1
|
Valdés E, Gabriel D, González D, Munz G. Modelling the long-term dynamics and inhibitory effects of crude glycerol impurities in a methanogenic and sulfidogenic UASB bioreactor. WATER RESEARCH 2025; 274:123158. [PMID: 39847901 DOI: 10.1016/j.watres.2025.123158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/03/2025] [Accepted: 01/16/2025] [Indexed: 01/25/2025]
Abstract
The performance of Upflow Anaerobic Sludge Blanket (UASB) bioreactors treating sulfate (SO42-) -rich effluents depends on multiple factors, including microbial interactions and operational conditions. The high complexity of these systems necessitates the use of mathematical modelling tools to better understand the process and predict the long-term impacts of various operational variables. In this work, a mathematical model describing the long-term operation of a sulfate-fed 2.5 L UASB reactor was developed, calibrated and validated. Crude glycerol was used as electron donor to achieve sulfate reduction. The hydraulic model of the UASB was described as a set of CSTRs in series to represent its plug flow-like behavior. The kinetic model included 8 fermentation processes using glycerol as the primary electron source, 5 sulfate-reduction processes using organic and inorganic electron sources, and 2 methanogenic processes. The model tackled the long-term accumulation of the impurities coming from the crude glycerol solution, namely slime -like-substances (SLS), and their inhibitory effects over the three different trophic groups: fermenters, sulfate-reducers and methanogens. A sensitivity analysis and calibration of the most relevant parameters was performed using the experimental data from 280 days of continuous operation of a lab-scale UASB. Volatile suspended solids (VSS), carbon (C) and sulfur (S) species profiles as well as microbial dynamics from initial methanogenic conditions to non-methanogenic conditions due to SLS impact were properly predicted by the model under steady-state feeding conditions. Furthermore, the model was validated using another independent set of data under dynamic-feeding conditions, containing 6 different phases with varying HRT, inlet sulfate and organic carbon concentrations. After successfully validating the model, a scenario analysis was conducted to evaluate two case studies, with different inlet sources: crude glycerol with varying SLS concentrations and pure glycerine (SLS-free). The results of the simulations suggest that heterotrophic SR have greater long-term resistance to the inhibitory effects of SLS, compared to methanogens. Methane production increased with higher C and S loading rates, and the balance between sulfate reduction efficiency and COD removal was optimal at a C/S ratio of 1.6 g C g S-1.
Collapse
Affiliation(s)
- Eric Valdés
- GENOCOV Research group, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - David Gabriel
- GENOCOV Research group, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| | - Daniel González
- GENOCOV Research group, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Giulio Munz
- Department of Civil and Environmental Engineering, University of Florence, Via di S. Marta, 3, 50139, Firenze, Italy
| |
Collapse
|
2
|
Attarbachi T, Kingsley M, Spallina V. Experimental Scale-Up and Technoeconomic Assessment of Low-Grade Glycerol Purification from Waste-Based Biorefinery. Ind Eng Chem Res 2024; 63:4905-4917. [PMID: 38525290 PMCID: PMC10958504 DOI: 10.1021/acs.iecr.3c03868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/24/2024] [Accepted: 02/25/2024] [Indexed: 03/26/2024]
Abstract
The purification of waste-derived crude glycerol to the 2000 g scale is presented to provide a consolidated proof of concept. Starting from unprecedented low-quality glycerol from a second-generation biodiesel plant, currently disposed of at cost, a series of physiochemical steps are implemented to improve glycerol purity and recovery under relevant conditions. The study is carried out on two samples with initial purities of 38-57 wt % and ash contents of up to 16 wt %. Under the optimal process conditions, glycerol exhibits a remarkable increase to 85 wt % purity while preserving the overall glycerol recovery of the process of up to 71%. Among different purification steps, neutralization contributes to increasing the purity to 69 wt % while the remaining water and methanol evaporation have further increased the purity to >80 wt %. The adsorption step shows the smallest increase in glycerol purity despite it being required to decolorize and deodorize the final product. The developed process is further designed for industrial-scale application using Aspen Plus for a plant size of 1630 kg/h of purified glycerol which could achieve 82 wt % final purity and a maximum recovery of 77%. In addition, the process yields 315 kg/h of salable byproduct salts suitable as fertilizer and an overall CO2 emission of 0.70 ton per ton of purified glycerol mainly due to the unrecovered feedstock and solvent combustion. As a result, the proposed process implementation could generate positive revenues with a cost of the final products of €19.2 per ton.
Collapse
Affiliation(s)
- Taha Attarbachi
- Department of Chemical
Engineering, University of Manchester, M13 9PL Manchester, United Kingdom
- Argent Energy Ltd., CH65 4BF Ellesmere
Port, United Kingdom
| | | | - Vincenzo Spallina
- Department of Chemical
Engineering, University of Manchester, M13 9PL Manchester, United Kingdom
| |
Collapse
|
3
|
Zhou X, Fernández-Palacios E, Dorado AD, Lafuente J, Gamisans X, Gabriel D. The effect of slime accumulated in a long-term operating UASB using crude glycerol to treat S-rich wastewater. J Environ Sci (China) 2024; 135:353-366. [PMID: 37778810 DOI: 10.1016/j.jes.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 10/03/2023]
Abstract
An up-flow anaerobic sludge blanket (UASB) reactor targeting sulfate reduction was operated under a constant TOC/S-SO42- ratio of 1.5 ± 0.3 g C/g S for 639 days using crude glycerol as carbon source. A filamentous and fluffy flocculant material, namely slime-like substances (SLS), was gradually accumulated in the bioreactor after the cease of methanogenic activity. The accumulation of SLS was followed by a decrease in the removal efficiencies and a deterioration in the performance. Selected characteristics of SLS were investigated to explore the causes of its formation and the effect of SLS on the UASB performance. Results showed that glycerol fermentation and sulfate reduction processes taking place in the reactor were mainly accomplished in the bottom part of the UASB reactor, as the sludge concentration in the bottom was higher. The accumulation of SLS in the UASB reactor caused sludge flotation that further led to biomass washout, which decreased the sulfate and glycerol removal efficiencies. Batch activity tests performed with granular sludge (GS), slime-covered granular sludge (SCGS) and SLS showed that there was no difference between GS and SLS in the mechanism of glycerol fermentation and sulfate reduction. However, the specific sulfate reduction rate of GS was higher than that of SLS, while SLS showed a higher glycerol fermentation rate than that of GS. The different rates in GS and SLS were attributed to the higher relative abundances of fermentative microorganisms found in SLS and higher relative abundances of sulfate reducing bacteria (SRB) found in GS.
