Kunming, Yunnan, China
| | - Furong Jin
- Department of Neurology, The Affiliated Yan'an Hospital of Kunming Medical University, No. 245, Renmin East Road, Kunming, Yunnan, China
| | - Hongmei Li
- Department of Neurology, The Affiliated Yan'an Hospital of Kunming Medical University, No. 245, Renmin East Road, Kunming, Yunnan, China
| | - Kun Tu
- Department of Neurology, The Affiliated Yan'an Hospital of Kunming Medical University, No. 245, Renmin East Road, Kunming, Yunnan, China
| | - Gang Wu
- Department of Neurology, The Affiliated Yan'an Hospital of Kunming Medical University, No. 245, Renmin East Road, Kunming, Yunnan, China.
| |
Collapse
|
2
|
Brancolini A, Vago R. Investigating the Potential of Extracellular Vesicles as Delivery Systems for Chemotherapeutics. Biomedicines 2024; 12:2863. [PMID: 39767769 PMCID: PMC11673336 DOI: 10.3390/biomedicines12122863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Standard chemotherapy is generally considered the best approach to treat many solid cancers, even accounting for severe side effects. Therefore, the development of a drug delivery system for chemotherapeutic administration could significantly improve standard chemotherapy by maintaining the cytotoxic effects of the drugs while decreasing the inherent side effects of the treatment. The aim of our study is the optimization of a loading strategy that conjugates the use of extracellular vesicles (EVs) as drug delivery carriers, by preserving their integrity, with the loading efficiency and activity maintenance of chemotherapeutics. METHODS We compared the EV loading of the chemotherapeutics epirubicin, mitomycin, methotrexate and mitoxantrone by co-incubation. Once loaded, the activity of drug-carrying EVs was tested on cancer cells and compared to that of free chemotherapeutics. RESULTS We defined a linear correlation between chemotherapeutics' concentration and their absorbance at the drug-specific wavelength, which allowed the definition of a highly sensitive absorbance-based spectrophotometric quantification system, enabling the assessment of drug loading efficiency. Co-incubation of EVs and chemotherapeutics was sufficient to obtain quantifiable drug loading, and the efficacy of EV loading was drug-dependent. Epirubicin-loaded vesicles showed increased toxicity to bladder cancer cells with respect to the free chemotherapeutic. The cytotoxicity was maintained even upon 6-month storage at -80 °C of loaded EVs. CONCLUSION We established an absorbance-based spectrophotometric quantification system that enables a straightforward measure of drug loading efficiency into EVs, and we demonstrated that chemotherapeutic-carrying EVs can be obtained by co-incubation, preserving and increasing drug cytotoxicity.
Collapse
Affiliation(s)
- Alessia Brancolini
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, 20132 Milano, Italy
| | - Riccardo Vago
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, 20132 Milano, Italy
- Urological Research Institute, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy
| |
Collapse
|
3
|
Yan H, Ding H, Xie RX, Liu ZQ, Yang XQ, Xie LL, Liu CX, Liu XD, Chen LY, Huang XP. Research progress of exosomes from different sources in myocardial ischemia. Front Cardiovasc Med 2024; 11:1436764. [PMID: 39350967 PMCID: PMC11440518 DOI: 10.3389/fcvm.2024.1436764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/16/2024] [Indexed: 10/04/2024] Open
Abstract
Ischemic heart disease refers to the imbalance between the supply and demand of myocardial blood; it has various causes and results in a class of clinical diseases characterized by myocardial ischemia (MI). In recent years, the incidence of cardiovascular disease has become higher and higher, and the number of patients with ischemic heart disease has also increased year by year. Traditional treatment methods include drug therapy and surgical treatment, both of which have limitations. The former maybe develop risks of drug resistance and has more significant side effects, while the latter may damage blood vessels and risk infection. At this stage, a new cell-free treatment method needs to be explored. Many research results have shown that exosomes from different cell sources can protect the ischemic myocardium via intercellular action methods, such as promoting angiogenesis, inhibiting myocardial fibrosis, apoptosis and pyroptosis, and providing a new basis for the treatment of MI. In this review, we briefly introduce the formation and consequences of myocardial ischemia and the biology of exosomes, and then focus on the role and mechanism of exosomes from different sources in MI. We also discuss the role and mechanism of exosomes pretreated with Chinese and Western medicines on myocardial ischemia. We also discuss the potential of exosomes as diagnostic markers and therapeutic drug for MI.
Collapse
Affiliation(s)
- Huan Yan
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Huang Ding
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Ruo-Xi Xie
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Zhi-Qing Liu
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Xiao-Qian Yang
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Ling-Li Xie
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Cai-Xia Liu
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Xiao-Dan Liu
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Li-Yuan Chen
- Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Xiao-Ping Huang
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
4
|
An H, Ma H, Wu C, Cui C, Wu L, Zhao W, Cui B, Li S, Wu D, Hu W, Ji X. Remote ischemic conditioning improves cerebral hemodynamics in symptomatic intracranial atherosclerosis: A PET/CT-guided randomized controlled study. J Neurosci Res 2024; 102:e25324. [PMID: 38515341 DOI: 10.1002/jnr.25324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/26/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Abstract
Patients with symptomatic intracranial arterial stenosis (sICAS) suffer embarrassed hemodynamic status and acute ischemic stroke (AIS) recurrence. We aimed to assess the efficacy of remote ischemic conditioning (RIC) on improving this status by evaluating cerebral blood flow (CBF) and cerebral glucose metabolism (CGM) via PET/CT. Adult patients with unilateral sICAS in middle cerebral artery and/or intracranial segment of internal carotid artery-related AIS or transient ischemic attack within 6 months prior to randomization were enrolled. Individuals who received intravenous thrombolysis or endovascular treatment, or sICAS caused by cardiac embolism, small vessel occlusion, or other determined causes were excluded. Twenty-three eligible patients were randomly assigned to standard medical treatment (SMT) (n = 10) or RIC group (n = 13). The RIC protocol consisted of 5 cycles, each for 5-min bilateral upper limb ischemia and 5-min reperfusion period, twice a day, with a total duration of 3 months. Ten healthy volunteers were enrolled as healthy control group. We tested CBF and CGM at the rest stage and the methazolamide-induced stress stage. All patients received PET/CT at baseline and three-month followup. Both CBF and CGM in ipsilateral hemisphere of sICAS patients were significantly decreased at the rest stage and the stress stage (p < .05), which were improved by three-month RIC (p < .05). The lesions decreased notably in RIC group compared to SMT group (p < .05). RIC ameliorated the hemodynamic status and glucose metabolism in regions at high risk of infarction, which might improve the resistance capacity towards ischemic load in sICAS patients.
