1
|
Wang L, Lee E, Barlaz MA, de Los Reyes FL. Linking microbial population dynamics in anaerobic bioreactors to food waste type and decomposition stage. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 186:77-85. [PMID: 38865907 DOI: 10.1016/j.wasman.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/18/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
A key question in anaerobic microbial ecology is how microbial communities develop over different stages of waste decomposition and whether these changes are specific to waste types. We destructively sampled over time 26 replicate bioreactors cultivated on fruit/vegetable waste (FVW) and meat waste (MW) based on pre-defined waste components and composition. To characterize community shifts, we examined 16S rRNA genes from both the leachate and solid fractions of the waste. Waste decomposition occurred faster in FVW than MW, as accumulation of ammonia in MW reactors led to inhibition of methanogenesis. We identified population succession during different stages of waste decomposition and linked specific populations to different waste types. Community analyses revealed underrepresentation of methanogens in the leachate fractions, emphasizing the importance of consistent and representative sampling when characterizing microbial communities in solid waste.
Collapse
Affiliation(s)
- Ling Wang
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC 27695
| | - Eunyoung Lee
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC 27695
| | - Morton A Barlaz
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC 27695
| | - Francis L de Los Reyes
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC 27695.
| |
Collapse
|
2
|
Wei Y, Xu D, Xu M, Zheng P, Fan L, Leng L, Kapusta K. Hydrothermal liquefaction of municipal sludge and its products applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168177. [PMID: 37923270 DOI: 10.1016/j.scitotenv.2023.168177] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
Hydrothermal liquefaction (HTL) is an effective medium-temperature, high-pressure thermochemical process to dispose municipal sludge (MS), and biocrude (a crude bio-oil) is its main product. Many efforts are continued extensively to improve conversion efficiency and to promote industrial application of this technology. This work focuses on critical influencing factors (e.g., reaction temperature, residence time, atmosphere, solvent, catalyst, and pretreatment) and fundamental transformation mechanisms of main components (i.e., lipids, proteins, and carbohydrates) in MS HTL. It also analyzes migration behavior of heavy metals during MS HTL, which can provide a reference for subsequent recovery of nutrients from HTL products. Moreover, the applications of MS HTL products are systematically expounded, and potential challenges and opportunities are highlighted as well. It is necessary to develop advanced methods of catalyst recovery and innovative biocrude upgrading methods so as to reduce HTL investment and operating costs. Reusing aqueous phase and solid phase products as reaction medium and catalyst carrier separately after MS HTL is feasible to realize resource utilization of MS. This information can provide valuable guidance to promote MS HTL industrialization.
Collapse
Affiliation(s)
- Ya Wei
- Key Laboratory of Thermo-Fluid Science & Engineering, Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Donghai Xu
- Key Laboratory of Thermo-Fluid Science & Engineering, Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China.
| | - Mingxin Xu
- Key Laboratory of Thermo-Fluid Science & Engineering, Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Peiyao Zheng
- Key Laboratory of Thermo-Fluid Science & Engineering, Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Liangliang Fan
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources, Environmental & Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Lijian Leng
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Krzysztof Kapusta
- Główny Instytut Górnictwa, Central Mining Institute, Plac Gwarków 1, 40-166 Katowice, Poland
| |
Collapse
|
3
|
Elgarahy AM, Eloffy MG, Alengebawy A, El-Sherif DM, Gaballah MS, Elwakeel KZ, El-Qelish M. Sustainable management of food waste; pre-treatment strategies, techno-economic assessment, bibliometric analysis, and potential utilizations: A systematic review. ENVIRONMENTAL RESEARCH 2023; 225:115558. [PMID: 36842700 DOI: 10.1016/j.envres.2023.115558] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Food waste (FW) contains many nutritional components such as proteins, lipids, fats, polysaccharides, carbohydrates, and metal ions, which can be reused in some processes to produce value-added products. Furthermore, FW can be converted into biogas, biohydrogen, and biodiesel, and this type of green energy can be used as an alternative to nonrenewable fuel and reduce reliance on fossil fuel sources. It has been demonstrated in many reports that at the laboratory scale production of biochemicals using FW is as good as pure carbon sources. The goal of this paper is to review approaches used globally to promote turning FW into useable products and green energy. In this context, the present review article highlights deeply in a transdisciplinary manner the sources, types, impacts, characteristics, pre-treatment strategies, and potential management of FW into value-added products. We find that FW could be upcycled into different valuable products such as eco-friendly green fuels, organic acids, bioplastics, enzymes, fertilizers, char, and single-cell protein, after the suitable pre-treatment method. The results confirmed the technical feasibility of all the reviewed transformation processes of FW. Furthermore, life cycle and techno-economic assessment studies regarding the socio-economic, environmental, and engineering aspects of FW management are discussed. The reviewed articles showed that energy recovery from FW in various forms is economically feasible.