Collapse
Affiliation(s)
- Xudong Zhou
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Eva Fernández-Palacios
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Antoni D Dorado
- Department of Mining, Industrial and ICT Engineering, Universitat Politècnica de Catalunya, Avinguda de les Bases de Manresa 61-73, 08242 Manresa, Spain
| | - Javier Lafuente
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Xavier Gamisans
- Department of Mining, Industrial and ICT Engineering, Universitat Politècnica de Catalunya, Avinguda de les Bases de Manresa 61-73, 08242 Manresa, Spain
| | - David Gabriel
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
4
|
Gupta P, Sahoo PC, Sandipam S, Gupta RP, Kumar M. Fermentation of biodiesel-derived crude glycerol to 1,3-propanediol with bio-wastes as support matrices: Polynomial prediction model. Enzyme Microb Technol 2023; 170:110292. [PMID: 37536048 DOI: 10.1016/j.enzmictec.2023.110292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023]
Abstract
Biodiesel production from used cooking oil is sustainable alternative, for bio-energy production. The process generates residual crude glycerol (RCG) as the major energy-rich waste which can be used to produce various bio-based chemicals like 1,3-propanediol (1,3-PDO) through biotechnological interventions. This RCG contains several impurities like methanol, soap, organic materials, salts non-transesterified fatty acids and metals in varied concentrations. These impurities significantly affect yield and productivity of the bio-process due to their marked microbial toxicity. In this work, previously isolated Clostridium butyricum L4 was immobilized on various abundantly available cheap bio-wastes (like rice straw, activated carbon and corn cob) to explore advantages offered and improve tolerance to various feed impurities. Amongst these, shredded rice straw was found most suitable candidate for immobilization and results in maximum improvement in 1,3-PDO production (18.4%) with highest porosity (89.28%), lowest bulk density (194.48Kg/m3), and highest cellular biofilm density (CFU/g-8.4 ×1010) amongst the three matrices. For practical purposes, recyclability was evaluated and it was concluded that even after reusing for five successive cycles the production retained to ∼82.4%. Subsequently, polynomial model was developed using 30 runs central composite factorial design experiments having coefficient of regression (R²) as 0.9520, in order to predict yields under different immobilization conditions for 1,3-PDO production. Plackett-Burman was employed (Accuracy= 99.17%) to screen significant toxic impurities. Based on statistical analysis six impurities were found to be significantly influential on PDO production in adverse manner. With negative coefficient of estimate (COE) varying in decreasing order: Linoleic acid >Oleic acid >Stearic acid >NaCl>K2SO4 >KCl. The study illustrates practical application for repurposing waste glycerol generated from biodiesel plants, thus developing improved agnostic process along with yield production models.
Collapse
Affiliation(s)
- Pragya Gupta
- Indian Oil Corporation Limited, R&D Centre, Sector 13, Faridabad 121007, Haryana, India
| | - P C Sahoo
- Indian Oil Corporation Limited, R&D Centre, Sector 13, Faridabad 121007, Haryana, India
| | - Srikanth Sandipam
- Indian Oil Corporation Limited, R&D Centre, Sector 13, Faridabad 121007, Haryana, India
| | - Ravi Prakash Gupta
- Indian Oil Corporation Limited, R&D Centre, Sector 13, Faridabad 121007, Haryana, India
| | - Manoj Kumar
- Indian Oil Corporation Limited, R&D Centre, Sector 13, Faridabad 121007, Haryana, India.
| |
Collapse
|
5
|
Azhagapillai P, Reddy KSK, Guerrero Pena GDJ, Bojesomo RS, Raj A, Anjum DH, Elkadi M, Karanikolos GN, Ali MI. Synthesis of Mesoporous Carbon Adsorbents Using Biowaste Crude Glycerol as a Carbon Source via a Hard Template Method for Efficient CO 2 Capture. ACS OMEGA 2023; 8:21664-21676. [PMID: 37360493 PMCID: PMC10286101 DOI: 10.1021/acsomega.3c01083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/12/2023] [Indexed: 06/28/2023]
Abstract
Biowaste utilization as a carbon source and its transformation into porous carbons have been of great interest to promote environmental remediation owing to biowaste's cost-effectiveness and useful physicochemical properties. In this work, crude glycerol (CG) residue from waste cooking oil transesterification was employed to fabricate mesoporous crude glycerol-based porous carbons (mCGPCs) using mesoporous silica (KIT-6) as a template. The obtained mCGPCs were characterized and compared to commercial activated carbon (AC) and CMK-8, a carbon material prepared using sucrose. The study aimed to evaluate the potential of mCGPC as a CO2 adsorbent and demonstrated its superior adsorption capacity compared to AC and comparable to CMK-8. The X-ray diffraction (XRD) and Raman results clearly depicted the structure of carbon nature with (002) and (100) planes and defect (D) and graphitic (G) bands, respectively. The specific surface area, pore volume, and pore diameter values confirmed the mesoporosity of mCGPC materials. The transmission electron microscopy (TEM) images also clearly revealed the porous nature with the ordered mesopore structure. The mCGPCs, CMK-8, and AC materials were used as CO2 adsorbents under optimized conditions. The mCGPC adsorption capacity (1.045 mmol/g) is superior to that of AC (0.689 mmol/g) and still comparable to that of CMK-8 (1.8 mmol/g). The thermodynamic analyses of the adsorption phenomena are also carried out. This work demonstrates the successful synthesis of a mesoporous carbon material using a biowaste (CG) and its application as a CO2 adsorbent.
Collapse
Affiliation(s)
- Prabhu Azhagapillai
- Department
of Chemistry, Khalifa University of Science
& Technology, Abu Dhabi 127788, U.A.E.
| | - K. Suresh Kumar Reddy
- Department
of Chemical Engineering, Khalifa University
of Science & Technology, Abu Dhabi 127788, U.A.E.
- Center
for Catalysis and Separation, Khalifa University
of Science & Technology, Abu
Dhabi 127788, U.A.E.
| | | | - Rukayat S. Bojesomo
- Department
of Chemistry, Khalifa University of Science
& Technology, Abu Dhabi 127788, U.A.E.
| | - Abhijeet Raj
- Department
of Chemical Engineering, Khalifa University
of Science & Technology, Abu Dhabi 127788, U.A.E.
- Department
of Chemical Engineering, Indian Institute
of Technology Delhi, New Delhi 110016, India
- Center
for Catalysis and Separation, Khalifa University
of Science & Technology, Abu
Dhabi 127788, U.A.E.
| | - Dalaver H. Anjum
- Center
for Catalysis and Separation, Khalifa University
of Science & Technology, Abu
Dhabi 127788, U.A.E.
- Department
of Physics, Khalifa University of Science
& Technology, Abu Dhabi 127788, U.A.E.
| | - Mirella Elkadi
- Department
of Chemistry, Khalifa University of Science
& Technology, Abu Dhabi 127788, U.A.E.
| | - Georgios N. Karanikolos
- Department
of Chemical Engineering, Khalifa University
of Science & Technology, Abu Dhabi 127788, U.A.E.
- Center
for Catalysis and Separation, Khalifa University
of Science & Technology, Abu
Dhabi 127788, U.A.E.