Collapse
Affiliation(s)
- Hong An
- Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Cerebrovascular and Neuroscience Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hongrui Ma
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chuanjie Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chunlei Cui
- Department of Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Longfei Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wenbo Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Bixiao Cui
- Department of Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Sijie Li
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Di Wu
- Cerebrovascular and Neuroscience Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wenli Hu
- Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xunming Ji
- Cerebrovascular and Neuroscience Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Berezin AE, Berezin AA. Extracellular vesicles in heart failure. Adv Clin Chem 2024; 119:1-32. [PMID: 38514208 DOI: 10.1016/bs.acc.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Physiologically, extracellular vesicles (EVs) have been implicated as crucial mediators of immune response, cell homeostasis, angiogenesis, cell differentiation and growth, and tissue repair. In heart failure (HF) they may act as regulators of cardiac remodeling, microvascular inflammation, micro environmental changes, tissue fibrosis, atherosclerosis, neovascularization of plaques, endothelial dysfunction, thrombosis, and reciprocal heart-remote organ interaction. The chapter summaries the nomenclature, isolation, detection of EVs, their biologic role and function physiologically as well as in the pathogenesis of HF. Current challenges to the utilization of EVs as diagnostic and predictive biomarkers in HF are also discussed.
Collapse
Affiliation(s)
- Alexander E Berezin
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, Salzburg, Austria.
| | | |
Collapse
|
6
|
Chatterjee M, Özdemir S, Kunadt M, Koel-Simmelink M, Boiten W, Piepkorn L, Pham TV, Chiasserini D, Piersma SR, Knol JC, Möbius W, Mollenhauer B, van der Flier WM, Jimenez CR, Teunissen CE, Jahn O, Schneider A. C1q is increased in cerebrospinal fluid-derived extracellular vesicles in Alzheimer's disease: A multi-cohort proteomics and immuno-assay validation study. Alzheimers Dement 2023; 19:4828-4840. [PMID: 37023079 DOI: 10.1002/alz.13066] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 04/07/2023]
Abstract
INTRODUCTION Extracellular vesicles (EVs) may propagate and modulate Alzheimer's disease (AD) pathology. We aimed to comprehensively characterize the proteome of cerebrospinal fluid (CSF) EVs to identify proteins and pathways altered in AD. METHODS CSF EVs were isolated by ultracentrifugation (Cohort 1) or Vn96 peptide (Cohort 2) from non-neurodegenerative controls (n = 15, 16) and AD patients (n = 22, 20, respectively). EVs were subjected to untargeted quantitative mass spectrometry-based proteomics. Results were validated by enzyme-linked immunosorbent assay (ELISA) in Cohorts 3 and 4, consisting of controls (n = 16, n = 43, (Cohort3, Cohort4)), and patients with AD (n = 24, n = 100). RESULTS We found > 30 differentially expressed proteins in AD CSF EVs involved in immune-regulation. Increase of C1q levels in AD compared to non-demented controls was validated by ELISA (∼ 1.5 fold, p (Cohort 3) = 0.03, p (Cohort 4) = 0.005). DISCUSSION EVs may be utilized as a potential biomarker and may play a so far unprecedented role in immune-regulation in AD.
Collapse
Affiliation(s)
| | - Selcuk Özdemir
- German Center for Neurodegenerative Diseases, DZNE, Bonn, Germany
| | - Marcel Kunadt
- Department of Psychiatry and Psychotherapy, University Medical Center, Goettingen, Germany
| | - Marleen Koel-Simmelink
- Clinical Chemistry Department, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Walter Boiten
- Clinical Chemistry Department, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Lars Piepkorn
- Department of Psychiatry and Psychotherapy, University Medical Center, Goettingen, Germany
- Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Thang V Pham
- OncoProteomics Laboratory, Department Medical Oncology, 1098 XH Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands
| | - Davide Chiasserini
- OncoProteomics Laboratory, Department Medical Oncology, 1098 XH Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, Perugia, Italy
| | - Sander R Piersma
- OncoProteomics Laboratory, Department Medical Oncology, 1098 XH Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands
| | - Jaco C Knol
- OncoProteomics Laboratory, Department Medical Oncology, 1098 XH Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands
| | - Wiebke Möbius
- Department of Neurogenetics, Electron Microscopy, City Campus, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Paracelsus-Elena-Klinik, Kassel, Germany
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Neurology, Epidemiology and Data Science, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Connie R Jimenez
- OncoProteomics Laboratory, Department Medical Oncology, 1098 XH Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Clinical Chemistry Department, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Olaf Jahn
- Department of Psychiatry and Psychotherapy, University Medical Center, Goettingen, Germany
- Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases, DZNE, Bonn, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
7
|
Frolov A, Lobov A, Kabilov M, Zainullina B, Tupikin A, Shishkova D, Markova V, Sinitskaya A, Grigoriev E, Markova Y, Kutikhin A. Multi-Omics Profiling of Human Endothelial Cells from the Coronary Artery and Internal Thoracic Artery Reveals Molecular but Not Functional Heterogeneity. Int J Mol Sci 2023; 24:15032. [PMID: 37834480 PMCID: PMC10573276 DOI: 10.3390/ijms241915032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/02/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023] Open
Abstract
Major adverse cardiovascular events occurring upon coronary artery bypass graft surgery are typically accompanied by endothelial dysfunction. Total arterial revascularisation, which employs both left and right internal thoracic arteries instead of the saphenous vein to create a bypass, is associated with better mid- and long-term outcomes. We suggested that molecular profiles of human coronary artery endothelial cells (HCAECs) and human internal mammary artery endothelial cells (HITAECs) are coherent in terms of transcriptomic and proteomic signatures, which were then investigated by RNA sequencing and ultra-high performance liquid chromatography-mass spectrometry, respectively. Both HCAECs and HITAECs overexpressed molecules responsible for the synthesis of extracellular matrix (ECM) components, basement membrane assembly, cell-ECM adhesion, organisation of intercellular junctions, and secretion of extracellular vesicles. HCAECs were characterised by higher enrichment with molecular signatures of basement membrane construction, collagen biosynthesis and folding, and formation of intercellular junctions, whilst HITAECs were notable for augmented pro-inflammatory signaling, intensive synthesis of proteins and nitrogen compounds, and enhanced ribosome biogenesis. Despite HCAECs and HITAECs showing a certain degree of molecular heterogeneity, no specific markers at the protein level have been identified. Coherence of differentially expressed molecular categories in HCAECs and HITAECs suggests synergistic interactions between these ECs in a bypass surgery scenario.
