1
|
Mitra R, Hale TK, Fitzsimons HL, Gray C, White MPJ. A novel three-dimensional model of infantile haemangioma. Br J Dermatol 2025; 192:874-882. [PMID: 39686709 DOI: 10.1093/bjd/ljae483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/04/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUND Infantile haemangioma (IH) is vascular tumour in infants that exhibits rapid proliferation and angiogenesis followed by gradual involution. Ten per cent of cases are associated with disfiguring complications that require medical intervention with beta blockers, surgery or laser therapy. OBJECTIVES To improve our understanding of the disease mechanisms of IH with an in vitro three-dimensional model. METHODS We isolated and expanded CD31+ endothelial cells (HemECs) from patient-derived IH cell lines and grew them as spheroids in STEMdiffTM Endothelial Expansion Medium. The cells were then embedded in an extracellular matrix hydrogel with reduced growth factors to initiate angiogenic sprouting. RESULTS HemEC spheroids expressed CD31, glucose transporter 1, vascular endothelial growth factor receptor 2, CD44, vimentin and CD133 but not smooth muscle actin, indicating their similarity to immature IH blood vessels and their angiogenic potential. Proteomic analysis revealed similar homology in terms of protein expression in spheroids and IH tissue. The high-throughput application of the three-dimensional angiogenesis model was tested using propranolol to inhibit sprouting of spheroids with increased toxicity response. CONCLUSIONS This study reports the development of a three-dimensional model of IH that closely resembles the angiogenic features of IH for molecular analysis and drug screening.
Collapse
Affiliation(s)
- Raka Mitra
- Gillies McIndoe Research Institute, Wellington, New Zealand
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Tracy K Hale
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Helen L Fitzsimons
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Clint Gray
- Gillies McIndoe Research Institute, Wellington, New Zealand
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
2
|
Lorusso B, Nogara A, Fioretzaki R, Corradini E, Bove R, Roti G, Gherli A, Montanaro A, Monica G, Cavazzini F, Bonomini S, Graiani G, Silini EM, Gnetti L, Pilato FP, Cerasoli G, Quaini F, Lagrasta CAM. CD26 Is Differentially Expressed throughout the Life Cycle of Infantile Hemangiomas and Characterizes the Proliferative Phase. Int J Mol Sci 2024; 25:9760. [PMID: 39337249 PMCID: PMC11432178 DOI: 10.3390/ijms25189760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/30/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
Infantile hemangiomas (IHs) are benign vascular neoplasms of childhood (prevalence 5-10%) due to the abnormal proliferation of endothelial cells. IHs are characterized by a peculiar natural life cycle enclosing three phases: proliferative (≤12 months), involuting (≥13 months), and involuted (up to 4-7 years). The mechanisms underlying this neoplastic disease still remain uncovered. Twenty-seven IH tissue specimens (15 proliferative and 12 involuting) were subjected to hematoxylin and eosin staining and a panel of diagnostic markers by immunohistochemistry. WT1, nestin, CD133, and CD26 were also analyzed. Moreover, CD31pos/CD26pos proliferative hemangioma-derived endothelial cells (Hem-ECs) were freshly isolated, exposed to vildagliptin (a DPP-IV/CD26 inhibitor), and tested for cell survival and proliferation by MTT assay, FACS analysis, and Western blot assay. All IHs displayed positive CD31, GLUT1, WT1, and nestin immunostaining but were negative for D2-40. Increased endothelial cell proliferation in IH samples was documented by ki67 labeling. All endothelia of proliferative IHs were positive for CD26 (100%), while only 10 expressed CD133 (66.6%). Surprisingly, seven involuting IH samples (58.3%) exhibited coexisting proliferative and involuting aspects in the same hemangiomatous lesion. Importantly, proliferative areas were characterized by CD26 immunolabeling, at variance from involuting sites that were always CD26 negative. Finally, in vitro DPP-IV pharmacological inhibition by vildagliptin significantly reduced Hem-ECs proliferation through the modulation of ki67 and induced cell cycle arrest associated with the upregulation of p21 protein expression. Taken together, our findings suggest that CD26 might represent a reliable biomarker to detect proliferative sites and unveil non-regressive IHs after a 12-month life cycle.