- Research
and Innovation Center on CO2 and H2 (RICH), Khalifa University, P.O. Box 127788, Abu Dhabi 127788, U.A.E.
- Department
of Chemical Engineering, University of Patras, Patras 26500, Greece
| | - Mohamed I. Ali
- Department
of Mechanical Engineering, Khalifa University
of Science & Technology, Abu
Dhabi 127788, U.A.E.
| |
Collapse
|
6
|
Sun H, Yang M, Gao Z, Wang X, Wu C, Wang Q, Gao M. Economic and environmental evaluation for a closed loop of crude glycerol bioconversion to biodiesel. J Biotechnol 2023; 366:65-71. [PMID: 36907357 DOI: 10.1016/j.jbiotec.2023.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
Crude glycerol, a byproduct of biodiesel production, was utilized as a carbon source to produce microbial lipids by the oleaginous yeast Rhodotorula toruloides in this study. The maximum lipid production and lipid content were 10.56 g/L and 49.52%, respectively, by optimizing fermentation conditions. The obtained biodiesel met the standards of China, the United States, and the European Union. The economic value of biodiesel produced from crude glycerol increased by 48% compared with the sale of crude glycerol. In addition, biodiesel production from crude glycerol could reduce 11,928 tons of carbon dioxide emissions and 55 tons of sulfur dioxide emissions. This study provides a strategy for a closed loop of crude glycerol to biofuel and ensures sustainable and stable development of the biodiesel industries.
Collapse
Affiliation(s)
- Haishu Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Min Yang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhen Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaona Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Chuanfu Wu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Qunhui Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Ming Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| |
Collapse
|
7
|
Armylisas AHN, Hoong SS, Tuan Ismail TNM. Characterization of crude glycerol and glycerol pitch from palm-based residual biomass. BIOMASS CONVERSION AND BIOREFINERY 2023:1-13. [PMID: 37363204 PMCID: PMC9978273 DOI: 10.1007/s13399-023-04003-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 06/28/2023]
Abstract
Crude glycerol (CG) and glycerol pitch (GP) are highly alkaline residues from biodiesel and oleochemical plants, respectively, and have organic content which incurs high disposal cost and poses an environmental threat. Characterization of these residues for composition and properties could provide insight into their quality for proper disposal and can help the biodiesel industry to adopt more sustainable practices, such as reducing waste and improving the efficiency of the production process, hence minimizing the impact of the biodiesel supply chain to the environment. These data also allow the identification and exploration of new ways for their utilization and transformation into highly value-added products. In this study, we evaluated four CG samples (B, C, D, and E) and two GP samples (F and G) obtained from Malaysian palm oil refineries, and the results were compared with pure glycerol (A). Spectroscopic analysis was performed using FTIR, 1H-, and 13C-NMR. All samples had similar density to A (1.26 g/cm3), except for F (1.31 g/cm3), while the density for E and G could not be determined due to their physical states. The pH and viscosity largely varied in the range of 7.26-11.89 and 43-225 cSt, respectively. The glycerol content of CG (B, C, D, and E) was high and consistent (81.7-87.3%) whereas GP F and G had 71.5 and 63.9% glycerol content, respectively. Major contaminants in CG and GP were water and matter organic non-glycerol (MONG), respectively. The water, ash, soap, and salt content were considerably low, which varied from 3.4 to 14.1%, 3.9 to 13.0%, 0.1 to 5.7%, and 4.1 to 9.2% respectively. Thermal analysis of CG and GP exhibited four phases of decomposition attributed to the impurities compared to the single phase in A. All samples had calorific values lower than A (18.1 MJ/kg) between 9.0 and 17.7 MJ/kg. Based on the results, CG and GP have high glycerol content which reveals their potential to be used as feedstock in bioconversion and chemical or thermal treatment while impurities may be removed by pre-treatment if required. As palm oil is one of the main feedstocks for the oleochemical industry, this work underlines the importance of characterization of the residue generated to provide additional data and information on palm-based agricultural industry wastes, minimize the impact of palm oil supply chain on the environment, and explore its potential usage for value-addition. Supplementary Information The online version contains supplementary material available at 10.1007/s13399-023-04003-4.
Collapse
Affiliation(s)
- Abu Hassan Noor Armylisas
- Synthesis & Product Development (SPD) Unit, Advanced Oleochemical Technology Division (AOTD), Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| | - Seng Soi Hoong
- Synthesis & Product Development (SPD) Unit, Advanced Oleochemical Technology Division (AOTD), Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| | - Tuan Noor Maznee Tuan Ismail
- Synthesis & Product Development (SPD) Unit, Advanced Oleochemical Technology Division (AOTD), Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| |
Collapse
|
8
|
Omoarukhe FO, Epelle EI, Ogbaga CC, Okolie JA. Stochastic economic evaluation of different production pathways for renewable propylene glycol production via catalytic hydrogenolysis of glycerol. REACT CHEM ENG 2023. [DOI: 10.1039/d2re00281g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The impact of the hydrogen production method on the economic feasibility and environmental friendliness of propylene glycol production from glycerol hydrogenolysis is explored.
Collapse
Affiliation(s)
- Fredrick O. Omoarukhe
- Department of Chemical Engineering, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria
| | - Emmanuel I. Epelle
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Chukwuma C. Ogbaga
- Department of Biological Sciences, Nile University of Nigeria, Airport Road Bypass, Abuja, Nigeria
- Department of Microbiology and Biotechnology, Nile University of Nigeria, Airport Road Bypass, Abuja, Nigeria
| | - Jude A. Okolie
- St. Peter's College, Muenster, Canada
- Gallogly College of Engineering, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
9
|
Lima PJM, da Silva RM, Neto CACG, Gomes E Silva NC, Souza JEDS, Nunes YL, Sousa Dos Santos JC. An overview on the conversion of glycerol to value-added industrial products via chemical and biochemical routes. Biotechnol Appl Biochem 2022; 69:2794-2818. [PMID: 33481298 DOI: 10.1002/bab.2098] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/31/2020] [Indexed: 12/27/2022]
Abstract
Glycerol is a common by-product of industrial biodiesel syntheses. Due to its properties, availability, and versatility, residual glycerol can be used as a raw material in the production of high value-added industrial inputs and outputs. In particular, products like hydrogen, propylene glycol, acrolein, epichlorohydrin, dioxalane and dioxane, glycerol carbonate, n-butanol, citric acid, ethanol, butanol, propionic acid, (mono-, di-, and triacylglycerols), cynamoil esters, glycerol acetate, benzoic acid, and other applications. In this context, the present study presents a critical evaluation of the innovative technologies based on the use of residual glycerol in different industries, including the pharmaceutical, textile, food, cosmetic, and energy sectors. Chemical and biochemical catalysts in the transformation of residual glycerol are explored, along with the factors to be considered regarding the choice of catalyst route used in the conversion process, aiming at improving the production of these industrial products.