Collapse
Affiliation(s)
- Alexey Frolov
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia; (A.F.); (D.S.); (V.M.); (A.S.); (E.G.); (Y.M.)
| | - Arseniy Lobov
- Laboratory for Regenerative Biomedicine, Research Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretskiy Prospekt, St. Petersburg 194064, Russia;
| | - Marsel Kabilov
- SB RAS Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, 8 Prospekt Akademika Lavrentieva, Novosibirsk 630090, Russia; (M.K.); (A.T.)
| | - Bozhana Zainullina
- Centre for Molecular and Cell Technologies, Research Park, Saint Petersburg State University, 7/9 Universitetskaya Embankment, St. Petersburg 199034, Russia;
| | - Alexey Tupikin
- SB RAS Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, 8 Prospekt Akademika Lavrentieva, Novosibirsk 630090, Russia; (M.K.); (A.T.)
| | - Daria Shishkova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia; (A.F.); (D.S.); (V.M.); (A.S.); (E.G.); (Y.M.)
| | - Victoria Markova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia; (A.F.); (D.S.); (V.M.); (A.S.); (E.G.); (Y.M.)
| | - Anna Sinitskaya
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia; (A.F.); (D.S.); (V.M.); (A.S.); (E.G.); (Y.M.)
| | - Evgeny Grigoriev
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia; (A.F.); (D.S.); (V.M.); (A.S.); (E.G.); (Y.M.)
| | - Yulia Markova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia; (A.F.); (D.S.); (V.M.); (A.S.); (E.G.); (Y.M.)
| | - Anton Kutikhin
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia; (A.F.); (D.S.); (V.M.); (A.S.); (E.G.); (Y.M.)
| |
Collapse
|
8
|
Li Y, Zhu Y, Hu F, Liu L, Shen G, Tu Q. Procyanidin B2 regulates the Sirt1/Nrf2 signaling pathway to improve random-pattern skin flap survival. Phytother Res 2023; 37:3913-3925. [PMID: 37128130 DOI: 10.1002/ptr.7847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
Random-pattern skin flaps have been widely used in the reconstruction of damaged tissues. Ischemia-reperfusion injury occurring in the distal regions of the flap is a common issue, which often leads to flap necrosis and restricts its clinical applications. Procyanidin B2 (PB2), a naturally occurring flavonoid in large quantities in various fruits, has been demonstrated to exhibit several significant pharmacological properties. However, the effect of PB2 on flap viability is not clearly known. Here, using Western blot analysis, immunohistochemistry, and immunofluorescence staining, we observed that PB2 significantly reduced oxidative stress and inflammation and enhanced angiogenesis. Mechanically, we provided evidence for the first time that the beneficial effects of PB2 occur through the activation of the Sirt1/Nrf2 signaling pathway. Moreover, co-administration of PB2 and EX527, a selective inhibitor of Sirt1, resulted in down-regulation of the expression of Sirt1, Nrf2, and downstream antioxidants. In summary, our study showed that PB2 might be a novel therapeutic strategy for improving the survival of random-pattern skin flaps.
Collapse
Affiliation(s)
- Yao Li
- Department of Orthopaedic Surgery, The Third Hospital Affiliated to Wenzhou Medical University, Rui'an, China
- Nanjing Medical University, Nanjing, China
| | - Yurun Zhu
- Department of Orthopaedic Surgery, The Third Hospital Affiliated to Wenzhou Medical University, Rui'an, China
- Nanjing Medical University, Nanjing, China
| | - Fei Hu
- Department of Orthopaedic Surgery, The Third Hospital Affiliated to Wenzhou Medical University, Rui'an, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Lue Liu
- Department of Orthopaedic Surgery, The Third Hospital Affiliated to Wenzhou Medical University, Rui'an, China
| | - Guangjie Shen
- Department of Orthopaedic Surgery, The Third Hospital Affiliated to Wenzhou Medical University, Rui'an, China
| | - Qiming Tu
- Department of Orthopaedic Surgery, The Third Hospital Affiliated to Wenzhou Medical University, Rui'an, China
| |
Collapse
|
9
|
Petersen JD, Mekhedov E, Kaur S, Roberts DD, Zimmerberg J. Endothelial cells release microvesicles that harbour multivesicular bodies and secrete exosomes. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e79. [PMID: 38939691 PMCID: PMC11080864 DOI: 10.1002/jex2.79] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/04/2023] [Accepted: 02/23/2023] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) released by endothelial cells support vascular homeostasis. To better understand endothelial cell EV biogenesis, we examined cultured human umbilical vein endothelial cells (HUVECs) prepared by rapid freezing, freeze-substitution, and serial thin section electron microscopy (EM). Thin sections of HUVECs revealed clusters of membrane protrusions on the otherwise smooth cell surface. The protrusions contained membrane-bound organelles, including multivesicular bodies (MVBs), and appeared to be on the verge of pinching off to form microvesicles. Beyond cell peripheries, membrane-bound vesicles with internal MVBs were observed, and serial sections confirmed that they were not connected to cells. These observations are consistent with the notion that these multi-compartmented microvesicles (MCMVs) pinch-off from protrusions. Remarkably, omega figures formed by fusion of vesicles with the MCMV limiting membrane were directly observed, apparently releasing exosomes from the MCMV. In summary, MCMVs are a novel form of EV that bud from membrane protrusions on the HUVEC surface, contain MVBs and release exosomes. These observations suggest that exosomes can be harboured within and released from transiting microvesicles after departure from the parent cell, constituting a new site of exosome biogenesis occurring from endothelial and potentially additional cell types.