Collapse
Affiliation(s)
- Ahmed M Elgarahy
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt; Egyptian Propylene and Polypropylene Company (EPPC), Port-Said, Egypt.
| | - M G Eloffy
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt.
| | - Ahmed Alengebawy
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, PR China.
| | - Dina M El-Sherif
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt.
| | - Mohamed S Gaballah
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt; College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing, 100083, PR China.
| | - Khalid Z Elwakeel
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt.
| | - Mohamed El-Qelish
- Water Pollution Research Department, National Research Centre, El Buhouth St., Dokki, 12622, Cairo, Egypt.
| |
Collapse
|
4
|
Abstract
Second-generation biomass is an underexploited resource, which can lead to valuable products in a circular economy. Available locally as food waste, gardening and pruning waste or agricultural waste, second-generation biomass can be processed into high-valued products through a flexi-feed small-scale biorefinery. The flexi-feed and the use of local biomass ensure the continuous availability of feedstock at low logistic costs. However, the viability and sustainability of the biorefinery must be ensured by the design and optimal operation. While the design depends on the available feedstock and the desired products, the optimisation requires the availability of a mathematical model of the biorefinery. This paper details the design and modelling of a small-scale biorefinery in view of its optimisation at a later stage. The proposed biorefinery comprises the following processes: steam refining, anaerobic digestion, ammonia stripping and composting. The models’ integration and the overall biorefinery operation are emphasised. The simulation results assess the potential of the real biowaste collected in a commune in Flanders (Belgium) to produce oligosaccharides, lignin, fibres, biogas, fertiliser and compost. This represents a baseline scenario, which can be subsequently employed in the evaluation of optimised solutions. The outlined approach leads to better feedstocks utilisation and product diversification, raising awareness on the impact and importance of small-scale biorefineries at a commune level.
Collapse
|
5
|
Yang S, Xue W, Liu P, Lu X, Wu X, Sun L, Zan F. Revealing the methanogenic pathways for anaerobic digestion of key components in food waste: Performance, microbial community, and implications. BIORESOURCE TECHNOLOGY 2022; 347:126340. [PMID: 34780907 DOI: 10.1016/j.biortech.2021.126340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 05/23/2023]
Abstract
Anaerobic digestion (AD) process is widely considered the most sustainable technology for food waste (FW) disposal due to its advantage of biomethane recovery and beneficial environmental consequences. However, the effects of key components in FW (i.e. starchy food, vegetables, fruits, and meats) on AD process and their methanogenic pathways remain unclear. In this study, the biochemical methane potential (BMP) of cooked rice, cabbage, banana peel, pork and local FW was 288, 283, 254, 630, and 476 NmL CH4/g VSadded, with t80 (time required for 80% methane produced) of 3, 9, 3, 11 and 11 days, respectively. Kinetic analysis suggested diverse hydrolysis rates (0.104-0.679 d-1) and specific methane yields (39-119 NmL CH4/g VSadded/d). The relative abundances of key methanogens in the reactors were diverse, leading to the variation in acetoclastic and hydrogenotrophic methanogenic pathways. This study provides fundamental information for the operation of AD systems with different FW compositions.
