1
|
Yu H, Wang X, Chen Y, He Y, Yang S, Yuan H, Tao H, Xu S, Gu L. Advanced application of tea residue extracts rich in polyphenols for enhancing sludge dewaterability: Unraveling the role of pH regulation. ENVIRONMENTAL RESEARCH 2024; 252:118978. [PMID: 38704012 DOI: 10.1016/j.envres.2024.118978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/07/2024] [Accepted: 04/19/2024] [Indexed: 05/06/2024]
Abstract
Tea polyphenols (TPs), as a kind of derivatives from tea waste, were employed as a novel environmentally friendly bio-based sludge conditioner in this study. The findings showed that when TPs were applied at a dosage of 300 mg g-1 DS, the sludge CST0/CST ratio significantly increased to 1.90. pH regulation was found to markedly affect the dewatering efficiency of sludge. At pH 4, the CST0/CST rose to 2.86, coupled with a reduction in the specific resistance to filtration (SRF) from 6.69 × 1013 m kg-1 to 1.43 × 1013 m kg-1 and a decrease in the moisture content (MC) from 90.57% to 68.75%. TPs formed complexes and precipitated sludge proteins, as demonstrated by changes in the extracellular polymeric substances (EPS), viscosity, zeta potential, and particles size distribution. The optimization significance of acidification treatment on sludge structure disintegration, the interaction of TPs with EPS, and the removal of sludge proteins were elucidated. The research provided an ideal approach for the integrated utilization of biomass resources from tea waste and highlighted the potential application of TPs as an environmentally friendly conditioner in sludge dewatering.
Collapse
Affiliation(s)
- Haixiang Yu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
| | - Xin Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Ya Chen
- Shanghai Chengtou Raw Water Co., LTD, Shanghai, 200125, PR China
| | - Yiyang He
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Siting Yang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Haiping Yuan
- School of Environment Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Hong Tao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Suyun Xu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Lin Gu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
| |
Collapse
|
2
|
Li H, Xie B, Zhu X, Li Q, Yang J. Erosion behaviour of rotary kiln refractory and its effects on ringing during steel-rolling oily sludge incineration. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 164:162-170. [PMID: 37059040 DOI: 10.1016/j.wasman.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/28/2023] [Accepted: 04/02/2023] [Indexed: 06/19/2023]
Abstract
Rotary kiln incineration is a desirable disposal option for steel-rolling oily sludge. However, ringing remains a key challenge in the highly efficient operation of rotary kilns. This study investigates the erosion behaviour of refractory bricks in a rotary kiln during steel-rolling oily sludge incineration and its effects on ringing. The degree of refractory brick erosion (i.e. iron permeation-depth and quantity) depends on the roasting temperature and time. The iron permeation-depth (3.1 mm) after 36 h of roasting at 1350 °C is greater than that (0.7 mm) after 12 h of roasting at 1200 °C. In the same zones of the refractory bricks, iron permeation increases with the roasting temperature and time. This is because the molten substances generated from the steel-rolling oily sludge erode the refractory bricks, whereas the loosened surface of the eroded refractory bricks is conducive to the continual permeation of molten substances in the refractory bricks. Steel-rolling oily sludge is mixed with refractory brick powder to produce briquettes, which are then used to simulate the permeation and erosion processes. Adding 20% refractory bricks to the briquettes decreases the cohesion strength of the briquettes from 9.07 to 11.71 kN to 2.97-4.44 kN when roasting is performed at 1250 °C for 5-30 min. Although haematite contributes to the high cohesive strength of the rings, the primary components of the refractory brick are transformed into eutectic substances, which decreases the cohesive strength of the rings. These findings provide a useful reference for developing ringing mitigation methods for rotary kilns.
Collapse
Affiliation(s)
- Hailong Li
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Bin Xie
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Xiaolei Zhu
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Qian Li
- National Engineering Research Center of Sintering and Pelletizing Equipment System, Zhongye Changtian International Engineering Co., Ltd, 410205 Changsha, China
| | - Jianping Yang
- School of Energy Science and Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
3
|
Abstract
The adverse effect of the use of fossil fuels on the environment and public health has given rise to a sustained renewable energy research and development. An important component of global renewable energy mix is the use of loose biomass, including agricultural and forestry residues, to produce solid fuels in the form of briquettes. Briquettes play a significant role in bioenergy mix in developing and developed countries. The production of biomass briquettes often entails the collection, transportation, storage, processing, and compaction of loose biomass that meet specific quality parameters. The densification process often involves the addition of binders to improve the cohesive strength of the briquette material. This paper surveys recent literature from 2012 to 2021 to establish the current state of research on the use of binders in briquette production; and reviews current parameters used in assessing the quality of biomass briquettes with focus on mechanical and handling properties. While a number of quality parameters were identified, their assessment methodologies varied widely in the literature, thus necessitating standardization for comparability purposes. The review also includes factors affecting the wide production and adoption of biomass briquettes in most developing economies and proposes ways of overcoming the bottlenecks.