Collapse
Affiliation(s)
- Jennifer D. Petersen
- Section on Integrative Biophysics, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMarylandUSA
| | - Elena Mekhedov
- Section on Integrative Biophysics, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMarylandUSA
| | - Sukhbir Kaur
- Laboratory of Pathology, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - David D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Joshua Zimmerberg
- Section on Integrative Biophysics, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
10
|
Efentakis P, Andreadou I, Iliodromitis KE, Triposkiadis F, Ferdinandy P, Schulz R, Iliodromitis EK. Myocardial Protection and Current Cancer Therapy: Two Opposite Targets with Inevitable Cost. Int J Mol Sci 2022; 23:14121. [PMID: 36430599 PMCID: PMC9696420 DOI: 10.3390/ijms232214121] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
Abstract
Myocardial protection against ischemia/reperfusion injury (IRI) is mediated by various ligands, activating different cellular signaling cascades. These include classical cytosolic mediators such as cyclic-GMP (c-GMP), various kinases such as Phosphatydilinositol-3- (PI3K), Protein Kinase B (Akt), Mitogen-Activated-Protein- (MAPK) and AMP-activated (AMPK) kinases, transcription factors such as signal transducer and activator of transcription 3 (STAT3) and bioactive molecules such as vascular endothelial growth factor (VEGF). Most of the aforementioned signaling molecules constitute targets of anticancer therapy; as they are also involved in carcinogenesis, most of the current anti-neoplastic drugs lead to concomitant weakening or even complete abrogation of myocardial cell tolerance to ischemic or oxidative stress. Furthermore, many anti-neoplastic drugs may directly induce cardiotoxicity via their pharmacological effects, or indirectly via their cardiovascular side effects. The combination of direct drug cardiotoxicity, indirect cardiovascular side effects and neutralization of the cardioprotective defense mechanisms of the heart by prolonged cancer treatment may induce long-term ventricular dysfunction, or even clinically manifested heart failure. We present a narrative review of three therapeutic interventions, namely VEGF, proteasome and Immune Checkpoint inhibitors, having opposing effects on the same intracellular signal cascades thereby affecting the heart. Moreover, we herein comment on the current guidelines for managing cardiotoxicity in the clinical setting and on the role of cardiovascular confounders in cardiotoxicity.
Collapse
Affiliation(s)
- Panagiotis Efentakis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | | | | | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, 35390 Giessen, Germany
| | | |
Collapse
|
11
|
Circulating small extracellular vesicle-encapsulated SEMA5A-IT1 attenuates myocardial ischemia-reperfusion injury after cardiac surgery with cardiopulmonary bypass. Cell Mol Biol Lett 2022; 27:95. [PMID: 36284269 PMCID: PMC9594885 DOI: 10.1186/s11658-022-00395-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
Cardiomyocyte injury is a common complication during cardiac surgery with cardiopulmonary bypass (CPB). Studies have shown that circulating small extracellular vesicles (sEVs) are involved in the pathological process of cardiovascular diseases via delivering signaling molecules. This study aims to investigate the relationship between circulating sEV-encapsulated long noncoding RNAs (lncRNAs) and cardiac injury after CPB. Here, we found that the expression of sEV SEMA5A-IT1 in serum samples of patients after CPB was higher than that of pre-CPB serum samples. Moreover, serum-derived sEV SEMA5A-IT1 levels were negatively correlated with creatine kinase-MB (CK-MB) levels in patients who underwent CPB operation. Notably, circulating sEVs packaged with SEMA5A-IT1 could be uptaken by cardiomyocyte-like cells AC16 and increased SEMA5A-IT1 expression in AC16 cells. Upregulated SEMA5A-IT1 protected cardiomyocytes against hypoxia/reoxygenation injury, confirmed by increased cell viability, reduced cell apoptosis, and inhibited ferroptosis in AC16 cells. Mechanistically, SEMA5A-IT1 regulated the expression of B-cell CLL/lymphoma 2 (BCL2) and solute carrier family 7 member 11 (SLC7A11) through sponging miR-143-3p. Transfection of miR-143-3p mimics, BCL2, or SLC7A11 knockdown could attenuate the protective effect of SEMA5A-IT1 on cardiomyocytes. In conclusion, we propose that SEMA5A-IT1, which is transported to cardiomyocytes through circulating sEVs, is an important regulatory molecule that protects cardiomyocytes from ischemia–reperfusion injury, providing a target for the prevention and treatment of myocardial ischemia–reperfusion injury.