Collapse
Affiliation(s)
- Si Yang
- School of Environmental Science and Engineering, Key Laboratory of Water & Wastewater Treatment (HUST), MOHURD and Hubei Provincial Engineering Research Center for Water Quality Safety and Pollution Control, Huazhong University of Science and Technology, Wuhan, China
| | - Weiqi Xue
- Research Institute of Tsinghua University in Shenzhen, Shenzhen, China
| | - Pingbo Liu
- China Urban Construction Research Institute Limited, Beijing, China
| | - Xiejuan Lu
- School of Environmental Science and Engineering, Key Laboratory of Water & Wastewater Treatment (HUST), MOHURD and Hubei Provincial Engineering Research Center for Water Quality Safety and Pollution Control, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohui Wu
- School of Environmental Science and Engineering, Key Laboratory of Water & Wastewater Treatment (HUST), MOHURD and Hubei Provincial Engineering Research Center for Water Quality Safety and Pollution Control, Huazhong University of Science and Technology, Wuhan, China
| | - Linquan Sun
- Shenzhen Green-Tech Institute of Applied Environmental Technology Co., Ltd, Shenzhen, China
| | - Feixiang Zan
- School of Environmental Science and Engineering, Key Laboratory of Water & Wastewater Treatment (HUST), MOHURD and Hubei Provincial Engineering Research Center for Water Quality Safety and Pollution Control, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
6
|
Comparative Fuel Yield from Anaerobic Digestion of Emerging Waste in Food and Brewery Systems. ENERGIES 2022. [DOI: 10.3390/en15041538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Food waste (FW), a major part of the US waste stream, causes greenhouse gases within landfills, but there is an opportunity to divert FW to anaerobic digestion (AD) facilities that produce biogas and digestate fertilizer. The composition of FW inputs to AD determines the value of these products. This study provides insight into the effect of waste composition on the quality of AD products by first characterizing the biogas and digestate quality of anaerobically digested FW from four diets (paleolithic, ketogenic, vegetarian, and omnivorous), and then estimating the difference in biogas produced from codigested FW and brewery waste (BW). Waste feedstock mixtures were incubated in lab-scale bioreactors for 21 days with live inoculum. Biogas quality was monitored for 21–30 days in four trials. Samples were analyzed using a gas chromatograph for detection of methane (CH4) and carbon dioxide (CO2). The composition of the waste inputs had a significant impact on the quality of biogas but not on the quality of the digestate, which has implications for the value of post-AD fertilizer products. Wastes with higher proportions of proteins and fats enhanced biogas quality, unlike wastes that were rich in soluble carbohydrates. Codigestion of omnivorous food waste with carbon-rich agricultural wastes (AW) improved biogas quality, but biogas produced from BW does not necessarily improve with increasing amounts of AW in codigestion.
Collapse
|
7
|
González-Castaño M, Kour MH, González-Arias J, Baena-Moreno FM, Arellano-Garcia H. Promoting bioeconomy routes: From food waste to green biomethane. A profitability analysis based on a real case study in eastern Germany. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113788. [PMID: 34562817 DOI: 10.1016/j.jenvman.2021.113788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 08/16/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Profitability studies are needed to establish the potential pathways required for viable biomethane production in the Brandenburg region of Germany. This work study the profitability of a potential biomethane production plant in the eastern German region of Brandenburg, through a specific practical scenario with data collected from a regional biogas plant located in Alteno (Schradenbiogas GmbH & Co. KG). Several parameters with potential economic influence such as distance of the production point to the grid, waste utilization percentage, and investment, were analyzed. The results illustrate a negative overall net present value with the scenario of no governmental investment, even when considering trading the CO2 obtained throughout the process. Subsidies needed to reach profitability varied with distance from 13.5 €/MWh to 19.3 €/MWh. For a fixed distance of 15 kms, the importance of percentage of waste utilization was examined. Only 100% of waste utilization and 75% of waste utilization would reach profitability under a reasonable subsidies scheme (16.3 and 18.8 €/MWh respectively). Concerning the importance of investment, a subsidized investment of at least 70% is demanded for positive net present values. Besides, the sensitivity analysis remarks the energy consumption of the biogas upgrading stage, the electricity price, and the energy consumption of biogas production as major parameters to be tackled for the successful implementation of biogas upgrading plants. The results here obtained invite to ponder about potential strategies to further improve the economic viability of this kind of renewable projects. In this line, using the CO2 separated to produce added-value chemicals can be an interesting alternative.
Collapse
Affiliation(s)
- M González-Castaño
- Department of Process and Plant Technology. Brandenburg University of Technology (BTU) Cottbus-Senftenberg, Platz der Deutschen 1, Cottbus, 03046, Germany
| | - M Hani Kour
- Department of Process and Plant Technology. Brandenburg University of Technology (BTU) Cottbus-Senftenberg, Platz der Deutschen 1, Cottbus, 03046, Germany
| | - J González-Arias
- Department of Process and Plant Technology. Brandenburg University of Technology (BTU) Cottbus-Senftenberg, Platz der Deutschen 1, Cottbus, 03046, Germany; Chemical and Environmental Bioprocess Engineering Group, Natural Resources Institute (IRENA), University of León, León, 24071, Spain
| | - Francisco M Baena-Moreno
- Department of Process and Plant Technology. Brandenburg University of Technology (BTU) Cottbus-Senftenberg, Platz der Deutschen 1, Cottbus, 03046, Germany; Chemical and Environmental Engineering Department, Technical School of Engineering, University of Seville, C/ Camino de los Descubrimientos s/n, Sevilla, 41092, Spain.