Collapse
|
4
|
Utilization of Aerobic Compression Composting Technology on Raw Mushroom Waste for Bioenergy Pellets Production. Processes (Basel) 2022. [DOI: 10.3390/pr10030463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Raw mushroom waste has been an enormous solid waste, not only causing a huge cut on profit margin of mushroom industries but also leading to environmental pollution. Unfortunately, the current utilization methods, such as pharmaceutical extractions, are unable to keep up with the waste generation rate due to the large-scale mushroom production. Yet, the utilization of raw mushroom waste to produce biomass pellets for energetic purposes and the role of an electric composter on shortening the processing time remain unexplored. This is important because conventional composting, which takes a relatively long period (e.g., weeks to months), is less practical when it comes to commercial use of the biomass pellets. To explore this issue, an industrial composter with initial compost was utilized to process the raw mushroom waste, followed by pelletization. Extraction of the material inside the composter at different timing was carried out to determine the optimal processing time for optimal texture to form pellets. It was found that prolonged composting hour affected the pelletization process since moisture, which acts as a natural binder, reduced when the composting hour increased. The gross calorific value increased from 14.07 MJ/kg to 18.76 MJ/kg for raw mushroom waste and compost pellets at the fifth hour, respectively. This study revealed that the raw mushroom waste compost could serve as a valuable renewable energy source and that the production of energy-rich biomass compost fuel pellets without using any binder within a short composting duration is achievable with the aid of an in-vessel composter.
Collapse
|
5
|
Awasthi MK, Ferreira JA, Sirohi R, Sarsaiya S, Khoshnevisan B, Baladi S, Sindhu R, Binod P, Pandey A, Juneja A, Kumar D, Zhang Z, Taherzadeh MJ. A critical review on the development stage of biorefinery systems towards the management of apple processing-derived waste. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2021; 143:110972. [DOI: 10.1016/j.rser.2021.110972] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
6
|
Nzediegwu C, Naeth MA, Chang SX. Carbonization temperature and feedstock type interactively affect chemical, fuel, and surface properties of hydrochars. BIORESOURCE TECHNOLOGY 2021; 330:124976. [PMID: 33743274 DOI: 10.1016/j.biortech.2021.124976] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
The hydrothermal carbonization (HTC) process that converts wet/dry biomass to hydrochars (for use as solid fuels or adsorbents) needs to be optimized. We investigated the interactive effects of feedstock type and HTC temperature on chemical, fuel, and surface properties of hydrochars produced from lignocellulosic (canola straw, sawdust and wheat straw) and non-lignocellulosic feedstocks (manure pellet) at 180, 240 and 300 °C. Increased HTC temperature decreased hydrochar yield and surface functional group abundance, but increased hydrochar thermal stability due to increased devolatilization and carbonization. Hydrochar surface area ranged from 1.76 to 30.59 m2g-1, much lower than those of commercially available activated carbon. Lignocellulosic and non-lignocellulosic feedstocks were distinctly affected by HTC temperature due to variable carbonization from ashing. Hydrochars produced from lignocellulosic biomass at 240 and 300 °C resembled high-volatile bituminous coal. Hydrochars should be designed for specific applications such as fuels by selecting specific feedstock types and carbonization conditions.