Collapse
Affiliation(s)
- Paula Jéssyca Morais Lima
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE, Brazil
| | - Rhonyele Maciel da Silva
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE, Brazil
| | | | - Natan Câmara Gomes E Silva
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE, Brazil
| | - José Erick da Silva Souza
- Instituto de Engenharias e Desenvolvimento Sustentável - IEDS, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção, CE, Brazil
| | - Yale Luck Nunes
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE, Brazil
| | - José Cleiton Sousa Dos Santos
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE, Brazil.,Instituto de Engenharias e Desenvolvimento Sustentável - IEDS, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção, CE, Brazil
| |
Collapse
|
10
|
An Approach for Incorporating Glycerol as a Co-Substrate into Unconcentrated Sugarcane Bagasse Hydrolysate for Improved Lipid Production in Rhodotorula glutinis. FERMENTATION 2022. [DOI: 10.3390/fermentation8100543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Sugarcane bagasse is a potential raw material for microbial lipid production by oleaginous yeasts. Due to the limited sugar concentrations in bagasse hydrolysate, increasing carbon the concentration is necessary in order to improve lipid production. We aimed to increase carbon concentration by incorporating glycerol as a co-substrate into unconcentrated bagasse hydrolysate in the cultivation of Rhodotorula glutinis TISTR 5159. Cultivation in hydrolysate without nitrogen supplementation (C/N = 42) resulted in 60.31% lipid accumulation with 11.45 ± 0.75 g/L biomass. Nitrogen source supplementation increased biomass to 26.29 ± 2.05 g/L without losing lipid accumulation at a C/N of 25. Yeast extract improved lipid production in the hydrolysate due to high growth without altering the lipid content of the cells. Mixing glycerol up to 10% v/v into the unconcentrated hydrolysate improved biomass and lipid production. A further increase in glycerol concentrations drastically decreased growth and lipid accumulation by the yeast. By maintaining C/N at 27 using yeast extract as the sole nitrogen source, hydrolysate mixed with 10% v/v glycerol resulted in the highest lipid yield, at 19.57 ± 0.53 g/L with 50.55% lipid content, which was a 2.8-fold increase compared to using the hydrolysate alone. In addition, yeast extracts were superior for promoting growth and lipid production compared to inorganic nitrogen sources.
Collapse
|
11
|
Julião D, Mirante F, Balula SS. Easy and Fast Production of Solketal from Glycerol Acetalization via Heteropolyacids. Molecules 2022; 27:molecules27196573. [PMID: 36235109 PMCID: PMC9572551 DOI: 10.3390/molecules27196573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
This work presents an effective and fast procedure to valorize the main waste produced from the biodiesel industry, i.e., the glycerol. The acetalization of glycerol with acetone represents an effective strategy to produce the valuable solketal, a fuel additive component. In this work, the catalytic efficiency of different commercial heteropolyacids (HPAas) was compared under a solvent-free system. The HPAs used were H3[PW12O40] (PW12), H3[PMo12O40] (PMo12) and H4[SiW12O40] (SiW12). The influence of reactional parameters such as reactants stoichiometry, catalyst concentration and reaction temperature were investigated in order to optimize experimental conditions to increase cost-efficiency and sustainability. HPAs demonstrated to be highly efficient for this type of reaction, presenting a high and fast glycerol conversion, with high selectivity to solketal under sustainable conditions (solvent-free system and room temperature medium). The activity of HPAs using 3% to glycerol weight and a glycerol/acetone ratio of 1:15 followed the order: PW12 (99.2%) > PMo12 (91.4%) > SiW12 (90.7%) as a result of the strong acidic sites after 5 min. In fact, only 5 min of reaction were needed to achieve 97% of solketal product in the presence of the PW12 as a catalyst. This last system presents an effective, selective and sustainable catalytic system to valorize glycerol.
Collapse
|
12
|
Bioprocesses for the Biodiesel Production from Waste Oils and Valorization of Glycerol. ENERGIES 2022. [DOI: 10.3390/en15093381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The environmental context causes the use of renewable energy to increase, with the aim of finding alternatives to fossil-based products such as fuels. Biodiesel, an alternative to diesel, is now a well-developed solution, and its production from renewable resources makes it perfectly suitable in the environmental context. In addition, it is biodegradable, non-toxic and has low greenhouse gas emissions: reduced about 85% compared to diesel. However, the feedstock used to produce biodiesel competes with agriculture and the application of chemical reactions is not advantageous with a “green” process. Therefore, this review focuses only on bioprocesses currently taking an important place in the production of biodiesel and allow high yields, above 90%, and with very few produced impurities. In addition, the use of waste oils as feedstock, which now accounts for 10% of feedstocks used in the production of biodiesel, avoids competition with agriculture. To present a complete life-cycle of oils in this review, a second part will focus on the valorization of the biodiesel by-product, glycerol. About 10% of glycerol is generated during the production of biodiesel, so it should be recovered to high value-added products, always based on bioprocesses. This review will also present existing techniques to extract and purify glycerol. In the end, from the collection of feedstocks to the production of CO2 during the combustion of biodiesel, this review presents the steps using the “greener” possible processes.
Collapse
|
13
|
Bharathiraja B, Jayamuthunagai J, Sreejith R, Iyyappan J, Praveenkumar R. Techno economic analysis of malic acid production using crude glycerol derived from waste cooking oil. BIORESOURCE TECHNOLOGY 2022; 351:126956. [PMID: 35272039 DOI: 10.1016/j.biortech.2022.126956] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
In the present work, Aspergillus niger was employed to produce commercially valuable malic acid from crude glycerol derived from waste cooking oil. Crude glycerol dosage, yeast extract dosage and initial pH were the influencing factors playing a significant role in the malic acid synthesis. The optimal condition for malic acid biosynthesis was studied by using response surface methodology. Further the feasibility analysis for biosynthesis of malic acid from crude glycerol was studied using the laboratory scale optimized data, with this experimentally optimized data, plant was simulated using SuperPro Designer (v10). The cost involved for malic acid synthesis per unit volume was likely expected to be $0.43/kg of malic acid using reactive extraction method. Thus, process optimization combined with techno-economical analysis of malic acid production could be beneficial.