| | - H Arellano-Garcia
- Department of Process and Plant Technology. Brandenburg University of Technology (BTU) Cottbus-Senftenberg, Platz der Deutschen 1, Cottbus, 03046, Germany
| |
Collapse
|
8
|
Avoidable Household Food Waste: Diagnosing the Links between Causes and Composition. RECYCLING 2021. [DOI: 10.3390/recycling6040080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Problems associated with the wastage of food intended for human consumption are well known and the discarding of edible but unconsumed food—avoidable food waste—is clearly undesirable. Interventions to reduce avoidable food waste need to be suitably informed: understanding the causes and consequences of avoidable food waste is instructive in this regard. One hitherto unexplored approach to understand better the causes of food waste is to elucidate associations between the composition of avoidable food waste and the reasons why it is generated. If such associations can be established, data relating to the composition of avoidable food waste can contribute evidence to underpin interventions intended to prevent or reduce avoidable food waste. The aim of this study was therefore to explore links between the causes of avoidable food waste and its composition, and thereby contribute to the development of management measures. Information relating the commonly reported causes of avoidable food waste and its composition (part-consumed, whole-unused and leftovers) was gathered via a series of participatory workshops involving university students. Outcomes of the workshops indicated that individual causes of avoidable food waste rarely lead exclusively to a single type of avoidable food waste, but some relationships were evident. Five of the 13 causal factors explored were considered to lead to all three types of avoidable food waste; a further five were considered to lead mainly to part-consumed and whole-unused food waste. Potential interventions to effect positive change are explored; the value of classifying avoidable food waste to guide interventions was evident, although approaches would need to be aligned with the observed composition of avoidable food waste and the method(s) of intervention considered. Applications of the approach and outcomes of this study are also considered in a policy context.
Collapse
|
9
|
Addae G, Oduro-Kwarteng S, Fei-Baffoe B, Rockson MAD, Ribeiro JXF, Antwi E. Market waste composition analysis and resource recovery potential in Kumasi, Ghana. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2021; 71:1529-1544. [PMID: 34424145 DOI: 10.1080/10962247.2021.1969296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 06/08/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Municipal solid waste constitutes significant quantities of waste generated in markets. Markets produce substantial quantities of fruit and vegetable waste, a source of nuisance in landfills. In Ghana, market waste (MW) appears to be unexplored and has limited data available. The need for MW valorization in the face of a circular economy requires reliable knowledge of MW properties. The study determined the waste compositions of selected major markets from two different classes of settlement in Kumasi and the seasonal effect on the compositions. The chemical properties of organics were determined via proximate and ultimate analyses and the theoretical biomethane potential, with the Buswell equation. From the results, MW composition in the wet season is 59.6% organic, 11.4% plastics, 8.3% paper, 5.3% textiles, 4.7% inert, 4.1% miscellaneous, 2.1% metal, 1.8% glass and 2.8% leather. The dry season values are 45.8% organic, 14.6% plastics, 12.7% paper, 7.3% textiles, 6.4% inert, 4.3% miscellaneous, 2.3% metal, 2.6% glass and 3.9% leather. An ANOVA indicates significant differences between the two seasons and some waste components; organics, plastics, paper and cardboard, leather, and inert. The high calorific values recorded ranged from 14.8 MJ kg-1 to 16.6 MJ kg-1. The biogas potential and biomethane content ranged from 775.3 l/kgVS to 828.9 L/kgVS and 50% to 57% respectively.Implications: Market waste (MW) in Ghana appears to be an unchartered area and there is limited data on market generation and composition. The need for MW valorization requires reliable knowledge on MW properties. This study explores MW characteristics of six major market from two different classes of settlements in a developing country. Study findings suggest that the quantities of market organics are higher than household waste. Again, MW composition can be influenced by season and geographical location. Furthermore, the study establishes the potential of MW in considerable quantities of biogas and methane generation, in comparison with household waste.
Collapse
Affiliation(s)
- Gloria Addae
- Department of Civil Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Sampson Oduro-Kwarteng
- Department of Civil Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Bernard Fei-Baffoe
- Environmental Science Department, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | | | - Edward Antwi
- Waste and Resource Management Department, University of Rostock, Rostock, Germany
| |
Collapse
|
10
|
A New Biorefinery Approach for the Full Valorisation of Anchovy Residues: Use of the Sludge Generated during the Extraction of Fish Oil as a Nitrogen Supplement in Anaerobic Digestion. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112110163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Several anchovies species are captured all over the world; they are consumed fresh but also preserved by the industry, either by brine-fermentation or canning in oil. The industrial process generates large amounts of residue (about 50% of the original fish biomass) that is generally used to produce fish flour. In this paper, the advancement of a recently proposed process for the full valorisation of anchovies aimed at the extraction of fish oil (to be used as an omega-3 source) and at the production of biomethane through anaerobic digestion is presented. Particularly, in the experiments presented, a co-digestion of anchovy sludge—used as a nitrogen supplement—and market waste (5% and 95% on a Total Solids basis) was performed. Since the proposed extraction process uses, as a green-solvent, d-limonene, the well-known problems of toxicity for the anaerobic biomass must be overcome during the digestion process. As discussed below, the granular activated carbon (GAC) is used to reclaim and improve anaerobic digestion processes in a reactor displaying clear signs of inhibition. In fact, GAC demonstrates multiple benefits for anaerobic digestion, such as adsorption of toxic substances, biomass selection, and triggering of direct interspecies electron transfer (DIET).