Collapse
Affiliation(s)
- Christopher Nzediegwu
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta T6G2E3, Canada
| | - M Anne Naeth
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta T6G2E3, Canada
| | - Scott X Chang
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta T6G2E3, Canada.
| |
Collapse
|
7
|
Combustion Characteristics, Kinetics, SO2 and NO Release of Low-Grade Biomass Materials and Briquettes. ENERGIES 2021. [DOI: 10.3390/en14092655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The influence of the briquetting process on SO2 and NO release characteristics, combustion properties and kinetic characteristics during biomass combustion was investigated. Two biomass (Wheat straw and Tree bulk) and two obtained briquettes were analysed. The briquetting process helps to prevent the release of SO2 and NO. The experimental results show that once the biomass is made into a briquette, when the reaction temperature is 900 ∘C, the sulphur release ratio for TB was reduced from 34.7% to 4.3% and for WS was reduced from 12.4% to 1.6%. When the reaction temperature increases to 1000 ∘C, the sulphur release ratio for TB was reduced from 73.4% to 30.4%, for WS it was reduced from 58.4% to 10.2%. SEM micrographs show that the compact structure of the TB-Briquette and WS-Briquette reduce the rate of SO2 and NO release during combustion. The thermogravimetry confirmed that the combustion performance of WS-Briquette is the best, while the TB-Briquette is the worst. According to the Coats-Redfern method, the fitting was performed at segments of 250 ∘C to 550 ∘C, and the correlation coefficient of the fitting degree was above 0.99. The effective collision rate of WS-Briquette is much higher than that of other briquettes. Compared to BR-1 and BR-2, trying to mix TB with WS to make a compound biomass briquette can enhance the combustion performance of TB-Briquette. The results may guide the upgrading of biomass briquettes technology and benefit the efficient application of biomass briquettes.
Collapse
|
8
|
Prediction of As, Cd, Cr, Hg, Ni, and Se Concentrations in Organic Amendments Using Portable X-ray Fluorescence and Multivariate Modeling. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10175726] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Portable X-ray fluorescence (pXRF) has been a widely used technique in various applications. However, its use for the analysis of organic amendments (composts, sewage sludges, organic fertilizers) is scarce. In these matrices, concentrations of some elements are below their detection limit. The objective of this work was to find multiple linear regression equations that were able to predict the aqua-regia-soluble concentrations of the elements As, Cd, Cr, Hg, Ni, and Se using the pXRF readings of other measurable elements as predictor variables. For this, a set of 30 samples of organic amendments (composts, sewage sludges, and organic fertilizers) from the Manure and Refuse Sample Exchange Programme of the Wageningen Evaluating Programs for Analytical Laboratories (MARSEP-WEPAL) was used. Several amendment type-dependent single or multiple linear functions were found based on 1, 2, or 3 predictors. The predictor readings corresponded to the concentration of elements of geogenic (Fe, Si, Ti, Cl, Zr Al, Ca, S, Mn, and Ba), anthropogenic (Zn and Pb), and agricultural (P and K) origin. The regression coefficients of these functions were r = 0.90–0.99; therefore, they allowed for the quantitative determination of the target elements. These results will allow for fast and reliable analysis of organic amendments using pXRF that is valid for quality control in treatment plants.
Collapse
|
9
|
Thermochemical and Economic Analysis for Energy Recovery by the Gasification of WEEE Plastic Waste from the Disassembly of Large-Scale Outdoor Obsolete Luminaires by LEDs in the Alto Alentejo Region (Portugal). APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10134601] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The recovery of urban waste is a social demand and a measure of the energy-environmental sustainability of cities and regions. In particular, waste of electrical origin, waste of electrical and electronic materials (WEEE) can be recovered with great success. The plastic fraction of these wastes allows their gasification mixed with biomass, and the results allow for producing syngas with a higher energy potential. This work allows for obtaining energy from the recovery of obsolete materials through thermochemical conversion processes of the plastic waste from the disassembly of the luminaires by mixing the said plastic waste in different proportions with the biomass of crop residues (olive). The gasification tests of these mixtures were carried out in a downstream fixed-bed drown daft reactor, at temperatures of approximately 800 °C. The results demonstrate the applied technical and economic feasibility of the technology by thermal gasification, for the production of LHV (Low Heating Value) syngas with highest power energy (more than 5 MJ/m3) produced in mixtures of up to 20% of plastic waste. This study was complemented with the economic-financial analysis. This research can be used as a case study for the energy recovery through gasification processes of plastic waste from luminaires (WEEE), mixed with agricultural biomass that is planned to be carried out on a large scale in the Alentejo (Portugal), as a solution applied in circular economy strategies.