Collapse
Affiliation(s)
- Bruno Lorusso
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (B.L.); (A.N.); (R.F.); (E.C.); (R.B.); (G.R.); (A.G.); (A.M.); (G.M.); (F.C.); (F.Q.)
| | - Antonella Nogara
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (B.L.); (A.N.); (R.F.); (E.C.); (R.B.); (G.R.); (A.G.); (A.M.); (G.M.); (F.C.); (F.Q.)
| | - Rodanthi Fioretzaki
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (B.L.); (A.N.); (R.F.); (E.C.); (R.B.); (G.R.); (A.G.); (A.M.); (G.M.); (F.C.); (F.Q.)
- Department of Medical Oncology, Metaxa Cancer Hospital of Piraeus, 185 37 Piraeus, Greece
| | - Emilia Corradini
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (B.L.); (A.N.); (R.F.); (E.C.); (R.B.); (G.R.); (A.G.); (A.M.); (G.M.); (F.C.); (F.Q.)
| | - Roberta Bove
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (B.L.); (A.N.); (R.F.); (E.C.); (R.B.); (G.R.); (A.G.); (A.M.); (G.M.); (F.C.); (F.Q.)
| | - Giovanni Roti
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (B.L.); (A.N.); (R.F.); (E.C.); (R.B.); (G.R.); (A.G.); (A.M.); (G.M.); (F.C.); (F.Q.)
- Translational Hematology and Chemogenomics (THEC), University of Parma, 43126 Parma, Italy
- Hematology and BMT Unit, University Hospital of Parma, 43126 Parma, Italy;
| | - Andrea Gherli
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (B.L.); (A.N.); (R.F.); (E.C.); (R.B.); (G.R.); (A.G.); (A.M.); (G.M.); (F.C.); (F.Q.)
- Translational Hematology and Chemogenomics (THEC), University of Parma, 43126 Parma, Italy
| | - Anna Montanaro
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (B.L.); (A.N.); (R.F.); (E.C.); (R.B.); (G.R.); (A.G.); (A.M.); (G.M.); (F.C.); (F.Q.)
- Translational Hematology and Chemogenomics (THEC), University of Parma, 43126 Parma, Italy
| | - Gregorio Monica
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (B.L.); (A.N.); (R.F.); (E.C.); (R.B.); (G.R.); (A.G.); (A.M.); (G.M.); (F.C.); (F.Q.)
- Translational Hematology and Chemogenomics (THEC), University of Parma, 43126 Parma, Italy
| | - Filippo Cavazzini
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (B.L.); (A.N.); (R.F.); (E.C.); (R.B.); (G.R.); (A.G.); (A.M.); (G.M.); (F.C.); (F.Q.)
- Translational Hematology and Chemogenomics (THEC), University of Parma, 43126 Parma, Italy
| | - Sabrina Bonomini
- Hematology and BMT Unit, University Hospital of Parma, 43126 Parma, Italy;
| | - Gallia Graiani
- Center of Dental Medicine, University of Parma, 43126 Parma, Italy;
| | - Enrico Maria Silini
- Pathology Section, University Hospital of Parma, 43126 Parma, Italy; (E.M.S.); (L.G.); (F.P.P.)
| | - Letizia Gnetti
- Pathology Section, University Hospital of Parma, 43126 Parma, Italy; (E.M.S.); (L.G.); (F.P.P.)
| | - Francesco Paolo Pilato
- Pathology Section, University Hospital of Parma, 43126 Parma, Italy; (E.M.S.); (L.G.); (F.P.P.)
| | - Giuseppe Cerasoli
- Pediatric Surgery, Ospedale dei Bambini of Parma, University Hospital of Parma, 43126 Parma, Italy;
| | - Federico Quaini
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (B.L.); (A.N.); (R.F.); (E.C.); (R.B.); (G.R.); (A.G.); (A.M.); (G.M.); (F.C.); (F.Q.)
| | - Costanza Anna Maria Lagrasta
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (B.L.); (A.N.); (R.F.); (E.C.); (R.B.); (G.R.); (A.G.); (A.M.); (G.M.); (F.C.); (F.Q.)