Collapse
|
11
|
Song Y, Liu J, Chen M, Zheng J, Gui S, Wei Y. Application of mixture design to optimize organic composition of carbohydrate, protein, and lipid on dry anaerobic digestion of OFMSW: Aiming stability and efficiency. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
12
|
Visual colorimetric detection of ammonia under gaseous and aqueous state: Approach on cesium lead bromide perovskite-loaded porous electrospun nanofibers. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Dai T, Yang Y, Lee R, Fleischer AS, Wemhoff AP. Life cycle environmental impacts of food away from home and mitigation strategies-a review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 265:110471. [PMID: 32292177 DOI: 10.1016/j.jenvman.2020.110471] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/27/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Food production and consumption are major drivers of global environmental change, endangering the safe operating space of many environmental areas. Globally, there has been a growing trend of dining out, termed food away from home (FAFH) here, but its environmental sustainability has received insufficient attention. In this review, we examine studies quantifying the life-cycle environmental impacts of FAFH and identify mitigation strategies across the food supply chain. Overall, previous life cycle assessment (LCA) studies focused on the composition of FAFH meals and pre-use life cycle stages, especially food production. Greenhouse gas (GHG) emissions of FAFH meals range from 0.134 kg CO2 e/meal to 13.2 kg CO2 e/meal for school canteen meals, and from 0.60 kg CO2 e/meal to 9.6 kg CO2 e/meal for other catering services. Meat ingredients are the dominant source in a variety of environmental impact categories, and the food production stage usually accounts for over half of the total GHG emissions in the FAFH life cycle. Supply side mitigation strategies include advancing farming practices, updating cold transportation technology, and improving building energy efficiency. Demand side mitigation focuses on dietary change towards meals with less meat ingredients, with nudging and sustainable menu-designing as the two primary groups of strategies. Areas of focus for LCA include improving modeling of building energy consumption related to food consumption, advancing uncertainty characterization of life cycle results, and capturing geographical variations in food production.
Collapse
Affiliation(s)
- Tao Dai
- Department of Mechanical Engineering, Villanova University, 800 Lancaster Ave., Villanova, PA, 19085, USA.
| | - Yi Yang
- Department of Bioproducts and Biosystems, University of Minnesota, St Paul, 1390 Eckles Ave, St Paul, MN, 55108, USA; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China.
| | - Ross Lee
- Sustainable Engineering Program, Villanova University, 800 Lancaster Ave., Villanova, PA, 19085, USA
| | - Amy S Fleischer
- College of Engineering, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Aaron P Wemhoff
- Department of Mechanical Engineering, Villanova University, 800 Lancaster Ave., Villanova, PA, 19085, USA.
| |
Collapse
|
14
|
Techno-Economic Evaluation of Food Waste Fermentation for Value-Added Products. ENERGIES 2020. [DOI: 10.3390/en13020436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Food waste (FW) is one of the most critical problems in the world. Most FW will be sent to landfills, generally accompanying some significant disadvantages to the surrounding environment. Fermentation is considered as another disposal method to deal with FW. In this study, using a techno-economic analysis (TEA) method, an evaluation of the economic impact of three different scenarios of FW fermentation is carried out. A SuperPro Designer V9.0 simulation was used to model a commercial scale processing plant for each scenario, namely, a FW fermentation process producing hydrolysis enzymes and featuring a 2-step distillation system, a FW fermentation process without enzymes, using a 2-step distillation system, and a FW fermentation process without enzymes, using a 1-step distillation system. Discounted cash flow analysis is used to estimate the minimum ethanol selling price (MESP), where the lowest MESP result of $2.41/gal ($0.64/L) of ethanol is found for the second aforementioned scenario, showing that, even without enzymes in FW fermentation, the product cost can be competitive when compared to the other scenarios considered in this study. This project thus reflects a significant positive economic impact while minimizing the environmental footprint of a commercial production facility.