Collapse
|
12
|
Carter N, Mathiesen AH, Miller N, Brown M, Colunga Biancatelli RML, Catravas JD, Dobrian AD. Endothelial cell-derived extracellular vesicles impair the angiogenic response of coronary artery endothelial cells. Front Cardiovasc Med 2022; 9:923081. [PMID: 35928931 PMCID: PMC9343725 DOI: 10.3389/fcvm.2022.923081] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/28/2022] [Indexed: 12/17/2022] Open
Abstract
Cardiovascular disease (CVD) is the most prominent cause of death of adults in the United States with coronary artery disease being the most common type of CVD. Following a myocardial event, the coronary endothelium plays an important role in the recovery of the ischemic myocardium. Specifically, endothelial cells (EC) must be able to elicit a robust angiogenic response necessary for tissue revascularization and repair. However, local or distant cues may prevent effective revascularization. Extracellular vesicles (EV) are produced by all cells and endothelium is a rich source of EVs that have access to the main circulation thereby potentially impacting local and distant tissue function. Systemic inflammation associated with conditions such as obesity as well as the acute inflammatory response elicited by a cardiac event can significantly increase the EV release by endothelium and alter their miRNA, protein or lipid cargo. Our laboratory has previously shown that EVs released by adipose tissue endothelial cells exposed to chronic inflammation have angiostatic effects on naïve adipose tissue EC in vitro. Whether the observed effect is specific to EVs from adipose tissue endothelium or is a more general feature of the endothelial EVs exposed to pro-inflammatory cues is currently unclear. The objective of this study was to investigate the angiostatic effects of EVs produced by EC from the coronary artery and adipose microvasculature exposed to pro-inflammatory cytokines (PIC) on naïve coronary artery EC. We have found that EVs from both EC sources have angiostatic effects on the coronary endothelium. EVs produced by cells in a pro-inflammatory environment reduced proliferation and barrier function of EC without impacting cellular senescence. Some of these functional effects could be attributed to the miRNA cargo of EVs. Several miRNAs such as miR-451, let-7, or miR-23a impact on multiple pathways responsible for proliferation, cellular permeability and angiogenesis. Collectively, our data suggests that EVs may compete with pro-angiogenic cues in the ischemic myocardium therefore slowing down the repair response. Acute treatments with inhibitors that prevent endogenous EV release immediately after an ischemic event may contribute to better efficacy of therapeutic approaches using functionalized exogenous EVs or other pro-angiogenic approaches.
Collapse
Affiliation(s)
- Nigeste Carter
- Department of Physiological Science, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Allison H. Mathiesen
- Department of Physiological Science, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Noel Miller
- Department of Physiological Science, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Michael Brown
- Department of Physiological Science, Eastern Virginia Medical School, Norfolk, VA, United States
| | | | - John D. Catravas
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States
- School of Medical Diagnostic and Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, VA, United States
| | - Anca D. Dobrian
- Department of Physiological Science, Eastern Virginia Medical School, Norfolk, VA, United States
- *Correspondence: Anca D. Dobrian,
| |
Collapse
|
13
|
Penna C, Comità S, Tullio F, Alloatti G, Pagliaro P. Challenges facing the clinical translation of cardioprotection: 35 years after the discovery of ischemic preconditioning. Vascul Pharmacol 2022; 144:106995. [PMID: 35470102 DOI: 10.1016/j.vph.2022.106995] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/17/2022] [Accepted: 04/16/2022] [Indexed: 12/19/2022]
Abstract
Since coronary reperfusion was introduced into clinical practice in the late 1970s, the further translation of several successful animal experiments on cardioprotection into clinical practice has been disappointing to date. Animal experiments are often performed on young, healthy animals lacking the risk factors, co-morbidities and co-medications characteristic of acute myocardial infarction patients. Many hopes were kindled in 1986 when ischemic preconditioning was discovered. However, it is not yet known how long ischemia can last and what is the best modality for additional cardioprotection through conditioning to obtain benefits. There is a lack of experimental studies on the long-term effects of additional cardioprotection, in addition to the reduction in infarct size; in particular, there is a lack of studies on vessel protection, repair, inflammation, remodeling, and mortality. The reproducibility and robustness of experimental studies are often limited by species differences, the role of co-morbidities, vascular damage, inflammatory processes, and co-medications, which are not adequately considered. In particular, inflammatory processes, including NLRP3 inflammasome, play an important role in the long-term effects. Future studies should focus on interventions/agents with robust preclinical data and should recruit patients who truly have the potential to benefit from further cardioprotection. Here we focus on the main mechanisms and targets of cardioprotection during remote conditioning and their alteration by one of the most common co-morbidities, namely diabetes, in which microvascular lesions and inflammatory processes play extremely important roles.
Collapse
Affiliation(s)
- Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano, 10043 Torino, TO, Italy; National Institute for Cardiovascular Research (INRC), Bologna, Italy
| | - Stefano Comità
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano, 10043 Torino, TO, Italy
| | - Francesca Tullio
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano, 10043 Torino, TO, Italy
| | | | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano, 10043 Torino, TO, Italy; National Institute for Cardiovascular Research (INRC), Bologna, Italy.
| |
Collapse
|
14
|
Moccia F, Negri S, Faris P, Ronchi C, Lodola F. Optical excitation of organic semiconductors as a highly selective strategy to induce vascular regeneration and tissue repair. Vascul Pharmacol 2022; 144:106998. [PMID: 35589009 DOI: 10.1016/j.vph.2022.106998] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 10/18/2022]
Abstract
Therapeutic neovascularization represents a promising strategy to rescue the vascular network and restore organ function in cardiovascular disorders (CVDs), including acute myocardial infarction, heart failure, peripheral artery disease, and brain stroke. Endothelial colony forming cells (ECFCs), which are mobilized in circulation upon an ischemic insult, are commonly regarded as the most suitable cellular tool to achieve therapeutic neovascularization. ECFCs can be genetically or pharmacologically manipulated to enhance their vasoreparative potential by boosting specific pro-angiogenic signalling pathways. However, optical stimulation represents the most reliable approach to control cellular activity because of its high selectivity and unprecedented spatio-temporal resolution. Herein, we discuss a novel strategy to drive ECFC angiogenic activity in ischemic tissues by combining geneless optical excitation with photosensitive organic semiconductors. We describe how photoexcitation of the conducting polymer poly(3-hexylthiophene-2,5-diyl), also known as P3HT, stimulates extracellular Ca2+ entry through Transient Receptor Potential Vanilloid 1 (TRPV1) channels upon the production of hydrogen peroxide (H2O2) in the cleft between the nanomaterial and the cell membrane. H2O2-induced TRPV1-dependent Ca2+ entry stimulates ECFC proliferation and tube formation, thereby providing the proof-of-concept that photoexcitation of organic semiconductors may offer a reliable strategy to stimulate ECFCs-dependent neovascularization in CVDs.