| |
Collapse
|
3
|
Xiang S, Gong X, Qiu T, Zhou J, Yang K, Lan Y, Zhang Z, Ji Y. Insights into the mechanisms of angiogenesis in infantile hemangioma. Biomed Pharmacother 2024; 178:117181. [PMID: 39059349 DOI: 10.1016/j.biopha.2024.117181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
Infantile hemangioma (IH) is the most common benign tumor in infants and usually resolves on its own. However, a small portion of IH cases are accompanied by serious complications and other problems, impacting the physical and psychological health of the children affected. The pathogenesis of IH is highly controversial. Studies have shown that abnormal blood vessel formation is an important pathological basis for the development of IH. Compared with that in normal tissues, the equilibrium of blood vessel growth at the tumor site is disrupted, and interactions among other types of cells, such as immune cells, promote the rapid proliferation and migration of vascular tissue cells and the construction of vascular networks. Currently, propranolol is the most common systemic drug used to inhibit the growth of IHs and accelerate their regression. The purpose of this review is to provide the latest research on the mechanisms of angiogenesis in IH. We discuss the possible roles of three major factors, namely, estrogen, hypoxia, and inflammation, in the development of IH. Additionally, we summarize the key roles of tumor cell subpopulations, such as pericytes, in the proliferation and regression of IH considering evidence from the past few years, with an emphasis on the possible mechanisms of propranolol in the treatment of IH. Angiogenesis is an important event during the development of IH, and an in-depth understanding of the molecular mechanisms of angiogenesis will provide new insights into the biology and clinical treatment of IH.
Collapse
Affiliation(s)
- Shanshan Xiang
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xue Gong
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Tong Qiu
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jiangyuan Zhou
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Kaiying Yang
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China; Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou 510623, China
| | - Yuru Lan
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Zixin Zhang
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yi Ji
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Ke C, Chen C, Yang M, Chen H, Ke Y, Li L. Inhibition of infantile hemangioma growth and promotion of apoptosis via VEGF/PI3K/Akt axis by 755-nm long-pulse alexandrite laser. Biomed J 2024; 47:100675. [PMID: 37944864 PMCID: PMC11340587 DOI: 10.1016/j.bj.2023.100675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/28/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Infantile hemangioma (IH) is a common vascular tumor in female infants, which can lead to aesthetic issues and facial scarring. This study aimed to investigate the inhibitory effects and underlying mechanisms of 755 nm long-pulsed alexandrite laser on IH. METHODS Hemangioma endothelial cells (HemECs) were exposed to 755 nm long-pulsed alexandrite laser to evaluate its impact on cell proliferation and apoptosis. A patient-derived xenograft model was established to assess the inhibitory effects of laser treatment on IH in vivo. RESULTS In vitro, 755 nm long-pulsed alexandrite laser effectively suppressed the proliferation of HemECs and induced cell apoptosis. Laser treatment significantly inhibited the volume and weight of tumors, accompanied by significant downregulation of vascular endothelial growth factor A (VEGFA), vascular endothelial growth factor receptor 2 (VEGFR2), phosphatidylinositol 3-kinase (PI3K), and protein kinase B (Akt) expression levels in both hemangioma cells and tumors. Additionally, laser treatment resulted in the conversion of VEGFA165a to VEGFA165b. TUNEL staining demonstrated increased apoptosis in tumor cells after laser treatment, along with upregulation of cleaved caspase-3 and Bax, and downregulation of Bcl-2. CONCLUSION In addition to the principle of selective photothermal decomposition, modulation of the VEGF/PI3K/Akt axis may serve as a potential mechanism for IH treatment using a long pulse-width 755 nm laser. This sheds valuable light on the molecular mechanisms underlying IH pathogenesis and potential therapeutic targets while providing a theoretical basis for the safe and efficient management of proliferative IH using laser therapy.
Collapse
Affiliation(s)
- Chen Ke
- Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Changhan Chen
- Department of Cosmetology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Laser Cosmetology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, China
| | - Ming Yang
- Department of Cosmetology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, China
| | - Hao Chen
- Department of Cosmetology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, China
| | - Youhui Ke
- Department of Cosmetology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Laser Cosmetology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, China.