Collapse
Affiliation(s)
- B Bharathiraja
- Department of Chemical Engineering, Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Avadi, Chennai 600032, Tamil Nadu, India
| | - J Jayamuthunagai
- Centre for Biotechnology,Anna university, Chennai 600025, Tamil Nadu, India
| | - R Sreejith
- Department of Chemical Engineering, Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Avadi, Chennai 600032, Tamil Nadu, India
| | - J Iyyappan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Saveetha Nagar, Thandalam, Chennai 602105, Tamil Nadu, India
| | - R Praveenkumar
- Department of Biotechnology, Arunai Engineering college, Tiruvannamalai 606603, Tamil Nadu, India.
| |
Collapse
|
14
|
A THEORETICAL AND EXPERIMENTAL STUDY OF LIQUID-LIQUID EQUILIBRIUM TO REFINE RAW GLYCEROL OBTAINED AS A BYPRODUCT ON THE BIODIESEL PRODUCTION. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
15
|
Chi G, Xu Y, Cao X, Li Z, Cao M, Chisti Y, He N. Production of polyunsaturated fatty acids by Schizochytrium (Aurantiochytrium) spp. Biotechnol Adv 2021; 55:107897. [PMID: 34974158 DOI: 10.1016/j.biotechadv.2021.107897] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/05/2021] [Accepted: 12/20/2021] [Indexed: 12/28/2022]
Abstract
Diverse health benefits are associated with dietary consumption of omega-3 long-chain polyunsaturated fatty acids (ω-3 LC-PUFA), particularly docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Traditionally, these fatty acids have been obtained from fish oil, but limited supply, variably quality, and an inability to sustainably increase production for a rapidly growing market, are driving the quest for alternative sources. DHA derived from certain marine protists (heterotrophic thraustochytrids) already has an established history of commercial production for high-value dietary use, but is too expensive for use in aquaculture feeds, a much larger potential market for ω-3 LC-PUFA. Sustainable expansion of aquaculture is prevented by its current dependence on wild-caught fish oil as the source of ω-3 LC-PUFA nutrients required in the diet of aquacultured animals. Although several thraustochytrids have been shown to produce DHA and EPA, there is a particular interest in Schizochytrium spp. (now Aurantiochytrium spp.), as some of the better producers. The need for larger scale production has resulted in development of many strategies for improving productivity and production economics of ω-3 PUFA in Schizochytrium spp. Developments in fermentation technology and metabolic engineering for enhancing LC-PUFA production in Schizochytrium spp. are reviewed.
Collapse
Affiliation(s)
- Guoxiang Chi
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Yiyuan Xu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Xingyu Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Zhipeng Li
- College of Food and Biological Engineering, Jimei University, Xiamen 361000, China
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China.
| | - Yusuf Chisti
- School of Engineering, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
16
|
Costa-Gutierrez SB, Saez JM, Aparicio JD, Raimondo EE, Benimeli CS, Polti MA. Glycerol as a substrate for actinobacteria of biotechnological interest: Advantages and perspectives in circular economy systems. CHEMOSPHERE 2021; 279:130505. [PMID: 33865166 DOI: 10.1016/j.chemosphere.2021.130505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/25/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
Actinobacteria represent a ubiquitous group of microorganisms widely distributed in ecosystems. They have diverse physiological and metabolic properties, including the production of extracellular enzymes and a variety of secondary bioactive metabolites, such as antibiotics, immunosuppressants, and other compounds of industrial interest. Therefore, actinobacteria have been used for biotechnological purposes for more than three decades. The development of a biotechnological process requires the evaluation of its cost/benefit ratio, including the search for economic and efficient substrates for microorganisms development. Biodiesel is a clean, renewable, quality and economically viable source of energy, which also contributes to the conservation of the environment. Crude glycerol is the main by-product of biodiesel production and has many properties, so it has a commercial value that can be used to finance the biofuel production process. Actinobacteria can use glycerol as a source of carbon and energy, either pure o crude. A circular economy system aims to eliminate waste and pollution, keep products and materials in use, and regenerate natural systems. Although these principles are not yet met, some approaches are being made in this direction; the transformation of crude glycerol by actinobacteria is a process with great potential to be scaled on an industrial level. This review discusses the reports on glycerol as a promising source of carbon and energy for obtaining biomass and high-added value products by actinobacteria. Also, the factors influencing the biomass and secondary metabolites production in bioreactors are analyzed, and the tools available to overcome those that generate the main problems are discussed.
Collapse
Affiliation(s)
- Stefanie B Costa-Gutierrez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, San Miguel de Tucumán, Tucumán, Argentina
| | - Juliana Maria Saez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, San Miguel de Tucumán, Tucumán, Argentina; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, 4000, Tucumán, Argentina
| | - Juan Daniel Aparicio
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, San Miguel de Tucumán, Tucumán, Argentina; Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, 4000, Tucumán, Argentina
| | - Enzo E Raimondo
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, San Miguel de Tucumán, Tucumán, Argentina; Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, 4000, Tucumán, Argentina
| | - Claudia S Benimeli
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, San Miguel de Tucumán, Tucumán, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Catamarca, Belgrano 300, 4700, Catamarca, Argentina
| | - Marta A Polti
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, San Miguel de Tucumán, Tucumán, Argentina; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, 4000, Tucumán, Argentina.
| |
Collapse
|
17
|
Kumar LR, Kaur R, Tyagi RD, Drogui P. Identifying economical route for crude glycerol valorization: Biodiesel versus polyhydroxy-butyrate (PHB). BIORESOURCE TECHNOLOGY 2021; 323:124565. [PMID: 33360115 DOI: 10.1016/j.biortech.2020.124565] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Crude glycerol, a by-product of biodiesel industry, has been used for production of biodiesel and polyhydroxy-alkanoates. But question is: which product is economically favorable using crude glycerol as substrate? In this study, energy balance and economic assessment has been carried out for crude glycerol valorization for B10 biodiesel and polyhydroxy-butyrate (PHB) production. For same quantity of crude glycerol utilized, energy ratio for B10 production was higher than PHB production while unit production cost for B10 was lower than that of PHB. For 50 million L plant capacity of biodiesel, unit production cost was 0.77 $/L B10 while for 2 million kg plant capacity of PHB, unit production cost was 4.88 $/kg PHB. Thus, in present scenario production of biodiesel seems economically better than production of PHA with crude glycerol as raw material. This study is useful for researchers, environmental scientists and industries in identifying effective route for crude glycerol valorization.
Collapse
Affiliation(s)
- Lalit R Kumar
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada
| | - Rajwinder Kaur
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada
| | - R D Tyagi
- School of Technology, Huzhou University, Huzhou, China; BOSK Bioproducts, 100-399 rue Jacquard, Québec G1N 4J6, Canada.
| | - Patrick Drogui
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada
| |
Collapse
|
18
|
Orjuela A, Clark J. Green chemicals from used cooking oils: Trends, challenges, and opportunities. CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY 2020; 26:100369. [PMID: 32835134 PMCID: PMC7276142 DOI: 10.1016/j.cogsc.2020.100369] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Food waste reduction is fundamental for sustainable development and pursuing this goal, recycling and the valorization of used cooking oil (UCO) can play a major contribution. Although it has been traditionally used for biofuel production, the oleochemical potential of UCOs is vast. UCOs can be used as feedstock for a large variety of value-added green chemicals including plasticizers, binders, epoxides, surfactants, lubricants, polymers, biomaterials, and different building blocks. Thus, UCO transformation into functional chemicals can bring long-term stability to the supply chain, avoiding the current dependence on commodity products. In this regard, this work describes some of the potential benefits of using UCOs as feedstock in oleochemical biorefineries. In addition, some of the most recent investigations on the valorization of UCOs other than biofuel are presented. Finally, major challenges and future directions are discussed.