Collapse
Affiliation(s)
- Francesco Moccia
- Department of Biology and Biotechnology "Lazzaro Spallanzani", Laboratory of General Physiology, University of Pavia, 27100 Pavia, Italy.
| | - Sharon Negri
- Department of Biology and Biotechnology "Lazzaro Spallanzani", Laboratory of General Physiology, University of Pavia, 27100 Pavia, Italy
| | - Pawan Faris
- Department of Biology and Biotechnology "Lazzaro Spallanzani", Laboratory of General Physiology, University of Pavia, 27100 Pavia, Italy
| | - Carlotta Ronchi
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, 20133 Milan, Italy
| | - Francesco Lodola
- Department of Biotechnology and Bioscience, Laboratory of Cardiac Cellular Physiology, University of Milano-Bicocca, 20126 Milan, Italy
| |
Collapse
|
15
|
Lymphatic and Blood Endothelial Extracellular Vesicles: A Story Yet to Be Written. Life (Basel) 2022; 12:life12050654. [PMID: 35629322 PMCID: PMC9144833 DOI: 10.3390/life12050654] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs), such as exosomes, microvesicles, and apoptotic bodies, are cell-derived, lipid bilayer-enclosed particles mediating intercellular communication and are therefore vital for transmitting a plethora of biological signals. The vascular endothelium substantially contributes to the circulating particulate secretome, targeting important signaling pathways that affect blood cells and regulate adaptation and plasticity of endothelial cells in a paracrine manner. Different molecular signatures and functional properties of endothelial cells reflect their heterogeneity among different vascular beds and drive current research to understand varying physiological and pathological effects of blood and lymphatic endothelial EVs. Endothelial EVs have been linked to the development and progression of various vascular diseases, thus having the potential to serve as biomarkers and clinical treatment targets. This review aims to provide a brief overview of the human vasculature, the biology of extracellular vesicles, and the current knowledge of endothelium-derived EVs, including their potential role as biomarkers in disease development.
Collapse
|
16
|
Ma X, Chen Y, Mo C, Li L, Nong S, Gui C. The role of circRNAs in the regulation of myocardial angiogenesis in coronary heart disease. Microvasc Res 2022; 142:104362. [PMID: 35337818 DOI: 10.1016/j.mvr.2022.104362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/28/2022] [Accepted: 03/15/2022] [Indexed: 11/16/2022]
Abstract
During myocardial ischemia, timely reperfusion is critical to limit infarct area and the overall loss of cardiac contractile function. New treatment strategies need to be developed for patients who are neither able to receive interventional treatment nor suitable for surgical blood transport reconstruction surgery. Therapeutic angiogenesis is a promising approach that can be used to guide new treatment strategies. The goal of these therapies is to form new blood vessels or promote the maturation of existing vasculature systems, bypassing blocked arteries to maintain organ perfusion, thereby relieving symptoms and preventing the remodeling of bad organs. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), have been attracted much attention for their roles in various physiological and pathological processes. There is growing evidence that ncRNAs, especially circRNAs, play an important role in the regulation of cardiomyopathy angiogenesis due to its diversity of functions. Therefore, this article reviews the role and mechanisms of circRNA in myocardial angiogenesis to better understand the role of circRNAs in myocardial angiogenesis, which may provide useful insights and new revelations for the research field of identifying diagnostic markers and therapeutic approaches for the treatment of coronary artery disease.
Collapse
Affiliation(s)
- Xiao Ma
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University&Guangxi Key Laboratory Base of Precision Medicine in Cardiocerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardiocerebrovascular Diseases, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Yuanxin Chen
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University&Guangxi Key Laboratory Base of Precision Medicine in Cardiocerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardiocerebrovascular Diseases, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Changhua Mo
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University&Guangxi Key Laboratory Base of Precision Medicine in Cardiocerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardiocerebrovascular Diseases, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Longcang Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University&Guangxi Key Laboratory Base of Precision Medicine in Cardiocerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardiocerebrovascular Diseases, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Shuxiong Nong
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University&Guangxi Key Laboratory Base of Precision Medicine in Cardiocerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardiocerebrovascular Diseases, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Chun Gui
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University&Guangxi Key Laboratory Base of Precision Medicine in Cardiocerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardiocerebrovascular Diseases, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China..
| |
Collapse
|
17
|
The Role of Plasma Extracellular Vesicles in Remote Ischemic Conditioning and Exercise-Induced Ischemic Tolerance. Int J Mol Sci 2022; 23:ijms23063334. [PMID: 35328755 PMCID: PMC8951333 DOI: 10.3390/ijms23063334] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
Ischemic conditioning and exercise have been suggested for protecting against brain ischemia-reperfusion injury. However, the endogenous protective mechanisms stimulated by these interventions remain unclear. Here, in a comprehensive translational study, we investigated the protective role of extracellular vesicles (EVs) released after remote ischemic conditioning (RIC), blood flow restricted resistance exercise (BFRRE), or high-load resistance exercise (HLRE). Blood samples were collected from human participants before and at serial time points after intervention. RIC and BFRRE plasma EVs released early after stimulation improved viability of endothelial cells subjected to oxygen-glucose deprivation. Furthermore, post-RIC EVs accumulated in the ischemic area of a stroke mouse model, and a mean decrease in infarct volume was observed for post-RIC EVs, although not reaching statistical significance. Thus, circulating EVs induced by RIC and BFRRE can mediate protection, but the in vivo and translational effects of conditioned EVs require further experimental verification.
Collapse
|
18
|
Old and New Biomarkers Associated with Endothelial Dysfunction in Chronic Hyperglycemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2021:7887426. [PMID: 34987703 PMCID: PMC8723873 DOI: 10.1155/2021/7887426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 11/18/2022]
Abstract
Chronic hyperglycemia and vascular damage are strictly related. Biomarkers of vascular damage have been intensively studied in the recent years in the quest of reliable cardiovascular risk assessment tools able to facilitate risk stratification and early detection of vascular impairment. The present study is a narrative review with the aim of revising the available evidence on current and novel markers of hyperglycemia-induced vascular damage. After a discussion of classic tools used to investigate endothelial dysfunction, we provide an in-depth description of novel circulating biomarkers (chemokines, extracellular vesicles, and epigenetic and metabolomic biomarkers). Appropriate use of a single as well as a cluster of the discussed biomarkers might enable in a near future (a) the prompt identification of targeted and customized treatment strategies and (b) the follow-up of cardiovascular treatment efficacy over time in clinical research and/or in clinical practice.