| | - Liqun Li
- Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
5
|
Biales AD, Bencic DC, Flick RW, Toth GP. Effects of Age and Exposure Duration on the Sensitivity of Early Life Stage Fathead Minnow (Pimephales promelas) to Waterborne Propranolol Exposure. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:807-820. [PMID: 38146914 PMCID: PMC11683668 DOI: 10.1002/etc.5814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/22/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
Propranolol is a heavily prescribed, nonspecific beta-adrenoceptor (bAR) antagonist frequently found in wastewater effluents, prompting concern over its potential to adversely affect exposed organisms. In the present study, the transcriptional responses of 4, 5, and 6 days postfertilization (dpf) ±1 h fathead minnow, exposed for 6, 24, or 48 h to 0.66 or 3.3 mg/L (nominal) propranolol were characterized using RNA sequencing. The number of differentially expressed genes (DEGs) was used as an estimate of sensitivity. A trend toward increased sensitivity with age was observed; fish >7 dpf at the end of exposure were particularly sensitive to propranolol. The DEGs largely overlapped among treatment groups, suggesting a highly consistent response that was independent of age. Cluster analysis was performed using normalized count data for unexposed and propranolol-exposed fish. Control fish clustered tightly by age, with fish ≥7 dpf clustering away from younger fish, reflecting developmental differences. When clustering was conducted using exposed fish, in cases where propranolol induced a minimal or no transcriptional response, the results mirrored those of the control fish and did not appreciably cluster by treatment. In treatment groups that displayed a more robust transcriptional response, the effects of propranolol were evident; however, fish <7 dpf clustered away from older fish, despite having similar numbers of DEGs. Increased sensitivity at 7 dpf coincided with developmental milestones with the potential to alter propranolol pharmacokinetics or pharmacodynamics, such as the onset of exogenous feeding and gill functionality as well as increased systemic expression of bAR. These results may have broader implications because toxicity testing often utilizes fish <4 dpf, prior to the onset of these potentially important developmental milestones, which may result in an underestimation of risk for some chemicals. Environ Toxicol Chem 2024;43:807-820. Published 2023. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Adam D. Biales
- Center for Computational Toxicology and Chemistry, US Environmental Protection Agency, Cincinnati, Ohio
| | - David C. Bencic
- Center for Computational Toxicology and Chemistry, US Environmental Protection Agency, Cincinnati, Ohio
| | - Robert W. Flick
- Center for Computational Toxicology and Chemistry, US Environmental Protection Agency, Cincinnati, Ohio
| | - Gregory P. Toth
- Center for Computational Toxicology and Chemistry, US Environmental Protection Agency, Cincinnati, Ohio
| |
Collapse
|
6
|
Caffarelli C, Santamaria F, Piro E, Basilicata S, D'Antonio L, Tchana B, Bernasconi S, Corsello G. Advances for pediatricians in 2022: allergy, anesthesiology, cardiology, dermatology, endocrinology, gastroenterology, genetics, global health, infectious diseases, metabolism, neonatology, neurology, oncology, pulmonology. Ital J Pediatr 2023; 49:115. [PMID: 37679850 PMCID: PMC10485969 DOI: 10.1186/s13052-023-01522-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023] Open
Abstract
The last year saw intensive efforts to advance knowledge in pediatric medicine. This review highlights important publications that have been issued in the Italian Journal of Pediatrics in 2022. We have chosen papers in the fields of allergy, anesthesiology, cardiology, dermatology, endocrinology, gastroenterology, genetics, global health, infectious diseases, metabolism, neonatology, neurology, oncology, pulmonology. Novel valuable developments in epidemiology, pathophysiology, prevention, diagnosis and treatment that can rapidly change the approach to diseases in childhood have been included and discussed.
Collapse
Affiliation(s)
- Carlo Caffarelli
- Clinica Pediatrica, Department of Medicine and Surgery, Azienda Ospedaliera- Universitaria, University of Parma, Parma, Italy.