Collapse
Affiliation(s)
- Alvaro Orjuela
- Department of Chemical and Environmental Engineering, Universidad Nacional de Colombia, 111321, Bogotá D.C., Colombia
| | - James Clark
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, York, Y010 5DD, UK
| |
Collapse
|
19
|
Chiosso ME, Casella ML, Merlo AB. Synthesis and catalytic evaluation of acidic carbons in the etherification of glycerol obtained from biodiesel production. Catal Today 2020. [DOI: 10.1016/j.cattod.2020.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Kaur J, Sarma AK, Jha MK, Gera P. Valorisation of crude glycerol to value-added products: Perspectives of process technology, economics and environmental issues. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 27:e00487. [PMID: 32642454 PMCID: PMC7334398 DOI: 10.1016/j.btre.2020.e00487] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/09/2020] [Accepted: 06/08/2020] [Indexed: 12/28/2022]
Abstract
The enormous production of glycerol, a waste stream from biodiesel industries, as a low-value product has been causing a threat to both the environment and the economy. Therefore, it needs to be transformed effectively and efficiently into valued products for contributing positively towards the biodiesel economy. It can either be converted directly into competent chemicals or can be used as a feedstock/precursor for deriving valuable derivatives. In this review article, a technical evaluation has been stirred up, various factors and technologies used for producing value-added products from crude glycerol, Environmental and economic aspects of different conversion routes, cost factors and challenges of integration of the different routes for biorefinery have been reviewed and elaborated. There are tremendous environmental benefits in the conversion of crude glycerol via the biochemical route, the product and residue become eco-friendly. However, chemical conversions are faster processes, and economically viable if environmental aspects are partially ignored.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Department of Chemical Engineering, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, Punjab, India
- Chemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy (An Autonomous Institute of MNRE Government of India), Kapurthala, Punjab, India
| | - Anil Kumar Sarma
- Chemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy (An Autonomous Institute of MNRE Government of India), Kapurthala, Punjab, India
| | - Mithilesh Kumar Jha
- Department of Chemical Engineering, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, Punjab, India
| | - Poonam Gera
- Department of Chemical Engineering, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, Punjab, India
| |
Collapse
|
21
|
Kumar LR, Yellapu SK, Tyagi R, Drogui P. Purified crude glycerol by acid treatment allows to improve lipid productivity by Yarrowia lipolytica SKY7. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.06.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
22
|
100 Years Later, What Is New in Glycerol Bioproduction? Trends Biotechnol 2020; 38:907-916. [PMID: 32584768 DOI: 10.1016/j.tibtech.2020.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/23/2022]
Abstract
Industrial production of glycerol by yeast, which began during WWI in the so-called Neuberg fermentation, was the first example of metabolic engineering. However, this process, based on bisulfite addition to fermentation liquid, has many drawbacks and was replaced by other methods of glycerol production. Osmotolerant yeasts and other microorganisms that do not require addition of bisulfite to steer cellular metabolism towards glycerol synthesis have been discovered or engineered. Because the glycerol market is expected to reach 5 billion US$ by 2024, microbial fermentation may again become a promising way to produce glycerol. This review summarizes some problems and perspectives on the production of glycerol by natural or engineered eukaryotic and prokaryotic microorganisms.
Collapse
|
23
|
Kumar LR, Yellapu SK, Tyagi RD, Drogui P. Cost, energy and GHG emission assessment for microbial biodiesel production through valorization of municipal sludge and crude glycerol. BIORESOURCE TECHNOLOGY 2020; 297:122404. [PMID: 31757613 DOI: 10.1016/j.biortech.2019.122404] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
In this study, cost simulations were made based on 20 million L blended biodiesel B-10 production per year using INRS and conventional process. In case of INRS process, microbial lipid was produced by T. oleaginosus using washed municipal secondary sludge fortified with crude glycerol while lipid was extracted from wet biomass using biodegradable surfactant and petroleum-diesel (PD). The conventional process uses commercial substrates for lipid production and organic solvents for lipid extraction from dry biomass. The unit B-10 production cost of INRS process was estimated to be $ 0.72/L for an annual capacity of 20 million L, which is 9.5 times more economical than conventional biodiesel production process. For INRS process, the unit B-10 biodiesel production cost was sensitive to plant capacity and lipid productivity during the fermentation. INRS process exhibited positive net energy gain and positive GHG capture, which proves to be energetically and environmentally viable.
Collapse
Affiliation(s)
- Lalit R Kumar
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - Sravan K Yellapu
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - R D Tyagi
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada.
| | - Patrick Drogui
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| |
Collapse
|
24
|
Wu Y, Jiang L, Lin Y, Qian L, Xu F, Lang X, Fan S, Zhao Z, Li H. Novel crude glycerol pretreatment for selective saccharification of sugarcane bagasse via fast pyrolysis. BIORESOURCE TECHNOLOGY 2019; 294:122094. [PMID: 31521980 DOI: 10.1016/j.biortech.2019.122094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 05/12/2023]
Abstract
Pretreatment is a vital process for efficient saccharification and utilization of lignocellulose. In this study, crude glycerol derived from biodiesel production was used for pretreatment to facilitate selective saccharification via fast pyrolysis. Due to the efficient removal of alkali and alkaline earth metals (>95.0%) and lignin (79.4%) by crude glycerol pretreatment, the yield of levoglucosan was evaluated to 25.2% as compared to those from pure glycerol pretreated (14.4%) and untreated sugarcane bagasse (8.4%). Meanwhile, the production of inhibitors (e.g. acetic acid, phenol) to biocatalysts was also obviously inhibited from crude glycerol pretreated biomass. Consequently, this work provided a cost-effective and eco-friendly pretreatment mode, which could not only make full utilization of crude glycerol, but also improve the fermentability of lignocellulosic pyrolysate.