Collapse
|
15
|
Jaunich MK, Levis JW, DeCarolis JF, Barlaz MA, Ranjithan SR. Solid Waste Management Policy Implications on Waste Process Choices and Systemwide Cost and Greenhouse Gas Performance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:1766-1775. [PMID: 30633859 DOI: 10.1021/acs.est.8b04589] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Solid waste management (SWM) is a key function of local government and is critical to protecting human health and the environment. Development of effective SWM strategies should consider comprehensive SWM process choices and policy implications on system-level cost and environmental performance. This analysis evaluated cost and select environmental implications of SWM policies for Wake County, North Carolina using a life-cycle approach. A county-specific data set and scenarios were developed to evaluate alternatives for residential municipal SWM, which included combinations of a mixed waste material recovery facility (MRF), anaerobic digestion, and waste-to-energy combustion in addition to existing SWM infrastructure (composting, landfilling, single stream recycling). Multiple landfill diversion and budget levels were considered for each scenario. At maximum diversion, the greenhouse gas (GHG) mitigation costs ranged from 30 to 900 $/MTCO2e; the lower values were when a mixed waste MRF was used, and the higher values when anaerobic digestion was used. Utilization of the mixed waste MRF was sensitive to the efficiency of material separation and operating cost. Maintaining the current separate collection scheme limited the potential for cost and GHG reductions. Municipalities seeking to cost-effectively increase landfill diversion while reducing GHGs should consider waste-to-energy, mixed waste separation, and changes to collection.
Collapse
Affiliation(s)
- Megan K Jaunich
- North Carolina State University , Department of Civil, Construction, and Environmental Engineering , Campus Box 7908 , Raleigh , North Carolina 27695-7908 , United States
| | - James W Levis
- North Carolina State University , Department of Civil, Construction, and Environmental Engineering , Campus Box 7908 , Raleigh , North Carolina 27695-7908 , United States
| | - Joseph F DeCarolis
- North Carolina State University , Department of Civil, Construction, and Environmental Engineering , Campus Box 7908 , Raleigh , North Carolina 27695-7908 , United States
| | - Morton A Barlaz
- North Carolina State University , Department of Civil, Construction, and Environmental Engineering , Campus Box 7908 , Raleigh , North Carolina 27695-7908 , United States
| | - S Ranji Ranjithan
- North Carolina State University , Department of Civil, Construction, and Environmental Engineering , Campus Box 7908 , Raleigh , North Carolina 27695-7908 , United States
| |
Collapse
|
16
|
Ximenes FA, Björdal C, Kathuria A, Barlaz MA, Cowie AL. Improving understanding of carbon storage in wood in landfills: Evidence from reactor studies. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 85:341-350. [PMID: 30803589 DOI: 10.1016/j.wasman.2019.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 12/13/2018] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
Approximately 1.5 million tonnes (Mt) of wood waste are disposed of in Australian landfills annually. Recent studies have suggested that anaerobic decay levels of wood in landfills are low, although knowledge of the decay of individual wood species is limited. The objective of this study was to establish the extent of carbon loss for wood species of commercial importance in Australia including radiata pine, blackbutt, spotted gum and mountain ash. Experiments were conducted under laboratory conditions designed to simulate optimal anaerobic biodegradation in a landfill. Bacterial degradation, identified by both light microscopy and electron microscopy, occurred to a varying degree in mountain ash and spotted gum wood. Fungal decay was not observed in any wood samples. Mountain ash, the species with the highest methane yield (20.9 mL CH4/g) also had the highest holocellulose content and the lowest acid-insoluble lignin and extractive content. As the decay levels for untreated radiata pine were very low, it was not possible to determine whether impregnation of radiata pine with chemical preservatives had any impact on decay. Carbon losses estimated from gas generation were below 5% for all species tested. Carbon losses as estimated by gas generation were lower than those derived by mass balance in most reactors, suggesting that mass loss does not necessarily equate to carbon emissions. There was no statistical difference between decay of blackbutt derived from plantation and older, natural forests. Addition of paper as an easily digestible feedstock did not increase carbon loss for the two wood species tested and the presence of radiata pine had an inhibitory effect on copy paper decay. Although differences between some of the wood types were found to be statistically significant, these differences were detected for wood with carbon losses that did not exceed 5%. The suggested factor for carbon loss for wood in landfills in Australia is 1.4%. This study confirms that disposal of wood in landfills in Australia results in long-term storage of carbon, with only minimal conversion of carbon to gaseous end products.