| | - Francesca Santamaria
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Ettore Piro
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Simona Basilicata
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Lorenzo D'Antonio
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Bertrand Tchana
- Cardiologia Pediatrica, Azienda-Ospedaliero Universitaria, Parma, Italy
| | | | - Giovanni Corsello
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| |
Collapse
|
7
|
Yu J, Ke L, Zhou J, Ding C, Yang H, Yan D, Yu C. Stachydrine Relieved the Inflammation and Promoted the Autophagy in Diabetes Retinopathy Through Activating the AMPK/SIRT1 Signaling Pathway. Diabetes Metab Syndr Obes 2023; 16:2593-2604. [PMID: 37649589 PMCID: PMC10464895 DOI: 10.2147/dmso.s420253] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023] Open
Abstract
Background Diabetes retinopathy (DR) is a chronic, progressive, and potentially harmful retinal disease associated with persistent hyperglycemia. Autophagy is a lysosome-dependent degradation pathway that widely exists in eukaryotic cells, which has recently been demonstrated to participate in the DR development. Stachydrine (STA) is a water-soluble alkaloid extracted from Leonurus heterophyllus. This study aimed to explore the effects of STA on the autophagy in DR progression in vivo and in vitro. Methods High glucose-treated human retinal microvascular endothelial cells (HRMECs) and STA-treated rats were used to establish DR model. The reactive oxygen species (ROS) and inflammatory factor levels (TNF-α, IL-1β, and IL-6) were determined using corresponding kits. Additionally, the cell growth was analyzed using CCK-8 and EdU assays. Besides, LC3BII, p62, p-AMPKα, AMPKα, and SIRT1 protein levels were measured using Western blot. The LC3BII and SIRT1 expressions were also determined using immunofluorescence. Results The results showed that STZ decreased the ROS and inflammatory factor levels in the HG-treated HRMECs. Besides, after STA treatment, the beclin-1, LC3BII, p-AMPKα, and SIRT1 levels were increased, and p62 was decreased in the HG-treated HRMECs and the retinal tissue of STZ-treated rats. Conclusion In conclusion, this study demonstrated that STA effectively relieved the inflammation and promoted the autophagy in DR progression in vivo and in vitro through activating the AMPK/SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Jiewei Yu
- Department of Ophthalmology, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332000, People’s Republic of China
| | - Lingling Ke
- Department of Ophthalmology, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332000, People’s Republic of China
| | - Jingjing Zhou
- Image Center, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332000, People’s Republic of China
| | - Chunyan Ding
- Department of Ophthalmology, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332000, People’s Republic of China
| | - Hui Yang
- Department of Ophthalmology, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332000, People’s Republic of China
| | - Dongbiao Yan
- Department of Endocrinology, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332000, People’s Republic of China
| | - Chengbi Yu
- Department of Endocrinology, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332000, People’s Republic of China
| |
Collapse
|
8
|
Cammalleri M, Amato R, Dal Monte M, Filippi L, Bagnoli P. The β3 adrenoceptor in proliferative retinopathies: "Cinderella" steps out of its family shadow. Pharmacol Res 2023; 190:106713. [PMID: 36863427 DOI: 10.1016/j.phrs.2023.106713] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/14/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023]
Abstract
In the retina, hypoxic condition leads to overgrowing leaky vessels resulting in altered metabolic supply that may cause impaired visual function. Hypoxia-inducible factor-1 (HIF-1) is a central regulator of the retinal response to hypoxia by activating the transcription of numerous target genes, including vascular endothelium growth factor, which acts as a major player in retinal angiogenesis. In the present review, oxygen urge by the retina and its oxygen sensing systems including HIF-1 are discussed in respect to the role of the beta-adrenergic receptors (β-ARs) and their pharmacologic manipulation in the vascular response to hypoxia. In the β-AR family, β1- and β2-AR have long been attracting attention because their pharmacology is intensely used for human health, while β3-AR, the third and last cloned receptor is no longer increasingly emerging as an attractive target for drug discovery. Here, β3-AR, a main character in several organs including the heart, the adipose tissue and the urinary bladder, but so far a supporting actor in the retina, has been thoroughly examined in respect to its function in retinal response to hypoxia. In particular, its oxygen dependence has been taken as a key indicator of β3-AR involvement in HIF-1-mediated responses to oxygen. Hence, the possibility of β3-AR transcription by HIF-1 has been discussed from early circumstantial evidence to the recent demonstration that β3-AR acts as a novel HIF-1 target gene by playing like a putative intermediary between oxygen levels and retinal vessel proliferation. Thus, targeting β3-AR may implement the therapeutic armamentarium against neovascular pathologies of the eye.
Collapse
Affiliation(s)
| | - Rosario Amato
- Department of Biology, University of Pisa, Pisa, Italy
| | | | - Luca Filippi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paola Bagnoli
- Department of Biology, University of Pisa, Pisa, Italy.
| |
Collapse
|