Collapse
Affiliation(s)
- Yaxiang Wu
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Ministry of Education, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Liqun Jiang
- Guangdong Key Laboratory of New and Renewable Energy Research and Development, Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Yan Lin
- Guangdong Key Laboratory of New and Renewable Energy Research and Development, Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Le Qian
- Guangdong Key Laboratory of New and Renewable Energy Research and Development, Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Feixiang Xu
- Guangdong Key Laboratory of New and Renewable Energy Research and Development, Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xuemei Lang
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Ministry of Education, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shuanshi Fan
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Ministry of Education, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zengli Zhao
- Guangdong Key Laboratory of New and Renewable Energy Research and Development, Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Haibin Li
- Guangdong Key Laboratory of New and Renewable Energy Research and Development, Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
25
|
Saravanan Arumugamurthy S, Sivanandi P, Pandian S, Choksi H, Subramanian D. Conversion of a low value industrial waste into biodiesel using a catalyst derived from brewery waste: An activation and deactivation kinetic study. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 100:318-326. [PMID: 31574460 DOI: 10.1016/j.wasman.2019.09.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/22/2019] [Accepted: 09/22/2019] [Indexed: 06/10/2023]
Abstract
In this study, biodiesel was produced by using a heterogeneous acid catalyst made from brewer's spent yeast (BSY). BSY was initially activated by phosphoric acid followed by carbonization in inert atmosphere and sulfonation process to prepare the catalyst. It is completely characterized using sophisticated instruments to determine its physical and chemical properties. Subsequently, the effectiveness of the catalyst was analyzed by subjecting it to sonochemical esterification of an industrial low value waste product, palm fatty acid distillate (PFAD). The reactions were performed in the presence of ultrasound at a constant frequency of 25 kHz. An optimum methyl ester conversion of 87.8% was achieved at 8 wt% of catalyst, 21:1 methanol to PFAD molar ratio, 65 °C and 180 min of reaction time. The catalyst displayed a high catalytic stability up to four cycles due to firm SO3H functional group attached onto the surface. Furthermore, a novel sonochemical kinetic model was proposed for surface esterification reaction on the catalyst. The reaction rate was found and it followed a pseudo-first-order reaction mechanism. Furthermore, a deactivation model was also proposed to account for the loss of activity upon catalyst reuse during sonochemical reaction.
Collapse
Affiliation(s)
| | - Periyasamy Sivanandi
- Department of Mechanical Engineering, Government College of Technology, Coimbatore 641013 India.
| | - Sivakumar Pandian
- School of Petroleum Technology, Pandit Deendayal Petroleum University, Gandhinagar 382007 India.
| | - Himanshu Choksi
- School of Technology, Pandit Deendayal Petroleum University, Gandhinagar 382007, India.
| | | |
Collapse
|
26
|
Kumar LR, Yellapu SK, Tyagi RD, Zhang X. A review on variation in crude glycerol composition, bio-valorization of crude and purified glycerol as carbon source for lipid production. BIORESOURCE TECHNOLOGY 2019; 293:122155. [PMID: 31561979 DOI: 10.1016/j.biortech.2019.122155] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Crude glycerol (CG) is a by-product formed during the trans-esterification reaction for biodiesel production. Although crude glycerol is considered a waste stream of the biodiesel industry, it can replace expensive carbon substrates required for lipid production by oleaginous micro-organisms. However, crude glycerol has several impurities, such as methanol, soap, triglycerides, fatty acids, salts and metals, which are created during the trans-esterification process and may affect the cellular metabolism involved in lipid synthesis. This review aims to critically present a variation in crude glycerol composition depending on trans-esterification process and impact of impurities present in the crude glycerol on the cell growth and lipid accumulation by oleaginous microbes. This study also draws comparison between purified and crude glycerol for lipid production. Several techniques for crude glycerol purification (chemical treatment, thermal treatment, membrane technology, ion-exchange chromatography and adsorption) have been presented and discussed with reference to cost and environmental effects.
Collapse
Affiliation(s)
- Lalit R Kumar
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - Sravan Kumar Yellapu
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - R D Tyagi
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada.
| | - Xiaolei Zhang
- School of Civil and Environment Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, GuangDong 518055, China
| |
Collapse
|
27
|
Veras STS, Rojas P, Florencio L, Kato MT, Sanz JL. Production of 1,3-propanediol from pure and crude glycerol using a UASB reactor with attached biomass in silicone support. BIORESOURCE TECHNOLOGY 2019; 279:140-148. [PMID: 30716606 DOI: 10.1016/j.biortech.2019.01.125] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
The 1,3-propanediol (1,3-PDO) yield and productivity from glycerol were studied over a 155-day period. A UASB reactor that also contained silicone support for biomass attachment was used to evaluate the optimal operational conditions and microbiota development. The highest average 1,3-PDO yield was 0.54 and 0.48 mol.mol-gly-1 when reactor pH was 5.0-5.5 and the applied loading rate was 18 and 20 g-gly.L-1.d-1 using the pure and crude substrate, respectively. The productivity was close to 7.5 g.L-1.d-1 for both substrates; therefore, the direct use of crude glycerol can be valorized in practice. Clostridium was the predominant genus for 1,3-PDO production and C. pasteurianum was dominant in the biofilm. Using crude glycerol, C. beijerinckii dropped strongly; some Clostridium population was then replaced by Klebsiella pneumoniae and Lactobacillus spp. The good process performance and the advances in the microbiota knowledge are steps forward to obtain a more cost-effective system in practice.
Collapse
Affiliation(s)
- S T S Veras
- Universidad Autónoma de Madrid, Department of Molecular Biology, Madrid 28049, Spain; Federal University of Pernambuco, Department of Civil and Environmental Engineering, Laboratory of Environmental Sanitation, Recife, PE 50740-530, Brazil
| | - P Rojas
- Universidad Autónoma de Madrid, Department of Molecular Biology, Madrid 28049, Spain
| | - L Florencio
- Federal University of Pernambuco, Department of Civil and Environmental Engineering, Laboratory of Environmental Sanitation, Recife, PE 50740-530, Brazil
| | - M T Kato
- Federal University of Pernambuco, Department of Civil and Environmental Engineering, Laboratory of Environmental Sanitation, Recife, PE 50740-530, Brazil
| | - J L Sanz
- Universidad Autónoma de Madrid, Department of Molecular Biology, Madrid 28049, Spain.
| |
Collapse
|
28
|
New carbon dots based on glycerol and urea and its application in the determination of tetracycline in urine samples. Talanta 2019; 201:143-148. [PMID: 31122404 DOI: 10.1016/j.talanta.2019.04.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 01/30/2023]
Abstract
The current study proposes a fast one-pot microwave assisted synthesis of new carbon dots (CDs) based on glycerol and urea. The novel carbon nanoparticles (GUCDs) have been appropriately characterized and exhibited good luminescent properties with a quantum yield of about 9.8%. Interestingly, the GUCDs are able to selectively interact with tetracycline class antibiotics, which produce a decrease in the native fluorescence of the CDs. On the base of these features, a new analytical method has been developed for the determination of tetracycline. The proposed method has shown satisfactory analytical parameters, such as good linearity range -between 0.5 and 25 μM (R2 = 0.9997)- and an acceptable detection limit (165 nM). Moreover, the new method has been successfully applied for tetracycline determination in urine samples with good recoveries (94.7-103%) and precision (4.6 RSD%).