Collapse
Affiliation(s)
- Fabiano A Ximenes
- Forest Science Unit, New South Wales Department of Primary Industries, Level 12, 10 Valentine Ave, Parramatta, NSW 2150, Australia.
| | - Charlotte Björdal
- Department of Marine Sciences, University of Gothenburg (UGOT), Box 461, SE-405 30 Gothenburg, Sweden
| | - Amrit Kathuria
- Forest Science Unit, New South Wales Department of Primary Industries, Level 12, 10 Valentine Ave, Parramatta, NSW 2150, Australia
| | - Morton A Barlaz
- Dept. of Civil, Construction, & Environmental Eng., North Carolina State University, Box 7908, Raleigh, NC 27695-7908, USA
| | - Annette L Cowie
- NSW Department of Primary Industries, Beef Industry Centre, Trevenna Rd. University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
17
|
Krause MJ. Intergovernmental panel on climate change's landfill methane protocol: Reviewing 20 years of application. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2018; 36:827-840. [PMID: 30168388 DOI: 10.1177/0734242x18793935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The Intergovernmental Panel on Climate Change (IPCC) protocol for predicting national methane emission inventories from landfills was published 22 years ago in the 1996 Revised Guidelines. There currently exists a broad dataset to review landfill parameters and reported values and their appropriateness in use and application in a range of site-specific, regional, and national estimates. Degradable organic carbon (DOC) content was found to range from 0.0105 to 0.65 g C/g waste, with an average of 0.166 g C/g waste. The fraction of DOC that would anaerobically degrade (DOC f) was reported to range from 50-83%, whereas higher and lower values have been experimentally determined for a variety of waste components, such as wood (0-50%) and food waste (50-75%). Where field validation occurred for the methane correction factor, values were substantially lower than defaults. The fraction of methane in anaerobic landfill gas ( F) default of 50% is almost universally applied and is appropriate for cellulosic wastes. The methane generation rate constant ( k) varied widely from 0.01 to 0.51 y-1, representing half-lives from 1 to 69 years. Methane oxidation (OX) default values of 0 and 10% may be valid, but values greater than 30% have been reported for porous covers at managed sites. The IPCC protocol is a practical tool with uncertainties and limitations that must be addressed when used for purposes other than developing inventories.
Collapse
Affiliation(s)
- Max J Krause
- Oak Ridge Institute for Science and Education, Cincinnati, USA
| |
Collapse
|
18
|
Surra E, Bernardo M, Lapa N, Esteves I, Fonseca I, Mota JP. Maize cob waste pre-treatments to enhance biogas production through co-anaerobic digestion with OFMSW. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 72:193-205. [PMID: 29169860 DOI: 10.1016/j.wasman.2017.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/26/2017] [Accepted: 11/01/2017] [Indexed: 06/07/2023]
Abstract
In the present work, the enhancement of biogas and methane yields through anaerobic co-digestion of the pre-hydrolised Organic Fraction of Municipal Solid Wastes (hOFMSW) and Maize Cob Wastes (MCW) in a lab-scale thermophilic anaerobic reactor was tested. In order to increase its biodegradability, MCW were submitted to an initial pre-treatment screening phase as follows: (i) microwave (MW) irradiation catalysed by NaOH, (ii) MW catalysed by glycerol in water and alkaline water solutions, (iii) MW catalysed by H2O2 with pH of 9.8 and (iv) chemical pre-treatment at room temperature catalysed by H2O2 with 4 h reaction time. The pre-treatments cataysed by H2O2 were performed with 2% MCW (wMCW/v alkaline water) at ratios of 0.125, 0.25, 0.5 and 1.0 (wH2O2/wMCW). The pre-treatment that presented the most favourable balance between sugars, lignin, cellulose and hemicellulose solubilisations, as well as low production of phenolic compound and furfural (inhibitors), was the chemical pre-treatment catalysed by H2O2, at room temperature, with a ratio of 0.5 wH2O2/wMCW (Pre1). This Pre1 was then optimised testing reaction times of 1, 2 and 3 days at a different pH (11.5) and MCW percentage (10% w/v). The optimised pre-treatment that presented the best results, considering the same criteria defined above, was the one carried out during 3 days, at pH 9.8 and 10% MCW w/v (Pre2). The anaerobic reactor was initially fed with the hOFMSW obtained from the hydrolysis tank of an industrial AD plant. The hOFMSW was than co-digested with MCW submitted to the pre-treatment Pre1. In another assay, hOFMSW was co-digested with MCW submitted pre-treatment Pre 2. The co-digestion of hOFMSW + Pre1 increased the biogas yield by 38.9% and methane yield by 29.7%, when compared to the results obtained with hOFMSW alone. The co-digestion of hOFMSW + Pre2 increased biogas yield by 46.0% and CH4 yield by 36.3%. In both cases, the methane content obtained in the biogas streams was above 66% v/v. These results show that pre-treatment with H2O2, at room temperature, is a promising low cost way to valorize MCW through co-digestion with hOFMSW.