Collapse
|
10
|
Co-Combustion of Waste Tires and Plastic-Rubber Wastes with Biomass Technical and Environmental Analysis. SUSTAINABILITY 2020. [DOI: 10.3390/su12031036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present work studies the possibility of energy recovery by thermal conversion of combustible residual materials, namely tires and rubber-plastic, plastic waste from outdoor luminaires. The waste has great potential for energy recovery (HHV: 38.6 MJ/kg for tires and 31.6 MJ/kg for plastic). Considering the thermal conversion difficulties of these residues, four co-combustion tests with mixtures of tires/plastics + pelletized Miscanthus, and an additional test with 100% Miscanthus were performed. The temperature was increased to the maximum allowed by the equipment, about 500 °C. The water temperature at the boiler outlet and the water flow were controlled (60 °C and 11 L/min). Different mixtures of residues (0–60% tires/plastics) were tested and compared in terms of power and gaseous emissions. Results indicate that energy production increased with the increase of tire residue in the mixture, reaching a maximum of 157 kW for 40% of miscanthus and 60% of tires. However, the automatic feeding difficulties of the boiler also increased, requiring constant operator intervention. As for plastic and rubber waste, fuel consumption generally decreased with increasing percentages of these materials in the blend, with temperatures ranging from 383 °C to 411 °C. Power also decreased by including such wastes (66–100 kW) due to feeding difficulties and cinder-fusing problems related to ash melting. From the study, it can be concluded that co-combustion is a suitable technology for the recovery of waste tires, but operational problems arise with high levels of residues in the mixture. Increasing pollutant emissions and the need for pre-treatments are other limiting factors. In this sense, the thermal gasification process was tested with the same residues and the same percentages of mixtures used in the co-combustion tests. The gasification tests were performed in a downdraft reactor at temperatures above 800 °C. Each test started with 100% acacia chip for reference (like the previous miscanthus), and then with mixtures of 0–60% of tires and blends of plastics and rubbers. Results obtained for the two residues demonstrated the viability of the technology, however, with mixtures higher than 40% it was very difficult to develop a process under stable conditions. The optimum condition for producing a synthesis gas with a substantial heating value occurred with mixtures of 20% of polymeric wastes, which resulted in gases with a calorific value of 3.64 MJ/Nm3 for tires and 3.09 MJ/Nm3 for plastics and rubbers.
Collapse
|
11
|
Valdés CF, Marrugo GP, Chejne F, Marin-Jaramillo A, Franco-Ocampo J, Norena-Marin L. Co-gasification and co-combustion of industrial solid waste mixtures and their implications on environmental emissions, as an alternative management. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 101:54-65. [PMID: 31590031 DOI: 10.1016/j.wasman.2019.09.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/03/2019] [Accepted: 09/26/2019] [Indexed: 06/10/2023]
Abstract
The primary sludge produced by the wastewater treatment plant of a pulp and paper mill has high physicochemical heterogeneity, which limits the efficiency of thermochemical methodologies for the final disposal of this residue. As a solution, co-pelletization of the Primary Sludge (PS) with two other principal Industrial Solid Residues (ISRs) of the plant, Coal Boiler Ashes (CBA) and Wood Waste chips (WW), was proposed as a way to valorize the PS for energy use, while reducing dewatering costs. The energy potential was evaluated through a series of thermal co-processing tests of disaggregated and pelletized mixtures. Due to their differing fixed-carbon-to-volatile-material ratios, combining the ISRs resulted in a reduction of up to 45% of the mass of the ISR generated, improving the disposal conditions and achieving a minimum thermal power of 5.0 MJ/Nm3 through gasification. Finally, the environmental implications of the thermal co-processing of the wastes were assessed, finding very low impacts due to pollutant emissions, in accordance with the legal environmental regulations in force in Colombia.
Collapse
Affiliation(s)
- Carlos F Valdés
- Universidad Nacional de Colombia, Facultad de Minas, Escuela de Procesos y Energía, TAYEA Group, Carrera 80 No. 65-223, Medellín, Colombia
| | - Gloria P Marrugo
- Universidad Nacional de Colombia, Facultad de Minas, Escuela de Procesos y Energía, TAYEA Group, Carrera 80 No. 65-223, Medellín, Colombia
| | - Farid Chejne
- Universidad Nacional de Colombia, Facultad de Minas, Escuela de Procesos y Energía, TAYEA Group, Carrera 80 No. 65-223, Medellín, Colombia.