Collapse
|
29
|
Urnau L, Colet R, Reato PT, Fernandes de Medeiros Burkert J, Rodrigues E, Gomes R, Jacques RA, Valduga E, Steffens C. Use of Low-Cost Agro-Industrial Substrate to Obtain Carotenoids from Phaffia rhodozyma in a Bioreactor. Ind Biotechnol (New Rochelle N Y) 2019. [DOI: 10.1089/ind.2018.0027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Letícia Urnau
- Department of Food Engineering, URI Erechim, Erechim, Rio Grande do Sul, Brazil
| | - Rosicler Colet
- Department of Food Engineering, URI Erechim, Erechim, Rio Grande do Sul, Brazil
| | | | | | - Eliseu Rodrigues
- Institute of Science and Food Technology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Raul Gomes
- Institute of Science and Food Technology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
| | | | - Eunice Valduga
- Department of Food Engineering, URI Erechim, Erechim, Rio Grande do Sul, Brazil
| | - Clarice Steffens
- Department of Food Engineering, URI Erechim, Erechim, Rio Grande do Sul, Brazil
| |
Collapse
|
30
|
Zhang X, Chen J, Wu D, Li J, Tyagi RD, Surampalli RY. Economical lipid production from Trichosporon oleaginosus via dissolved oxygen adjustment and crude glycerol addition. BIORESOURCE TECHNOLOGY 2019; 273:288-296. [PMID: 30448680 DOI: 10.1016/j.biortech.2018.11.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 06/09/2023]
Abstract
The effect of dissolved oxygen concentration on lipid accumulation in Trichosporon oleaginosus has been investigated. The experiment was performed in 15 L fermenters. The dissolved oxygen concentration varied by adjusting the agitation and aeration. High dissolved oxygen level at 50%-60% enhanced cell growth. Maintaining low dissolved oxygen concentration at 20%-30% during lipogenesis phase led to high final lipid content (51%) in Trichosporon oleaginosus. The consumptions of energy and cost of the process were evaluated. The energy consumption in the dissolved oxygen level optimized process was 41% less than that with dissolved oxygen level at 50%-60%. In addition, the cost was also reduced around one time in the dissolved oxygen level optimized process compared to the one with dissolved oxygen level at 50%-60%. The study provided a feasible way of enhancing lipid accumulation in Trichosporon oleaginosus and reducing the consumption of energy and cost of lipid production from Trichosporon oleaginosus.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Department of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China
| | - Jiaxin Chen
- Department of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China
| | - Di Wu
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong
| | - Ji Li
- Department of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China.
| | | | - Rao Y Surampalli
- Department of Civil Engineering, University of Nebraska-Lincoln, N104 SEC PO Box 886105 Lincoln, NE 68588-6105, USA
| |
Collapse
|
31
|
Kumar LR, Yellapu SK, Zhang X, Tyagi RD. Energy balance for biodiesel production processes using microbial oil and scum. BIORESOURCE TECHNOLOGY 2019; 272:379-388. [PMID: 30384213 DOI: 10.1016/j.biortech.2018.10.071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 06/08/2023]
Abstract
Biodiesel production using microbial oil is a promising technology. The main aim of this study is to check practical feasibility (in terms of energy balance) of different biodiesel production processes. Mass and energy balance of biodiesel production have been performed for 3 separate processes: (1) microbial lipid production from T. oleaginosus using waste substrates followed by INRS downstream process (2) microbial lipid production from pure substrate using R. toruloides followed by traditional and INRS downstream process and 3) oil extraction from scum and conversion to biodiesel. It was found that employing waste substrates like crude glycerol and municipal sludge in fermentation reduced the energy input by 50%. While employing biodegradable surfactants and petroleum-diesel as solvent (PD) for lipid extraction and recovery significantly reduced the energy input at cell wall disruption step. Biodiesel production from scum is a two-step process which is fast and energetically favorable.
Collapse
Affiliation(s)
- Lalit R Kumar
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - Sravan Kumar Yellapu
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - Xiaolei Zhang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - R D Tyagi
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada.
| |
Collapse
|
32
|
Electrospun chitosan/poly(ethylene oxide) nanofibers applied for the removal of glycerol impurities from biodiesel production by biosorption. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.07.081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
Dong R, Zhao M, Xia W, Yi X, Dai P, Tang N. Chemical and microscopic investigation of co-pyrolysis of crumb tire rubber with waste cooking oil at mild temperature. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 79:516-525. [PMID: 30343783 DOI: 10.1016/j.wasman.2018.08.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/04/2018] [Accepted: 08/10/2018] [Indexed: 06/08/2023]
Abstract
Approximate rubber/bitumen homogeneous system formed by desulfurization and degradation of crumb tire rubber in bitumen under high temperature is beneficial to enhance the storage stability of rubberized bitumen. However, the main problems during the processing of desulfurized and degraded rubberized bitumen are aging caused by volatilization of light components, and burning or explosion due to the direct utilization of low flash point bitumen. Therefore, waste cooking oil was proposed as a safer medium to desulfurize and degrade crumb rubber prior to production of rubberized bitumen. This study focused on the feasibility and effectiveness of the application of waste cooking oil in desulfurizing and degrading rubber particles through co-pyrolysis of them at mild temperature (240-280 °C). Chemical and microscopic analyses were performed to investigate the structural changes of vulcanized rubber. Results showed that solubility of rubber powder reached above 60 wt% after pyrolysis in waste cooking oil, which increased with higher temperatures and more of oil, while increased to a maximum at 2 h and then decreased with the extension of time. The rubber hydrocarbon content decreased greatly, and dramatic reduction of carbon, hydrogen and sulfur elements happened according to component and elemental analyses. The surface of pyrolysis product was even and smooth without obvious rubber particles. The grooves and cavities of rubber residues in scanning electron microscopy micrographs proved that shedding of degraded polymer molecules occurred. Fourier transform infrared spectra revealed that breakage of carbon-sulfur, carbon=carbon and sulfur=oxygen bonds took place during pyrolysis, with appearance of natural rubber characteristic peak.
Collapse
Affiliation(s)
- Ruikun Dong
- Key Laboratory of New Technology for Construction of Cities in Mountain Area (Chongqing University), Ministry of Education, Chongqing 400045, China; School of Civil Engineering, Chongqing University, Chongqing 400045, China.
| | - Mengzhen Zhao
- School of Civil Engineering, Chongqing University, Chongqing 400045, China
| | - Weiwei Xia
- School of Civil Engineering, Chongqing University, Chongqing 400045, China
| | - Xingyu Yi
- School of Civil Engineering, Chongqing University, Chongqing 400045, China
| | - Panteng Dai
- School of Civil Engineering, Chongqing University, Chongqing 400045, China
| | - Naipeng Tang
- Key Laboratory of New Technology for Construction of Cities in Mountain Area (Chongqing University), Ministry of Education, Chongqing 400045, China; School of Civil Engineering, Chongqing University, Chongqing 400045, China
| |
Collapse
|
34
|
Contribution of specific impurities in crude glycerol towards improved lipid production by Rhodosporidium toruloides ATCC 10788. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.biteb.2018.05.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|