Collapse
Affiliation(s)
- Elena Surra
- LAQV-REQUIMTE, Departamento de Ciências e Tecnologia da Biomassa, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Maria Bernardo
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Nuno Lapa
- LAQV-REQUIMTE, Departamento de Ciências e Tecnologia da Biomassa, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Isabel Esteves
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Isabel Fonseca
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - José Paulo Mota
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
19
|
Yu M, Zhao M, Huang Z, Xi K, Shi W, Ruan W. A model based on feature objects aided strategy to evaluate the methane generation from food waste by anaerobic digestion. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 72:218-226. [PMID: 29169859 DOI: 10.1016/j.wasman.2017.10.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 10/18/2017] [Accepted: 10/25/2017] [Indexed: 06/07/2023]
Abstract
A model based on feature objects (FOs) aided strategy was used to evaluate the methane generation from food waste by anaerobic digestion. The kinetics of feature objects was tested by the modified Gompertz model and the first-order kinetic model, and the first-order kinetic hydrolysis constants were used to estimate the reaction rate of homemade and actual food waste. The results showed that the methane yields of four feature objects were significantly different. The anaerobic digestion of homemade food waste and actual food waste had various methane yields and kinetic constants due to the different contents of FOs in food waste. Combining the kinetic equations with the multiple linear regression equation could well express the methane yield of food waste, as the R2 of food waste was more than 0.9. The predictive methane yields of the two actual food waste were 528.22 mL g-1 TS and 545.29 mL g-1 TS with the model, while the experimental values were 527.47 mL g-1 TS and 522.1 mL g-1 TS, respectively. The relative error between the experimental cumulative methane yields and the predicted cumulative methane yields were both less than 5%.
Collapse
Affiliation(s)
- Meijuan Yu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Mingxing Zhao
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Zhenxing Huang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Kezhong Xi
- Zhengzhou Qiaolian Biological Energy Co., Ltd., Zhengzhou 450001, China
| | - Wansheng Shi
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wenquan Ruan
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
20
|
Edwiges T, Frare L, Mayer B, Lins L, Mi Triolo J, Flotats X, de Mendonça Costa MSS. Influence of chemical composition on biochemical methane potential of fruit and vegetable waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 71:618-625. [PMID: 28554802 DOI: 10.1016/j.wasman.2017.05.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 05/04/2017] [Accepted: 05/18/2017] [Indexed: 06/07/2023]
Abstract
This study investigates the influence of chemical composition on the biochemical methane potential (BMP) of twelve different batches of fruit and vegetable waste (FVW) with different compositions collected over one year. BMP ranged from 288 to 516LNCH4kgVS-1, with significant statistical differences between means, which was explained by variations in the chemical composition over time. BMP was most strongly correlated to lipid content and high calorific values. Multiple linear regression was performed to develop statistical models to more rapidly predict methane potential. Models were analysed that considered chemical compounds and that considered only high calorific value as a single parameter. The best BMP prediction was obtained using the statistical model that included lipid, protein, cellulose, lignin, and high calorific value (HCV), with R2 of 92.5%; lignin was negatively correlated to methane production. Because HCV and lipids are strongly correlated, and because HCV can be determined more rapidly than overall chemical composition, HCV may be useful for predicting BMP.
Collapse
Affiliation(s)
- Thiago Edwiges
- Department of Biological and Environmental Sciences, Federal University of Technology - Parana, Avenida Brasil 4232, Medianeira, Brazil; Research Group on Water Resources and Environmental Sanitation, Western Parana State University, Agricultural Engineering Graduate Program, Rua Universitária, 2069 Jardim Universitário, 85.819-110 Cascavel, Paraná, Brazil
| | - Laercio Frare
- Department of Biological and Environmental Sciences, Federal University of Technology - Parana, Avenida Brasil 4232, Medianeira, Brazil
| | - Bruna Mayer
- Department of Biological and Environmental Sciences, Federal University of Technology - Parana, Avenida Brasil 4232, Medianeira, Brazil
| | - Leonardo Lins
- International Center on Renewable Energy - Biogas, Avenida Tancredo Neves 6731, Foz do Iguaçu, Brazil
| | - Jin Mi Triolo
- Institute of Chemical Engineering, Biotechnology and Environmental Technology, Faculty of Engineering, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark
| | - Xavier Flotats
- GIRO Joint Research Unit IRTA/UPC, Department of Agrifood Engineering and Biotechnology, Universitat Politècnica de Catalunya Barcelona TECH, Campus Mediterreni de la Tecnologia, Building D4, E-08860 Castelldefels, Spain
| | - Mônica Sarolli Silva de Mendonça Costa
- Research Group on Water Resources and Environmental Sanitation, Western Parana State University, Agricultural Engineering Graduate Program, Rua Universitária, 2069 Jardim Universitário, 85.819-110 Cascavel, Paraná, Brazil.
| |
Collapse
|