Collapse
|
19
|
Giraud R, Moyon A, Simoncini S, Duchez AC, Nail V, Chareyre C, Bouhlel A, Balasse L, Fernandez S, Vallier L, Hache G, Sabatier F, Dignat-George F, Lacroix R, Guillet B, Garrigue P. Tracking Radiolabeled Endothelial Microvesicles Predicts Their Therapeutic Efficacy: A Proof-of-Concept Study in Peripheral Ischemia Mouse Model Using SPECT/CT Imaging. Pharmaceutics 2022; 14:pharmaceutics14010121. [PMID: 35057018 PMCID: PMC8778059 DOI: 10.3390/pharmaceutics14010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 11/16/2022] Open
Abstract
Microvesicles, so-called endothelial large extracellular vesicles (LEVs), are of great interest as biological markers and cell-free biotherapies in cardiovascular and oncologic diseases. However, their therapeutic perspectives remain limited due to the lack of reliable data regarding their systemic biodistribution after intravenous administration. Methods: Applied to a mouse model of peripheral ischemia, radiolabeled endothelial LEVs were tracked and their in vivo whole-body distribution was quantified by microSPECT/CT imaging. Hindlimb perfusion was followed by LASER Doppler and motility impairment function was evaluated up to day 28 post-ischemia. Results: Early and specific homing of LEVs to ischemic hind limbs was quantified on the day of ischemia and positively correlated with reperfusion intensity at a later stage on day 28 after ischemia, associated with an improved motility function. Conclusions: This concept is a major asset for investigating the biodistribution of LEVs issued from other cell types, including cancer, thus partly contributing to better knowledge and understanding of their fate after injection.
Collapse
Affiliation(s)
- Romain Giraud
- C2VN, INSERM, INRAE, Aix Marseille University, 13385 Marseille, France; (R.G.); (A.M.); (S.S.); (A.-C.D.); (C.C.); (A.B.); (L.B.); (L.V.); (G.H.); (F.S.); (F.D.-G.); (R.L.); (B.G.)
- CERIMED, CNRS, Marseille, Aix Marseille University, 13385 Marseille, France; (V.N.); (S.F.)
- Radiopharmacy, Pôle Pharmacie, University Hospitals of Marseille, APHM, 13005 Marseille, France
| | - Anaïs Moyon
- C2VN, INSERM, INRAE, Aix Marseille University, 13385 Marseille, France; (R.G.); (A.M.); (S.S.); (A.-C.D.); (C.C.); (A.B.); (L.B.); (L.V.); (G.H.); (F.S.); (F.D.-G.); (R.L.); (B.G.)
- CERIMED, CNRS, Marseille, Aix Marseille University, 13385 Marseille, France; (V.N.); (S.F.)
- Radiopharmacy, Pôle Pharmacie, University Hospitals of Marseille, APHM, 13005 Marseille, France
| | - Stéphanie Simoncini
- C2VN, INSERM, INRAE, Aix Marseille University, 13385 Marseille, France; (R.G.); (A.M.); (S.S.); (A.-C.D.); (C.C.); (A.B.); (L.B.); (L.V.); (G.H.); (F.S.); (F.D.-G.); (R.L.); (B.G.)
| | - Anne-Claire Duchez
- C2VN, INSERM, INRAE, Aix Marseille University, 13385 Marseille, France; (R.G.); (A.M.); (S.S.); (A.-C.D.); (C.C.); (A.B.); (L.B.); (L.V.); (G.H.); (F.S.); (F.D.-G.); (R.L.); (B.G.)
| | - Vincent Nail
- CERIMED, CNRS, Marseille, Aix Marseille University, 13385 Marseille, France; (V.N.); (S.F.)
- Radiopharmacy, Pôle Pharmacie, University Hospitals of Marseille, APHM, 13005 Marseille, France
| | - Corinne Chareyre
- C2VN, INSERM, INRAE, Aix Marseille University, 13385 Marseille, France; (R.G.); (A.M.); (S.S.); (A.-C.D.); (C.C.); (A.B.); (L.B.); (L.V.); (G.H.); (F.S.); (F.D.-G.); (R.L.); (B.G.)
| | - Ahlem Bouhlel
- C2VN, INSERM, INRAE, Aix Marseille University, 13385 Marseille, France; (R.G.); (A.M.); (S.S.); (A.-C.D.); (C.C.); (A.B.); (L.B.); (L.V.); (G.H.); (F.S.); (F.D.-G.); (R.L.); (B.G.)
- CERIMED, CNRS, Marseille, Aix Marseille University, 13385 Marseille, France; (V.N.); (S.F.)
| | - Laure Balasse
- C2VN, INSERM, INRAE, Aix Marseille University, 13385 Marseille, France; (R.G.); (A.M.); (S.S.); (A.-C.D.); (C.C.); (A.B.); (L.B.); (L.V.); (G.H.); (F.S.); (F.D.-G.); (R.L.); (B.G.)
- CERIMED, CNRS, Marseille, Aix Marseille University, 13385 Marseille, France; (V.N.); (S.F.)
| | - Samantha Fernandez
- CERIMED, CNRS, Marseille, Aix Marseille University, 13385 Marseille, France; (V.N.); (S.F.)
| | - Loris Vallier
- C2VN, INSERM, INRAE, Aix Marseille University, 13385 Marseille, France; (R.G.); (A.M.); (S.S.); (A.-C.D.); (C.C.); (A.B.); (L.B.); (L.V.); (G.H.); (F.S.); (F.D.-G.); (R.L.); (B.G.)
| | - Guillaume Hache
- C2VN, INSERM, INRAE, Aix Marseille University, 13385 Marseille, France; (R.G.); (A.M.); (S.S.); (A.-C.D.); (C.C.); (A.B.); (L.B.); (L.V.); (G.H.); (F.S.); (F.D.-G.); (R.L.); (B.G.)