| | | | | | | |
Collapse
|
12
|
Wang T, Li Y, Zhi D, Lin Y, He K, Liu B, Mao H. Assessment of combustion and emission behavior of corn straw biochar briquette fuels under different temperatures. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 250:109399. [PMID: 31479935 DOI: 10.1016/j.jenvman.2019.109399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/04/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
The 350 °C and 700 °C corn straw biochars were used to produce solid fuel briquettes. NovoGro (NG), an industrial by-product, were selected as a binder in the briquetting process. The ratios of the raw material to NG was assumed as 100:1 and 50:1 (denoted as 350NB1, 350NB2, 700NB1 and 700NB2, respectively). The physicochemical and morphological properties, combustion characteristics and gas emissions of the four briquettes were investigated. The results revealed that the biochars and the NG binder performed a good combination. The low temperature biochar briquettes, especially 350NB2, had excellent combustion characteristics, including low H/C and O/C ratios (0.17 and 0.82), low gas emissions (104.06 mg/m3 of CO, 157.25 mg/m3 of NOx and 18.92 mg/m3 of SO2), optimal resistance to mechanical shock (~90%) and high calorific values (21.48 MJ/kg). Thus, NG is a good binder for the briquetting of biochar. The low temperature biochar was a good feedstock for solid fuel production in the improvement of the combustion and emission quality.
Collapse
Affiliation(s)
- Ting Wang
- Center for Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Yuening Li
- Center for Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Dengke Zhi
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yingchao Lin
- Center for Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| | - Kai He
- Research Centre for Environmental Quality Management, Kyoto University, 1-2 Yumihama, Otsu, Shiga, 520-0811, Japan.
| | - Boyang Liu
- QES Department, Novozymes (China) Biotechnology Ltd, Tianjin, 300457, China
| | - Hongjun Mao
- Center for Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| |
Collapse
|
13
|
Infiesta LR, Ferreira CRN, Trovó AG, Borges VL, Carvalho SR. Design of an industrial solid waste processing line to produce refuse-derived fuel. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 236:715-719. [PMID: 30772728 DOI: 10.1016/j.jenvman.2019.02.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/10/2019] [Accepted: 02/03/2019] [Indexed: 06/09/2023]
Abstract
Municipal Solid Waste (MSW) from the city of Boa Esperança, Minas Gerais, Brazil, was used to produce refuse-derived fuel (RDF). The MSW contains residues from human society, including product packaging, bottles, batteries, organic waste, fines, textiles, health textiles, plastics, glass, and metals, among others. The following protocol was performed during the conversion of MSW to RDF: (i) the raw MSW was placed in a silo and sent to a primary crusher using a metal conveyor belt, which reduced the particle size to 80 mm; (ii) the biomass was transferred to a selective waste collection platform by a rubber conveyor belt, and the recyclable waste, metals, and glasses were separated manually; (iii) residual metals were removed by a magnetic separator; (iv) the waste was transferred to a secondary crusher which reduced the particle size to 60 mm; (v) the waste passed through an airborne separator to remove materials with high density, such as glass, stones, and organic materials, using a metallic conveyor belt; (vi) the particle size was reduced to 40 mm by a tertiary crusher; (vii) the aluminium was separated from the non-metallic materials (plastic, paper, rubber, etc.) using an eddy current separator; (viii) the particle size was reduced to 25 mm using a quaternary crusher; (ix) the MSW was introduced into a rotary dryer using a metal conveyor belt, where the moisture content was reduced to close to 15 wt%, which required thermal energy equivalent to 186 kWh; (x) the RDF was used in a thermochemical reactor and 4148 kWh of thermal energy was produced. In addition, the MSW and RDF were analysed, and the elemental composition and combustion characteristics were determined. Based on these results, the protocol evaluated was found to be effective in the conversion of MSW to RDF, which can be used as a source of renewable fuel.