- CERIMED, CNRS, Marseille, Aix Marseille University, 13385 Marseille, France; (V.N.); (S.F.)
| | - Florence Sabatier
- C2VN, INSERM, INRAE, Aix Marseille University, 13385 Marseille, France; (R.G.); (A.M.); (S.S.); (A.-C.D.); (C.C.); (A.B.); (L.B.); (L.V.); (G.H.); (F.S.); (F.D.-G.); (R.L.); (B.G.)
| | - Françoise Dignat-George
- C2VN, INSERM, INRAE, Aix Marseille University, 13385 Marseille, France; (R.G.); (A.M.); (S.S.); (A.-C.D.); (C.C.); (A.B.); (L.B.); (L.V.); (G.H.); (F.S.); (F.D.-G.); (R.L.); (B.G.)
- Department of Hematology and Vascular Biology, University Hospitals of Marseille, APHM, 13005 Marseille, France
| | - Romaric Lacroix
- C2VN, INSERM, INRAE, Aix Marseille University, 13385 Marseille, France; (R.G.); (A.M.); (S.S.); (A.-C.D.); (C.C.); (A.B.); (L.B.); (L.V.); (G.H.); (F.S.); (F.D.-G.); (R.L.); (B.G.)
- Department of Hematology and Vascular Biology, University Hospitals of Marseille, APHM, 13005 Marseille, France
| | - Benjamin Guillet
- C2VN, INSERM, INRAE, Aix Marseille University, 13385 Marseille, France; (R.G.); (A.M.); (S.S.); (A.-C.D.); (C.C.); (A.B.); (L.B.); (L.V.); (G.H.); (F.S.); (F.D.-G.); (R.L.); (B.G.)
- CERIMED, CNRS, Marseille, Aix Marseille University, 13385 Marseille, France; (V.N.); (S.F.)
- Radiopharmacy, Pôle Pharmacie, University Hospitals of Marseille, APHM, 13005 Marseille, France
| | - Philippe Garrigue
- C2VN, INSERM, INRAE, Aix Marseille University, 13385 Marseille, France; (R.G.); (A.M.); (S.S.); (A.-C.D.); (C.C.); (A.B.); (L.B.); (L.V.); (G.H.); (F.S.); (F.D.-G.); (R.L.); (B.G.)
- CERIMED, CNRS, Marseille, Aix Marseille University, 13385 Marseille, France; (V.N.); (S.F.)
- Radiopharmacy, Pôle Pharmacie, University Hospitals of Marseille, APHM, 13005 Marseille, France
- Correspondence:
| |
Collapse
|
20
|
Liu C, Bayado N, He D, Li J, Chen H, Li L, Li J, Long X, Du T, Tang J, Dang Y, Fan Z, Wang L, Yang PC. Therapeutic Applications of Extracellular Vesicles for Myocardial Repair. Front Cardiovasc Med 2021; 8:758050. [PMID: 34957249 PMCID: PMC8695616 DOI: 10.3389/fcvm.2021.758050] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease is the leading cause of human death worldwide. Drug thrombolysis, percutaneous coronary intervention, coronary artery bypass grafting and other methods are used to restore blood perfusion for coronary artery stenosis and blockage. The treatments listed prolong lifespan, however, rate of mortality ultimately remains the same. This is due to the irreversible damage sustained by myocardium, in which millions of heart cells are lost during myocardial infarction. The lack of pragmatic methods of myocardial restoration remains the greatest challenge for effective treatment. Exosomes are small extracellular vesicles (EVs) actively secreted by all cell types that act as effective transmitters of biological signals which contribute to both reparative and pathological processes within the heart. Exosomes have become the focus of many researchers as a novel drug delivery system due to the advantages of low toxicity, little immunogenicity and good permeability. In this review, we discuss the progress and challenges of EVs in myocardial repair, and review the recent development of extracellular vesicle-loading systems based on their unique nanostructures and physiological functions, as well as the application of engineering modifications in the diagnosis and treatment of myocardial repair.
Collapse
Affiliation(s)
- Chunping Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Nathan Bayado
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Dongyue He
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jie Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huiqi Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Longmei Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinhua Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinyao Long
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tingting Du
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Tang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Dang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhijin Fan
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Lei Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Phillip C Yang
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
21
|
Penna C, Trotta F, Cavalli R, Pagliaro P. Nanocarriers Loaded with Oxygen to Improve the Protection of the Heart to be Transplanted. Curr Pharm Des 2021; 28:468-470. [PMID: 34751111 DOI: 10.2174/1381612827666211109112723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/13/2021] [Indexed: 11/22/2022]
Abstract
In the case of serious cardiovascular diseases, such as refractory heart failure, heart transplantation is the only possible intervention. Currently, the modes of organ transport in hypothermic cardioplegic solution do not allow the implantation of the heart beyond 4-5 hours from the explant. The heart being an organ with a greater consumption of oxygen and high metabolism than the brain, its transport in hypothermic cardioplegic solutions presents critical issues in terms of time and conservation. An ambitious goal of many researchers and clinicians is to minimize the hypoxia of the explanted heart and extend the permanence time in cardioplegic solution without damage from hypoxia. Adequately oxygenating the explanted organs may extend the usability time of the explanted organ. This challenge has been pursued for years with approaches that are often expensive, risky, and/or difficult to use. We propose to consider oxygenated nanocarriers realizing oxygen for a long time. In this way, it will also be possible to use organs from distant countries with respect to the recipient, thus exceeding the canonical 4-5 hours tolerated up to now. In addition to the lack of oxygen, the transplanted organ can undergo the accumulation of catabolites due to the lack of perfusion during transport. Therefore, nanocarriers can also be perfused in adequate solution during organ transportation. A better oxygenation improving the postoperative recovery of the transplanted heart will improve the recipient's quality of life.
Collapse
Affiliation(s)
- Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin. Italy
| | - Francesco Trotta
- Department of Chemistry, University of Turin, 10125 Turin. Italy
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, 10125 Turin. Italy
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin. Italy
| |
Collapse
|