Collapse
Affiliation(s)
- Luciano R Infiesta
- Carbogás Energia, Avenida Guaraciaba, 659, 09370-840, Mauá, São Paulo, Brazil
| | - Cassius R N Ferreira
- Universidade Federal de Uberlândia, Faculdade de Engenharia Mecânica, Avenida João Naves de Ávila, 2121, 38408-100, Uberlândia, Minas Gerais, Brazil
| | - Alam G Trovó
- Universidade Federal de Uberlândia, Instituto de Química, Avenida João Naves de Ávila, 2121, 38400-902, Uberlândia, MG, Brazil
| | - Valério L Borges
- Universidade Federal de Uberlândia, Faculdade de Engenharia Mecânica, Avenida João Naves de Ávila, 2121, 38408-100, Uberlândia, Minas Gerais, Brazil
| | - Solidônio R Carvalho
- Universidade Federal de Uberlândia, Faculdade de Engenharia Mecânica, Avenida João Naves de Ávila, 2121, 38408-100, Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
14
|
Li Y, Lin Y, Zhao J, Liu B, Wang T, Wang P, Mao H. Control of NO x emissions by air staging in small- and medium-scale biomass pellet boilers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:9717-9729. [PMID: 30734254 DOI: 10.1007/s11356-019-04396-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
The effect of air staging strategies on NOx control was investigated on a 210-kW small-scale biomass boiler (SBB) and a 1.4-MW medium-scale biomass boiler (MBB). Considering the de-NOx effect, as well as the convenience and economy for future wide use, the structures of the secondary air duct and the fuel feed tube were innovatively designed to solve the problems of the traditional prototype. The preliminary experiment showed that the lowest NOx emission was achieved when the air excess (ε) was equal to 2.04. Then, additional operating modes were conducted on the MBB to further optimize the air staging strategies. The optimal air staging strategy of the MBB (the secondary to primary air flow ratio (λ) and the ε were equal to 0.13 and 0.76, respectively) could decrease the NOx emission from 338.12 to 148.14 mg/m3. Furthermore, the SO2 emissions and the lowest NOx emission of the SBB and the MBB could meet most emission standards of China and some developed countries. The thermogravimetric analysis (TG) and combustion characteristics of the wood fuel showed that the air staging was a suitable de-NOx technology for wood combustion, and the slagging was less likely to occur under the selected condition. Hence, the air staging technology was an effective and low-cost method for the emission reduction of biomass boilers. This study provided a practical basis for future research on the gas emission control of biomass boilers.
Collapse
Affiliation(s)
- Yuening Li
- Center for Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Yingchao Lin
- Center for Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Jingbo Zhao
- Center for Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Boyang Liu
- QES Department, Novozymes (China) Biotechnology Ltd, Tianjin, 300457, China
| | - Ting Wang
- Center for Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| | - Peng Wang
- Zachry Department of Texas A&M University, College Station, TX, USA.
| | - Hongjun Mao
- Center for Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
15
|
Li Y, Jiang S, Wang T, Lin Y, Mao H. Research on biocharviaa comprehensive scientometric approach. RSC Adv 2018; 8:28700-28709. [PMID: 35548397 PMCID: PMC9084401 DOI: 10.1039/c8ra05689g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 07/30/2018] [Indexed: 11/22/2022] Open
Abstract
A comprehensive statistical study related to biochar was conducted by using the scientometric method. The publications are mainly in the form of articles (over 16 000), accounting for 87.7% of the total, which demonstrates that researchers have great interest in this research field. Among these articles, 96.8% were written and published in English and came from 2655 different journals. The rate of increase in the annual number of publications was rapid from 2010 to 2017, and it was predicted that the cumulative number of articles concerning biochar will exceed 20 000 by the year 2020. At least one article from 154 countries or regions has been published, and every continent except Antarctica has had articles published over the past 20 years period. The percentage of collaborative articles was 71.9% and the collaboration between the USA and China has been the most fruitful. In addition, the Chinese Academy of Sciences is the research institute with the most publications. Furthermore, over 60% of the articles were published as a result of the cooperation and connection between the Chinese Academy of Sciences and the University of Chinese Academy of Sciences. The article published in Nature had the highest citation numbers, while Environmental Science & Technology had the most articles (4) that were selected as the top 20 for the most-cited articles. The agriculture research category had the highest average citations among the top four categories (i.e., environmental sciences and ecology, agriculture, chemistry and engineering). A comprehensive statistical study related to biochar was conducted by using the scientometric method.![]()
Collapse
Affiliation(s)
- Yuening Li
- Center for Urban Transport Emission Research
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control
- College of Environmental Science and Engineering
- Nankai University
- Tianjin 300071
| | - Shanxue Jiang
- Barrer Centre
- Department of Chemical Engineering
- Imperial College London
- London SW7 2AZ
- UK
| | - Ting Wang
- Center for Urban Transport Emission Research
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control
- College of Environmental Science and Engineering
- Nankai University
- Tianjin 300071
| | - Yingchao Lin
- Center for Urban Transport Emission Research
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control
- College of Environmental Science and Engineering
- Nankai University
- Tianjin 300071
| | - Hongjun Mao
- Center for Urban Transport Emission Research
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control
- College of Environmental Science and Engineering
- Nankai University
- Tianjin 300071
| |
Collapse
|